ADOPTED LEVELS, GAMMAS for 45Ca

Author: T. W. Burrows |  Citation: Nucl. Data Sheets 109, 171 (2008) |  Cutoff date: 30-Oct-2007 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=259.0 keV 8S(n)= 7414.81 keV 17S(p)= 12319.6 keV 6Q(α)= -10169.6 keV 5
Reference: 2012WA38

References:
  A  45K β- decay  B  36S(14C,NAG)
  C  44Ca(pol n,γ),(n,γ) E=THERMAL  D  44Ca(n,γ) E=10-60 KEV RES
  E  44Ca(d,p)  F  44Ca(d,pγ)
  G  46Ca(d,t),(3He,α)  H  48Ca(3He,6He)
  I  48Ti(n,αγ) 

General Comments:

Levels: Resonance properties: see 2006MuZX

Gammas: See β- decay and (pol n,γ),(n,γ) for unplaced γ’s

Q-value: Note: Current evaluation has used the following Q record 255.8 8 7414.79 1712290 40-10169.45 2003Au03










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     0.0ABCDEFGHI 7/2- 162.61 d 9 
% β- = 100
     
   174.25 4 A CDEFGHI 5/2- 0.40 ns 4     174.259 47 
  100
(M1)
     0.0
7/2-
  1434.77 6 A CDEFGH  3/2- 1.10 ps +22-16    1260.58 7 
  1434.72 13 
  100 3 
   49 3 
M1+E2
(E2)
   174.25
     0.0
5/2-
7/2-
  1554.37 8  B     H  (11/2-) > 2.1 ps   1554.34 8 
  100
(E2(+M3))
     0.0
7/2-
  1558 10     E            
  1584 6     E            
  1879.89 16 A C EFG   3/2+ 0.05 ps 3    1705.6 2 
  1879.9 3 
  100.000 30 
    0.0371 30 
(E1)
(M2)
   174.25
     0.0
5/2-
7/2-
  1884.4 4   C E GH      1710.1 4 
  100

   174.25
5/2-
  1899.92 6 A CDEFGH  3/2- 1.12 ps +11-9     464.96 12 
  1725.68 7 
  1900.13 18 
    9.4 12 
  100 3 
   36.9 75 
(M1+E2)
M1+E2
(E2)
  1434.77
   174.25
     0.0
3/2-
5/2-
7/2-
  1940.19 7 ? B             385.74 8 ?
  100

  1554.37
(11/2-)
  1973 6     E     5/2-,7/2-        
  2249.10 7 A CDEF    1/2- 0.43 ps +7-6     349.11 10 
   814.51 10 
  2074.71 9 
   53.2 76 
   60.8 89 
  100.0 16 
(M1)
(M1)
(E2)
  1899.92
  1434.77
   174.25
3/2-
3/2-
5/2-
  2353.81 16 A   E     1/2+,3/2+,5/2+ 4.7 ns 11     453.9 3 
   919.3 3 
  2179.4 3 
  2353.6 5 
    0.30 6 
    6.14 45 
    6.93 57 
  100.0 11 
(M2)
(E1,M2)
(M2)
(E1,M2,E3)
  1899.92
  1434.77
   174.25
     0.0
3/2-
3/2-
5/2-
7/2-
  2392.29 14 A C EFGH  1/2+ 0.19 ps 4     492.5 2 
   512 1 
   957.5 2 
  2217.3 6 
  2392.0 4 
   17.3 13 
   16.0 53 
  100.0 53 
    0.27 13 
    0.13 13 
(E1)
(M1)
(E1)
(M2)
[E3]
  1899.92
  1879.89
  1434.77
   174.25
     0.0
3/2-
3/2+
3/2-
5/2-
7/2-
  2523.1 4 ?A         (3/2,5/2,7/2)      623.4 6 ?
  2349 1 ?
  2522.7 6 ?
   10.8 41 
  100 11 
   24.3 14 



  1899.92
   174.25
     0.0
3/2-
5/2-
7/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  2599 6     E            
  2675.1 10   C EF    (3/2,5/2)     2675
 

     0.0
7/2-
  2771.10 15 A   E     1/2+,3/2+,5/2+      417.4 3 
   522.4 8 
   871.3 5 
   891.3 4 
  1336.4 8 
  2596.7 2 
  2769.9 10 
   13.6 17 
    0.17 14 
    4.767 17 
   21.4 24 
   98 17 
  100 12 
    0.71 24 







