ADOPTED LEVELS, GAMMAS for 236U

Author: Shaofei Zhu |  Citation: Nucl. Data Sheets 182, 2 (2022). |  Cutoff date: 1-Apr-2022 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-9.3×102 keV 5S(n)= 6545.5 keV 3S(p)= 7133 keV 14Q(α)= 4573.0 keV 9
Reference: 2021WA16

References:
  A  236Pa β- decay  B  236Np ε decay (155×103 Y)
  C  236Np ε decay (22.5 H)  D  240Pu α decay
  E  234U(t,p)  F  235U(d,p)
  G  235U(d,pγ)  H  235U(n,γ) E=THERMAL
  I  235U(n,γ) E=2 KEV  J  236U(d,d’)
  K  236U(d,pnγ)  L  236U(γ,XN),(γ,F) E=resonance
  M  237Np(t,αγ)  N  238U(p,t)
  O  Coulomb Excitation  P  Inelastic scattering
  Q  236U(γ,γ’)  R  237Np(209Bi,210POG)

General Comments:

Spontaneous fission: 2005Xu01, 2004Ro01, 2001Vl04, 1997Ro12, 1993Mo16, 2001Po31 and 1994Pi12 (ternary fission accompanied by emission of light charged particles); 2000Gu28 (fission fragments distribution, theory)

Q-value: S(2n)=11843.0 3, S(2p)=12746.3 24 (2021Wa16)










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCDE GH JK MNOPQR 0+ 2.342×107 y 4 
% α = 100
% SF = 9.4×10-8 4
     
     45.2431 20 ABCDE GHIJK MNOPQR 2+ 235 ps 6      45.243 2 
  100
E2
      0.0
0+
    149.480 5 ABCDE GHIJK MNOP R 4+ 130 ps 9     104.237 4 
  100
E2
     45.2431
2+
    309.788 6  B DE GH JK MNOP R 6+ 58 ps 3     160.308 3 
  100
E2
    149.480
4+
    522.26 4    D  G  JK MNOP R 8+ 23.9 ps 19     212.47 4 
  100
E2
    309.788
6+
    687.56 4 ABCD FGH JK M O    1- 3.78 ns 9     538.09 7 
   642.23 7 
   687.59 6 
    1.14 8 
  100 5 
   27.4 5 
E3
E1(+M2+E3)
E1
    149.480
     45.2431
      0.0
4+
2+
0+
    744.18 7 AB DEFGH JK   O    3-       56.6 8 
   594.5 3 
   ≈5
  100
[E2]
[E1]
    687.56
    149.480
1-
4+
    782.4 5           K M O  R 10+ 11.6 ps 11     260.1 5 
  100
E2
    522.26
8+
    848.3 10  B    GH JK   O    5-     ≈103.4
  100
(E2)
    744.18
3-
    919.18 12 A  D   H J   N     0+      873.98 12 
   918.9 3 
  100
 
[E2]
(E0)
     45.2431
      0.0
2+
0+
    957.90 15 A  D   H J   NO    2+      912.4 3 
   958.0 2 
  ≈71
  100
[M1+E2]
[E2]
     45.2431
      0.0
2+
0+
    960.05 20    D   HI          (2+)     ≈810.9
   914.8 2 
  ≈959.9
  ≈68
  100
  ≈80

(E0+M1)

    149.480
     45.2431
      0.0
4+
2+
0+
    966.58 9 A  D FGH           (1-)      222.4 1 
   279.0 1 
   921.2 2 
   966.8 2 
  <23
   58 3 
   44 11 
  100 9 


(E1)
(E1)
    744.18
    687.56
     45.2431
      0.0
3-
1-
2+
0+
    987.66 8 A    FGH           2-      243.6 2 
   300.0 1 
   942.4 2 
   26 3 
   17 3 
  100 7 
M1+E2
[M1+E2]
(E1)
    744.18
    687.56
     45.2431
3-
1-
2+
    999.8 12          JK   O    7-      151.5 5 
  100
E2
    848.3
5-
   1001.6 3        HI          (3+)     ≈258.4
  ≈852.2
   956.3 3 
 
  ≈13
  100 12 



    744.18
    149.480
     45.2431
3-
4+
2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   1035.6 22      F H J    O    3-     ≈886.2
  ≈990.2
  100
  ≈88
[E1]
[E1]
    149.480
     45.2431
4+
2+
   1050.86 15        HI          (4+)      901.25 17 
  1006.0 3 
 
  100
(E0+E2)

