⁴⁸Ca(³He, ⁶He) 1976Na21 | History | | | | | | | | | |-----------------|---------------|---------------------|------------------------|--|--|--|--|--| | Type Author | | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | T. W. Burrows | NDS 109, 171 (2008) | 30-Oct-2007 | | | | | | E=70 MeV. Measured $\sigma(\theta=6^{\circ}-35^{\circ})$; mag spect, position-sensitive detector system. FWHM \approx 30 keV. 1976Na21 consider the strong excitation of states In 45 Ca by this reaction, together with weak excitation In (d,p), to Be evidence of a wavefunction dominated by seniority ν =3, (ν f_{7/2})⁻³. The ν =1, J=7/2 state of (ν f_{7/2})⁻³ can Be excited strongly In both reactions. The shape of the angular distributions was considered qualitatively As an argument In the assignment. Assumptions: 1) the reaction goes predominately by direct transfer of a three-neutron cluster. 2) 48 Ca g.s. is predominantly (ν $f_{7/2}$) 8 . Note that the strong excitation of states above 3 MeV was not explained. ## ⁴⁵Ca Levels $J(F),L(\gamma)$ L=0 is consistent with the adopted $J^{\pi}=1/2^{+}$. Identified As a $((\nu f_{7/2})_{0}^{-2} (\nu s_{1/2})^{-1})1/2^{+}$ hole state by 1976Na21. | E(level) | L [†] | E(level) | J^{π} | <u>L</u> † | E(level) | E(level) | |----------------------|----------------|-------------------------|-----------|------------|----------|----------------------| | 0.0‡ | # | 1895 & 8 | | | 3041 12 | 3846 12 | | 174 ^{‡@} 8 | | 2389 [‡] 8 | $1/2^{+}$ | 0 | 3348 12 | 3993 12 | | 1435 ^{‡@} 8 | | 2786 <i>12</i> | | | 3485 12 | 4288 ^a 12 | | 1562 [@] 8 | # | 2877 [@] 12 | | # | 3675 12 | | [†] From the shape of angular distribution. [‡] Calibration points. [#] Large L transfer. [@] Band(A): probable member of a $(\nu f_{7/2})^{-3}$ multiplet. [&]amp; Multiplet from width of peak. One state May Be the 1.88-MeV state observed In single-nucleon transfer reactions. A contribution from the 1.90-MeV state May Be ruled out since it is predominantly (($\nu f_{7/2}$)⁴ ($\nu p_{3/2}$)) As established In (d,p). The centroid of the peak shifts to higher energies As the angle increases, indicating the existence of another state. 1976Na21 suggest ($\nu f_{7/2}$)⁻³ for this additional state. ^a 1976Na21 noted that this is the strongest transition observed. ## ⁴⁸Ca(³He, ⁶He) 1976Na21 Band(A): Probable member of a $(v \ f_{7/2})^{-3}$ multiplet 2877 1562 1435 174 $^{45}_{20}\mathrm{Ca}_{25}$