  2353.81
  2249.10
  1899.92
  1879.89
  1434.77
   174.25
     0.0
1/2+,3/2+,5/2+
1/2-
3/2-
3/2+
3/2-
5/2-
7/2-
  2786 12 ?       H         
  2842.05 16 A CDEFG   3/2- 22 fs 6     942.7 10 ?
   957.8 3 ?
  2667.7 2 
  2842.2 3 
    9.1 61 
   30 16 
  100 15 
   84 11 
D,E2
(E1)
D,E2
(E2)
  1899.92
  1884.4
   174.25
     0.0
3/2-

5/2-
7/2-
  2877.99 12  B     H  (15/2-) > 2.1 ps   1323.60 9 
  100
(E2(+M3))
  1554.37
(11/2-)
  2953 6     E            
  2976.8 5 A   EF    5/2- 42 fs 19    2802.4 6 
  2976.7 6 
  100.0 26 
   28.28 26 
D,E2
(E2)
   174.25
     0.0
5/2-
7/2-
  3023.6 4 A         1/2,3/2,5/2     2849.3 4 
  100

   174.25
5/2-
  3035 6 ?    E  H         
  3151 6     E            
  3241.27 24   CDEF    3/2- 36 fs 12     565.6 10 ?
   992?
  3066.9 4 
  3241?
   23 15 
 
  100 15 
 
D

D,E2

  2675.1
  2249.10
   174.25
     0.0
(3/2,5/2)
1/2-
5/2-
7/2-
  3278 6     E            
  3294.5 3 A   E     (3/2+,5/2+)      771.4 8 ?
  1860.4 12 
  3120.2 4 
  3294.3 4 
   35.6 44 
   15.6 22 
  100.0 44 
   68.9 44 




  2523.1
  1434.77
   174.25
     0.0
(3/2,5/2,7/2)
3/2-
5/2-
7/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  3322 6     E     5/2-,7/2-        
  3348 12        H         
  3418.46 14   CD F    1/2- 35 fs 7     576.4 5 
  1026.0 6 ?
  1169.66 24 
  1983.7 4 
  3243.5 3 
   18 10 
   10 5 
  100 15 
   25 8 
   60 10 
(M1)
(E1)
(M1)
(M1)
(E2)
  2842.05
  2392.29
  2249.10
  1434.77
   174.25
3/2-
1/2+
1/2-
3/2-
5/2-
  3442 10     E     1/2-,3/2-        
  3463 10     E            
  3490.7 5 A      H  3/2-,5/2+     1098.0 6 
  3491.0 6 
  100 9 
   85 9 


  2392.29
     0.0
1/2+
7/2-
  3556.01 10 ? B            2001.48 10 ?
  100

  1554.37
(11/2-)
  3560 10       G   (1/2+)        
  3654.0 5 ?A         1/2,3/2,5/2     3479.9 8 ?
  3653.8 6 ?
  100 5 
   28 5 


   174.25
     0.0
5/2-
7/2-
  3675 12 ?       H         
  3705.0 6 A   E     1/2,3/2,5/2     3704.8 6 
  100

     0.0
7/2-
  3753 10     E            
  3783.22 22   CDEF    1/2-,3/2- < 26 fs   3609.3 3 
  100
D,E2
   174.25
5/2-
  3838.00 20   CDEF H  (1/2)- < 15 fs   1938.1 5 
  2403.3 3 
   50 10 
  100 20 
(M1)
(M1)
  1899.92
  1434.77
3/2-
3/2-
  3941.83 14  B             385.74 8 ?
  1063.83 6 
  2001.48 10 ?
   83 43 
  100 50 
   83 25 



  3556.01
  2877.99
  1940.19

(15/2-)