    149.480
     45.2431
4+
2+
   1052.9 4      FGH           4- 101 ns 6     ≈65S
   204.6 10 
   307.9 10 
   903.6 4 
 
  100 15 
   90 15 
   41 7 
(E2)
(E2)
M1+E2
(E1)
    987.66
    848.3
    744.18
    149.480
2-
5-
3-
4+
   1058.8 3        HIJ         (4+)      909.3 3 
  1014.1
  100 9 
  ≈69
M1

    149.480
     45.2431
4+
2+
   1066.1 10         I          (3+,4+)        
   1070.0 10     EF H           (4-)      920.5
  100

    149.480
4+
   1085.4 7           K   O  R 12+ 5.5 ps +18-33     303.0 5 
  100
E2
    782.4
10+
   1093.8 10         I          (2+,5+)        
   1104.4 14      F             (5-)        
   1110.66 8 A      H    M      (2-)      366.6 1 
   423.1 1 
  1065.0 2 
   82 9 
  100 5 
   34 4 



    744.18
    687.56
     45.2431
3-
1-
2+
   1127.38 20        HI          (5+)      977.9 2 
  100

    149.480
4+
   1147.0 10         I          (3+,4+)        
   1149.4 10        H J    O    (3-)      405.2
  100

    744.18
3-
  ≈1164?     F             (5-)        
   1164 3      F             (6-)        
   1171.8 2        H                  
   1191.6 10      F             (3-)        
   1198.6 12     E     K   O    9-      198.8 3 
  100
E2
    999.8
7-
   1221.4 10        HI          (2+,5+)        
  ≈1232     F             (7-)        
   1232.2 10      F             (4-)        
   1240 2          J   N            
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   1249.3 10         I          (2+,5+)        
   1265.2 10     E   IJ         (3+,4+)        
   1271.10 8 A                  (1-,2,3)      526.7 2 
  1225.9 1 
   39 4 
  100 8 


    744.18
     45.2431
3-
2+
   1282.2 10      F             (5-)        
   1320 4      F             (8-)        
   1320.4 10         I          (2+,5+)        
   1329.0 10         I          (3+,4+)        
   1332.8 10        HIJ         (3+,4+)        
   1342.8 10      F             (6-)        
   1347.5 10        HI          (3+,4+)        
   1351.3 10     E   I          (3+,4+)        
   1381.3 10         I          (3+,4+)        
   1392 5     E                     
   1399.8 10         I          (2+,5+)        
   1413.3 19      F             (7-)        
   1426.4 9           K   O  R 14+ 2.8 ps 3     341.0 5 
  100
E2
   1085.4
12+
   1443.6 13           K   O    11-      245.0 5 
  100
E2
   1198.6
9-
   1471.7 10      F             (6-)        
   1541.8 13      F             (7-)        
   1572.2 6        H                  
   1580 13 ?     FG            (1,2)     1580 11 ?
 

      0.0
0+
   1604.80 7 A    F             (1-,2+)      333.7 1 
   617.1 2 
   860.6 1 
   917.0 3 
  1559.6 1 
  1604.9 2 
   37 2 
    9.5 20 
   35 1 
   62 4 
  100 9 
   18 5 






   1271.10
    987.66
    744.18
    687.56
     45.2431
      0.0
(1-,2,3)
2-
3-
1-
2+
0+
   1621.8 12      F             (8-)        
   1642.5 20        H                  
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   1662.36 8 A    F H           (1,2+)      674.5 2 
   975.0 2 
  1617.1 1 
  1662.4 2 
   23 8 
   21 5 
  100 9 
   66 7 




    987.66
    687.56
     45.2431
      0.0
2-
1-
2+
0+
   1689.6 17      F                    
   1732.6 17           K   O    13-      289 1 
  100
E2
   1443.6
11-
   1748 3      F                    
   1775.9 22      F                    
   1791.3 7                 Q  1(+)     1746.1 10 
  1791.3 10 
   38 8 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   1801.0 10           K   O  R 16+ 2.1 ps 2     374.6 5 
  100
E2
   1426.4
14+
   1807.88 7 A    F       N     (1,2+)     1762.7 1 
  1807.8 1 
  100 5 
   37 2 


     45.2431
      0.0
2+
0+
   1854.8 20      F                    
   1865.39 15 A                  (1,2+)     1177.7 2 
  1865.5 2 
  100 14 
   67 8 


    687.56
      0.0
1-
0+
   1896.9 7        H                  
   1912.0 16      F                    
   1946.8 20      F                    
   1972.62 9 A                  (1,2+)     1927.0 2 
  1972.7 1 
  100 7 
  100 9 


