⁴⁸Ca(³He, ⁶He) 1976Na21

History								
Type Author		Citation	Literature Cutoff Date					
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007					

E=70 MeV. Measured $\sigma(\theta=6^{\circ}-35^{\circ})$; mag spect, position-sensitive detector system. FWHM \approx 30 keV.

1976Na21 consider the strong excitation of states In 45 Ca by this reaction, together with weak excitation In (d,p), to Be evidence of a wavefunction dominated by seniority ν =3, (ν f_{7/2})⁻³. The ν =1, J=7/2 state of (ν f_{7/2})⁻³ can Be excited strongly In both reactions. The shape of the angular distributions was considered qualitatively As an argument In the assignment.

Assumptions: 1) the reaction goes predominately by direct transfer of a three-neutron cluster. 2) 48 Ca g.s. is predominantly (ν $f_{7/2}$) 8 . Note that the strong excitation of states above 3 MeV was not explained.

⁴⁵Ca Levels

 $J(F),L(\gamma)$ L=0 is consistent with the adopted $J^{\pi}=1/2^{+}$. Identified As a $((\nu f_{7/2})_{0}^{-2} (\nu s_{1/2})^{-1})1/2^{+}$ hole state by 1976Na21.

E(level)	L [†]	E(level)	J^{π}	<u>L</u> †	E(level)	E(level)
0.0‡	#	1895 & 8			3041 12	3846 12
174 ^{‡@} 8		2389 [‡] 8	$1/2^{+}$	0	3348 12	3993 12
1435 ^{‡@} 8		2786 <i>12</i>			3485 12	4288 ^a 12
1562 [@] 8	#	2877 [@] 12		#	3675 12	

[†] From the shape of angular distribution.

[‡] Calibration points.

[#] Large L transfer.

[@] Band(A): probable member of a $(\nu f_{7/2})^{-3}$ multiplet.

[&]amp; Multiplet from width of peak. One state May Be the 1.88-MeV state observed In single-nucleon transfer reactions. A contribution from the 1.90-MeV state May Be ruled out since it is predominantly (($\nu f_{7/2}$)⁴ ($\nu p_{3/2}$)) As established In (d,p). The centroid of the peak shifts to higher energies As the angle increases, indicating the existence of another state. 1976Na21 suggest ($\nu f_{7/2}$)⁻³ for this additional state.

^a 1976Na21 noted that this is the strongest transition observed.

⁴⁸Ca(³He, ⁶He) 1976Na21

Band(A): Probable member of a $(v \ f_{7/2})^{-3}$ multiplet

2877

1562

1435

174

 $^{45}_{20}\mathrm{Ca}_{25}$