  3993 10     E G   5/2-,7/2-        
  4048 10     E            
  4115 10     E            
  4177 10     E     5/2-,7/2-        
  4258 10     E            
  4286 10     E  H         
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  4312 10     E     (1/2-,3/2-)        
  4388 10     E            
  4421 10     E            
  4467.7 10   C E     1/2-,3/2-        
  4511 10     E     (1/2-,3/2-)        
  4559 10     E            
  4615.72 15   C EF    1/2- < 12 fs   2716.0 3 
  3180.8 3 
  100 19 
   44 13 
(M1)
(M1)
  1899.92
  1434.77
3/2-
3/2-
  4695 10     E     (5/2-,7/2,9/2+)        
  4750 10     E     3/2+,5/2+        
  4762 10     E     1/2+        
  4810 10     E     1/2-,3/2-        
  4837 10     E     3/2+,5/2+        
  4885 10     E     (5/2-,7/2-)        
  4919 10     E     1/2+        
  4981 10     E     1/2+        
  4999.74 19   C EF    (1/2)- < 9.7 fs   2608.2 15 
  3099.7 4 
  3565.0 3 
  100 55 
   82 18 
   27 18 
[E1]
[M1]
[M1]
  2392.29
  1899.92
  1434.77
1/2+
3/2-
3/2-
  5047 10     E     1/2+        
  5079 10     E            
  5128 10     E     (1/2+)        
  5164 10     E            
  5201 10     E     1/2+        
  5237 3   C E     1/2-,3/2-        
  5285 10     E            
  5309 10     E            
  5324 10     E     3/2+,5/2+        
  5352 10     E     1/2+        
  5373 10     E     1/2-,3/2-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  5390 10     E     7/2+,9/2+        
  5417 10     E     3/2+,5/2+        
  5440 10     E     1/2-,3/2-        
  5479 10     E     1/2+        
  5521 10     E     7/2+,9/2+        
  5551 10     E            
  5569 10     E            
  5598 10     E            
  5629 10     E            
  5687 10     E            
  5716 10     E            
  5742 10     E     (3/2+,5/2+)        
  5764 10     E     5/2-,7/2-        
  5792 10     E            
  5818 10     E     1/2+        
  5846 10     E     1/2-,3/2-        
  5892 10     E     3/2+,5/2+        
  5915 10     E            
  5948 10     E            
  5967 10     E            
  5990 10     E            
  6018 10     E            
  6051 10     E            
  6077 10     E            
  6106 10     E            
  6234 10     E            
  6301 10     E            

E(level): For states connected by gammas from least-squares fit to Eγ’s assuming ΔE(γ)=1 keV; capture-state energy held fixed in the fit. Other excitation energies are from (d,p) except as indicated in the XREF column

Jπ(level): From angular momentum transfer in (d,p), except as noted

T1/2(level): From DSAM in (d,pγ), except as noted

E(γ): From β- decay, except as noted

I(γ): From β- decay branching ratios in Table IV of 1980Hu10, except as noted

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 1 - (ν f7/2)-3 MULTIPLET.
   174.25 4  5/2- 0.40 ns 4       
  1434.77 6  3/2- 1.10 ps +22-16    1260.58 7 
  1434.72 13 
  100 3 
   49 3 
M1+E2
(E2)
   174.25
     0.0
5/2-
7/2-
  1554.37 8  (11/2-) > 2.1 ps   1554.34 8 
  100
(E2(+M3))
     0.0
7/2-
  2877.99 12  (15/2-) > 2.1 ps   1323.60 9 
  100
(E2(+M3))
  1554.37
(11/2-)

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   174.25 5/2- 0.40 ns 4     174.259 47 (M1) 0.00326B(M1)(W.u.)=0.0104 11, α=0.00326 5, α(K)=0.00297 5, α(L)=0.000259 4, α(M)=3.08×10-5 5, α(N)=1.727E-6 25, α(N+)=1.727E-6 25
  1434.77 3/2- 1.10 ps +22-16    1260.58 7 M1+E2 6.6×10-5α=6.6×10-5 8, α(K)=4.4E-5 5, α(L)=3.8E-6 4, α(M)=4.5E-7 5, α(N)=2.6E-8 3, α(N+)=1.7E-5 4
3/2- 1.10 ps +22-16    1434.72 13 (E2) 0.0001060B(E2)(W.u.)=2.9 +5-7, α=0.0001060 15, α(K)=3.70E-5 6, α(L)=3.18E-6 5, α(M)=3.77E-7 6, α(N)=2.14E-8 3, α(N+)=6.53E-5 10
  1554.37 (11/2-) > 2.1 ps   1554.34 8 (E2(+M3))0.00 60.0001440B(E2)(W.u.)<3.1, α=0.0001440 21, α(K)=3.14E-5 5, α(L)=2.70E-6 5, α(M)=3.20E-7 5, α(N)=1.82E-8 3, α(N+)=0.0001097 16
  1879.89 3/2+ 0.05 ps 3    1705.6 2 (E1) 0.000441B(E1)(W.u.)=0.0022 13, α=0.000441 7, α(K)=1.457E-5 21, α(L)=1.247E-6 18, α(M)=1.481E-7 21, α(N)=8.42E-9 12, α(N+)=0.000425 6
3/2+ 0.05 ps 3    1879.9 3 (M2) 0.0001380B(M2)(W.u.)=0.8 5, α=0.0001380 20, α(K)=3.35×10-5 5, α(L)=2.88E-6 4, α(M)=3.42E-7 5, α(N)=1.94E-8 3, α(N+)=0.0001011 15
  1899.92 3/2- 1.12 ps +11-9     464.96 12 (M1+E2) 0.0006α=0.0006 3, α(K)=0.00054 24, α(L)=4.6×10-5 21, α(M)=5.5E-6 25, α(N)=3.1E-7 14, α(N+)=3.1E-7 14
3/2- 1.12 ps +11-9    1725.68 7 M1+E2+0.34 41.70×10-4B(E2)(W.u.)=0.25 6, B(M1)(W.u.)=0.00234 +25-28, α=1.70E-4 3, α(K)=2.31E-5 4, α(L)=1.98E-6 3, α(M)=2.35E-7 4, α(N)=1.338E-8 19, α(N+)=0.0001449 23
3/2- 1.12 ps +11-9    1900.13 18 (E2) 0.000289B(E2)(W.u.)=0.54 13, α=0.000289 5, α(K)=2.13E-5 3, α(L)=1.82E-6 3, α(M)=2.17E-7 3, α(N)=1.232E-8 18, α(N+)=0.000265 4
  2249.10 1/2- 0.43 ps +7-6     349.11 10 (M1) 0.000626B(M1)(W.u.)=0.30 7, α=0.000626 9, α(K)=0.000570 8, α(L)=4.94×10-5 7, α(M)=5.86E-6 9, α(N)=3.31E-7 5, α(N+)=3.31E-7 5
1/2- 0.43 ps +7-6     814.51 10 (M1) 0.0001020B(M1)(W.u.)=0.027 6, α=0.0001020 15, α(K)=9.26×10-5 13, α(L)=7.96E-6 12, α(M)=9.45E-7 14, α(N)=5.37E-8 8, α(N+)=5.37E-8 8
1/2- 0.43 ps +7-6    2074.71 9 (E2) 0.000371B(E2)(W.u.)=1.7 3, α=0.000371 6, α(K)=1.81E-5 3, α(L)=1.553E-6 22, α(M)=1.84E-7 3, α(N)=1.049E-8 15, α(N+)=0.000351 5
  2353.81 1/2+,3/2+,5/2+ 4.7 ns 11     453.9 3 (M2) 0.001160B(M2)(W.u.)=0.072 22, α=0.001160 17, α(K)=0.001060 15, α(L)=9.27×10-5 13, α(M)=1.100E-5 16, α(N)=6.19E-7 9, α(N+)=6.19E-7 9
1/2+,3/2+,5/2+ 4.7 ns 11     919.3 3 (E1,M2) 0.00011B(E1)(W.u.)<7.9E-9 20, B(M2)(W.u.)<0.043 11, α=0.00011 7, α(K)=0.00010 7, α(L)=9.E-6 6, α(M)=1.1E-6 7, α(N)=6.E-8 4, α(N+)=6.E-8 4
1/2+,3/2+,5/2+ 4.7 ns 11    2179.4 3 (M2) 0.000214B(M2)(W.u.)=0.00065 17, α=0.000214 3, α(K)=2.49×10-5 4, α(L)=2.14E-6 3, α(M)=2.54E-7 4, α(N)=1.446E-8 21, α(N+)=0.000187 3
1/2+,3/2+,5/2+ 4.7 ns 11    2353.6 5 (E1,M2,E3) 0.0006B(E1)(W.u.)<7.7E-9 18, B(E3)(W.u.)<4.7 12, B(M2)(W.u.)<0.0064 15, α=0.0006 4, α(K)=1.5E-5 7, α(L)=1.3E-6 6, α(M)=1.6E-7 7, α(N)=9.E-9 4, α(N+)=0.0006 4
  2392.29 1/2+ 0.19 ps 4     492.5 2 (E1) 0.000198B(E1)(W.u.)=0.0030 7, α=0.000198 3, α(K)=0.000180 3, α(L)=1.549E-5 22, α(M)=1.84E-6 3, α(N)=1.039E-7 15, α(N+)=1.039E-7 15
1/2+ 0.19 ps 4     512 1 (M1) 0.000267B(M1)(W.u.)=0.10 4, α=0.000267 4, α(K)=0.000244 4, α(L)=2.10×10-5 3, α(M)=2.49E-6 4, α(N)=1.413E-7 21, α(N+)=1.413E-7 21
1/2+ 0.19 ps 4     957.5 2 (E1) 4.37×10-5B(E1)(W.u.)=0.0024 6, α=4.37E-5 7, α(K)=3.98E-5 6, α(L)=3.41E-6 5, α(M)=4.05E-7 6, α(N)=2.30E-8 4, α(N+)=2.30E-8 4
1/2+ 0.19 ps 4    2217.3 6 (M2) 0.000225B(M2)(W.u.)=0.5 3, α=0.000225 4, α(K)=2.41×10-5 4, α(L)=2.07E-6 3, α(M)=2.46E-7 4, α(N)=1.398E-8 20, α(N+)=0.000198 3
1/2+ 0.19 ps 4    2392.0 4 [E3] 0.000336B(E3)(W.u.)≤2.4×102, α=0.000336 5, α(K)=2.14E-5 3, α(L)=1.84E-6 3, α(M)=2.18E-7 3, α(N)=1.240E-8 18, α(N+)=0.000313 5
  2842.05 3/2- 22 fs 6     957.8 3 (E1) 4.36×10-5B(E1)(W.u.)=0.0037 23, α=4.36E-5 7, α(K)=3.98E-5 6, α(L)=3.41E-6 5, α(M)=4.05E-7 6, α(N)=2.30E-8 4, α(N+)=2.30E-8 4
3/2- 22 fs 6    2842.2 3 (E2) 0.000726B(E2)(W.u.)=5.5 18, α=0.000726 11, α(K)=1.061E-5 15, α(L)=9.07E-7 13, α(M)=1.078E-7 15, α(N)=6.14E-9 9, α(N+)=0.000714 10
  2877.99 (15/2-) > 2.1 ps   1323.60 9 (E2(+M3))0.00 68.28×10-5B(E2)(W.u.)<7.0, α=8.28E-5 12, α(K)=4.40E-5 7, α(L)=3.77E-6 6, α(M)=4.48E-7 7, α(N)=2.54E-8 4, α(N+)=3.47E-5 5
  2976.8 5/2- 42 fs 19    2976.7 6 (E2) 0.000785B(E2)(W.u.)=1.3 6, α=0.000785 11, α(K)=9.85E-6 14, α(L)=8.42E-7 12, α(M)=1.001E-7 14, α(N)=5.70E-9 8, α(N+)=0.000774 11
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
  3418.46 1/2- 35 fs 7     576.4 5 (M1) 0.000207B(M1)(W.u.)=0.28 17, α=0.000207 3, α(K)=0.000189 3, α(L)=1.628×10-5 23, α(M)=1.93E-6 3, α(N)=1.096E-7 16, α(N+)=1.096E-7 16
1/2- 35 fs 7    1026.0 6 (E1) 3.82×10-5B(E1)(W.u.)=0.0007 4, α=3.82E-5 6, α(K)=3.48E-5 5, α(L)=2.99E-6 5, α(M)=3.54E-7 5, α(N)=2.01E-8 3, α(N+)=2.01E-8 3
1/2- 35 fs 7    1169.66 24 (M1) 5.40×10-5B(M1)(W.u.)=0.18 5, α=5.40×10-5 8, α(K)=4.59E-5 7, α(L)=3.94E-6 6, α(M)=4.68E-7 7, α(N)=2.66E-8 4, α(N+)=3.63E-6 6
1/2- 35 fs 7    1983.7 4 (M1) 0.000262B(M1)(W.u.)=0.009 4, α=0.000262 4, α(K)=1.80×10-5 3, α(L)=1.542E-6 22, α(M)=1.83E-7 3, α(N)=1.043E-8 15, α(N+)=0.000242 4
1/2- 35 fs 7    3243.5 3 (E2) 0.000895B(E2)(W.u.)=1.3 4, α=0.000895 13, α(K)=8.60E-6 12, α(L)=7.36E-7 11, α(M)=8.74E-8 13, α(N)=4.98E-9 7, α(N+)=0.000886 13
  3838.00 (1/2)- < 15 fs   1938.1 5 (M1) 0.000244B(M1)(W.u.)>0.067, α=0.000244 4, α(K)=1.87×10-5 3, α(L)=1.604E-6 23, α(M)=1.91E-7 3, α(N)=1.085E-8 16, α(N+)=0.000223 4
(1/2)- < 15 fs   2403.3 3 (M1) 0.000434B(M1)(W.u.)>0.070, α=0.000434 7, α(K)=1.316×10-5 19, α(L)=1.126E-6 16, α(M)=1.337E-7 19, α(N)=7.62E-9 11, α(N+)=0.000419 6
  4615.72 1/2- < 12 fs   2716.0 3 (M1) 0.000564B(M1)(W.u.)>0.064, α=0.000564 8, α(K)=1.084×10-5 16, α(L)=9.27E-7 13, α(M)=1.102E-7 16, α(N)=6.28E-9 9, α(N+)=0.000553 8
1/2- < 12 fs   3180.8 3 (M1) 0.000749B(M1)(W.u.)>0.017, α=0.000749 11, α(K)=8.51×10-6 12, α(L)=7.28E-7 11, α(M)=8.64E-8 13, α(N)=4.92E-9 7, α(N+)=0.000739 11
  4999.74 (1/2)- < 9.7 fs   2608.2 15 [E1] 0.001030B(E1)(W.u.)>0.0015, α=0.001030 15, α(K)=7.92E-6 12, α(L)=6.77E-7 10, α(M)=8.04E-8 12, α(N)=4.58E-9 7, α(N+)=0.001025 15
(1/2)- < 9.7 fs   3099.7 4 [M1] 0.000717B(M1)(W.u.)>0.030, α=0.000717 11, α(K)=8.85×10-6 13, α(L)=7.57E-7 11, α(M)=8.99E-8 13, α(N)=5.12E-9 8, α(N+)=0.000708 10
(1/2)- < 9.7 fs   3565.0 3 [M1] 0.000892B(M1)(W.u.)>0.0065, α=0.000892 13, α(K)=7.18×10-6 10, α(L)=6.14E-7 9, α(M)=7.29E-8 11, α(N)=4.16E-9 6, α(N+)=0.000884 13

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     0.07/2- 162.61 d 9 
% β- = 100
μ=-1.3274 14 (2005St24,1983Ar25,1980Be13), Q=+0.046 14 (2005St24,1983Ar25,1981Ar15,1980Be13)
E(level): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay.
Jπ(level): Main components of the wave functions are (ν 1f7/2)5 and ((ν 1f7/2)4 (ν 2p3/2)) (1969Gr21).
   174.255/2- 0.40 ns 4  E(level): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay. (ν f7/2)-3 MULTIPLET.
Jπ(level): Main components of the wave functions are (ν 1f7/2)5 and ((ν 1f7/2)4 (ν 2p3/2)) (1969Gr21).
  1434.773/2- 1.10 ps +22-16  E(level): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay. (ν f7/2)-3 MULTIPLET. From (n,γ).
Jπ(level): Main components of the wave functions are (ν 1f7/2)5 and ((ν 1f7/2)4 (ν 2p3/2)) (1969Gr21). L(d,p)=1. d,E2 γ to 7/2-.
  1554.37(11/2-) > 2.1 ps XREF: H(1562).
E(level): (ν f7/2)-3 MULTIPLET.
Jπ(level): Stretched quadrupole cascade in (14C,nαγ). Large angular momentum transfer in (3He,6He).
T1/2(level): From DSAM in (14C,nαγ).
  1558   This state which is observed in (d,p) at 7 MeV is probably not the same as the 1554-keV state observed in (14C,nαγ) and (3He,6He) since the (d,p) reaction at 7 MeV is unlikely to populate an 11/2- state (L=5 required).
E(level): This state which is observed in (d,p) at 7 MeV is probably not the same as the 1554-keV state observed in (14C,nαγ) and (3He,6He) since the (d,p) reaction at 7 MeV is unlikely to populate an 11/2- state (L=5 required).
  1879.893/2+ 0.05 ps 3  E(level): From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states.
Jπ(level): L(d,p)=2 for doublet.
  1884.4   E(level): From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states.
Jπ(level): L(d,p)=2 for doublet.
  1899.923/2- 1.12 ps +11-9  E(level): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay. From (n,γ).
Jπ(level): Main components of the wave functions are (ν 1f7/2)5 and ((ν 1f7/2)4 (ν 2p3/2)) (1969Gr21). L(d,p)=1. d,E2 γ to 7/2-.
  2249.101/2- 0.43 ps +7-6  E(level): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay.
Jπ(level): Main components of the wave functions are (ν 1f7/2)5 and ((ν 1f7/2)4 (ν 2p3/2)) (1969Gr21). From circular polarization in (pol n,γ).
  2353.811/2+,3/2+,5/2+ 4.7 ns 11  E(level): See footnote on associated state.
Jπ(level): log ft=5.8 via 3/2+ parent.
  2771.101/2+,3/2+,5/2+   E(level): See footnote on associated state.
Jπ(level): log ft=5.8 via 3/2+ parent.
  2786   May Be the same as the previous state; however, the large L transfer noted in (3He,6He) would indicate that it is not.
  2842.053/2- 22 fs 6  Jπ(level): From circular polarization in (pol n,γ).
  2877.99(15/2-) > 2.1 ps E(level): (ν f7/2)-3 MULTIPLET.
Jπ(level): Stretched quadrupole cascade in (14C,nαγ). Large angular momentum transfer in (3He,6He).
T1/2(level): From DSAM in (14C,nαγ).
  3023.61/2,3/2,5/2   Jπ(level): log ft=6.3-7.3 via 3/2+ parent.
  3035   May Be the same as the 3024 state.
  3241.273/2- 36 fs 12  Jπ(level): From circular polarization in (pol n,γ).
  3418.461/2- 35 fs 7  Jπ(level): From circular polarization in (pol n,γ).
  3490.73/2-,5/2+   Jπ(level): γ’s to 1/2+ and 7/2-.
  3560(1/2+)   Jπ(level): L(d,t)=(0).
  3654.01/2,3/2,5/2   Jπ(level): log ft=6.3-7.3 via 3/2+ parent.
  3705.01/2,3/2,5/2   Jπ(level): log ft=6.3-7.3 via 3/2+ parent.
  3838.00(1/2)- < 15 fs E(level): From (d,pγ).
Jπ(level): L(d,p)=1. (1/2-) from circular polarization in (pol n,γ).
  4615.721/2- < 12 fs Jπ(level): From circular polarization in (pol n,γ).
  4999.74(1/2)- < 9.7 fs E(level): From (d,pγ).
Jπ(level): L(d,p)=1. (1/2-) from circular polarization in (pol n,γ).

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   174.25   174.259E(γ): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay
M(γ): d from comparison to RUL. M1 from Δπ=no
  1434.77  1260.58E(γ): From (n,γ)
M(γ): D+Q from γγ(θ). Ne E1+M2 from δ’s and comparison to RUL
  1434.72E(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. E2 from ΔJ=2
  1554.37  1554.34E(γ): From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): From (14C,nαγ)
M(γ): Q(+O) from γ(θ) in (14C,nαγ); stretched quadrupole cascade. E2(+M3) from ΔJπ=2,no
  1879.89  1705.6E(γ): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay. See footnote on associated state
M(γ): d,E2 from comparison to RUL. E1 from Δπ=yes
  1879.9M(γ): d,Q from comparison to RUL. M2 from ΔJπ=2,yes
  1884.4  1710.1E(γ): From (n,γ). See footnote on associated state
  1899.92   464.96E(γ): From (n,γ)
I(γ): weighted ave. (ext.) from (n,γ) E=thermal and β- decay branching ratios in Table IV of 1980Hu10
M(γ): D+Q from γ(θ) in (n,γ). M1+E2 from Δπ=no
  1725.68E(γ): From (n,γ)
I(γ): weighted ave. (int.) from (n,γ) E=thermal and β- decay branching ratios in Table IV of 1980Hu10
M(γ): D+Q from γγ(θ). Ne E1+M2 from δ and comparison to RUL
  1900.13E(γ): Weighted ave. (ext.) of 174.24 4 (1971BiZH) and 174.01 9 (2003ChZS) from (n,γ) E=thermal and 174.28 3 from β- decay, 1704.01 24 from (n,γ) E=thermal and 1705.6 3 from β- decay, and 1900.20 12 from (n,γ) E=thermal and 1899.7 3 from β- decay
I(γ): weighted ave. (ext.) from (n,γ) E=thermal and β- decay branching ratios in Table IV of 1980Hu10
M(γ): d,E2 from comparison to RUL. E2 from ΔJ=2
  1940.19   385.74E(γ): Multiply placed with undivided intensity. From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): Multiply placed with undivided intensity. From (14C,nαγ)
  2249.10   349.11E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d from comparison to RUL. M1 from Δπ=no
   814.51E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from ΔJπ|<1,no involving 1/2 state
  2074.71E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. E2 from ΔJ=2
  2353.81   453.9M(γ): d,Q from comparison to RUL. E1,M2 from Δπ=yes. Probably not E1 since B(E1)|_(W.u.)=3.2×10-9 10 is ≈1 order of magnitude less than values previously compiled (Cf. Fig. 1 of 1979En04)
   919.3M(γ): d,Q from comparison to RUL. E1,M2 from Δπ=yes
  2179.4M(γ): d,Q,E3 from comparison to RUL. E1,M2 from ΔJπ|<2,yes. Probably not E1 since B(E1)|_(W.u.)=6.7×10-10 17 is ≈1 order of magnitude less than values previously compiled (Cf. Fig. 1 of 1979En04)
  2353.6M(γ): d,Q,E3 from comparison to RUL. Δπ=yes
  2392.29   492.5M(γ): d from comparison to RUL. E1 from Δπ=yes
   512M(γ): d from comparison to RUL. M1 from Δπ=no
   957.5M(γ): d,E2 from comparison to RUL. E1 from Δπ=yes
  2217.3M(γ): d,Q from comparison to RUL. M2 from Δπ=2,yes
  2675.1  2675E(γ): From (d,pγ)
  2842.05   942.7E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): From comparison to RUL
   957.8E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. E1 from Δπ=yes
  2667.7E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): From comparison to RUL
  2842.2E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. E2 from ΔJ=2
E(level)E(gamma)Comments
  2877.99  1323.60E(γ): From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): From (14C,nαγ)
M(γ): Q(+O) from γ(θ) in (14C,nαγ); stretched quadrupole cascade. E2(+M3) from ΔJπ=2,no
  2976.8  2802.4M(γ): From comparison to RUL
  2976.7M(γ): d,E2 from comparison to RUL. E2 from ΔJ=2
  3241.27   565.6E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): From comparison to RUL
   992E(γ): From (d,pγ)
  3066.9E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): From comparison to RUL
  3241E(γ): From (d,pγ)
  3418.46   576.4E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d from comparison to RUL. M1 from Δπ=no
  1026.0E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. E1 from Δπ=yes
  1169.66E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from ΔJπ|<1,no involving 1/2 state
  1983.7E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from ΔJπ|<1,no involving 1/2 state
  3243.5E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. E2 from ΔJ=2
  3556.01  2001.48E(γ): Multiply placed with undivided intensity. From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): Multiply placed with undivided intensity. From (14C,nαγ)
  3783.22  3609.3E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): From comparison to RUL
  3838.00  1938.1E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from (1/2)-|)3/2-
  2403.3E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from (1/2)-|)3/2-
  3941.83   385.74E(γ): Multiply placed with undivided intensity. From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): Multiply placed with undivided intensity. From (14C,nαγ)
  1063.83E(γ): From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): From (14C,nαγ)
  2001.48E(γ): Multiply placed with undivided intensity. From (14C,nαγ). Identified as the same state in β- decay, (n,γ), and (d,pγ); however, based on the large discrepancy in the Eγ to the 5/2- between β- decay and (d,pγ) and (n,γ), the evaluator proposes two states
I(γ): Multiply placed with undivided intensity. From (14C,nαγ)
  4615.72  2716.0E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from (1/2)-|)3/2-
  3180.8E(γ): From (n,γ)
I(γ): From (n,γ)
M(γ): d,E2 from comparison to RUL. M1 from (1/2)-|)3/2-
  4999.74  2608.2E(γ): From (n,γ)
I(γ): From (n,γ)
  3099.7E(γ): From (n,γ)
I(γ): From (n,γ)
  3565.0E(γ): From (n,γ)
I(γ): From (n,γ)

Back to top