     45.2431
      0.0
2+
0+
   1979.15 8 A                  (1-,2)     1234.9 1 
  1291.6 1 
  1934.1 2 
  100 8 
  100 8 
   98 8 



    744.18
    687.56
     45.2431
3-
1-
2+
   1981.04 16 A                  (1,2+)      870.4 2 
  1023.1 3 
  1981.0 3 
  100 9 
   84 8 
   74 7 



   1110.66
    957.90
      0.0
(2-)
2+
0+
   2054.2 7      F          Q  1(+)     2009.0 10 
  2054.2 10 
   75 14 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2060.6 19               O    15-      328 1 
  100
E2
   1732.6
13-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   2086.54 9 A               Q  1(-)     2041.3 1 
  2086.5 2 
  100 5 
   56 5 
(E1)
(E1)
     45.2431
      0.0
2+
0+
   2095.7 7                 Q  1(+)     2050.5 10 
  2095.7 10 
   47 15 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2114 3      F                    
   2155.40 12 A    F             (0,1,2)      550.6 1 
  100

   1604.80
(1-,2+)
   2176.9 18      F                    
   2188.8 7                 Q  1(+)     2143.6 10 
  2188.8 10 
   49 3 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2190 12       G            (1,2+)     2190 30 
  100

      0.0
0+
   2204.0 12      F        O  R 18+ 1.17 ps 12     403.0 5 
  100
E2
   1801.0
16+
   2226.9 3 ?A                  (0,1,2)     2181.6 3 
  100

     45.2431
2+
   2234 4      F                    
   2243.9 10                 Q  1     2243.9 10 
  100

      0.0
0+
   2251.1 7                 Q  1(+)     2205.9 10 
  2251.1 10 
  100
   96 13 


     45.2431
      0.0
2+
0+
   2260.4 10      F                    
   2284.7 7                 Q  1(+)     2239.5 10 
  2284.7 10 
   51 7 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2426.6 22               O    17-      366 1 
  100
E2
   2060.6
15-
   2435.6 7                 Q  1(+)     2390.4 10 
  2435.6 10 
   34 7 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2440.2 7                 Q  1(+)     2395.0 10 
  2440.2 10 
   26 7 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2457.3 7                 Q  1(+)     2412.1 10 
  2457.3 10 
   50 9 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2494.5 7                 Q  1(+)     2449.3 10 
  2494.5 10 
   29 8 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2498.5 7                 Q  1(+)     2453.3 10 
  2498.5 10 
   66 12 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   2631.8 13               O  R 20+ 0.84 ps 12     427.8 5 
  100
E2
   2204.0
18+
   2699.0 7                 Q  1(+)     2653.8 10 
  2699.0 10 
   62 10 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2712.1 7                 Q  1(-)     2666.9 10 
  2712.1 10 
  100 12 
   44 8 
(E1)
(E1)
     45.2431
      0.0
2+
0+
   2750 7       G   K        (0+) 67 ns 3 
% IT = 88 3
% SF = 12 3
   560 10 
  1170 10 
  1783 10 
  2062 10 
   12
   20
  100
   26
(E1)
(E1)
(E1)
(E1)
   2190
   1580
    966.58
    687.56
(1,2+)
(1,2)
(1-)
1-
   2756.2 7                 Q  1(+)     2711.0 10 
  2756.2 10 
   55 16 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2770 7       G            (2+)       20 Calc. S
  100
(E2)
   2750
(0+)
   2817 7       G            (4+)       47.0
  100
(E2)
   2770
(2+)
   2823 4               O    (19-)     ≈396
  100
(E2)
   2426.6
17-
   2823.3 7                 Q  1(+)     2778.1 10 
  2823.3 10 
   97 26 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2838.3 7                 Q  1(+)     2793.1 10 
  2838.3 10 
  100
   92 27 
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2877.8 7                 Q  1(-)     2832.6 10 
  2877.8 10 
  100
   45 12 
(E1)
(E1)
     45.2431
      0.0
2+
0+
   2891 8       G            (6+)       73.9
  100
(E2)
   2817
(4+)
   2924.0 7                 Q  (1,2+)     2878.8 10 
  2924.0 10 
  100
   60 17 


     45.2431
      0.0
2+
0+
   2969.0 7                 Q  1(+)     2923.8 10 
  2969.0 10 
   50 12 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   2991 8       G            (8+)      100.8
 
(E2)
   2891
(6+)
   3081.0 14               O  R 22+ 0.65 ps 15     449.2 5 
  100
E2
   2631.8
20+
   3143.8 7                 Q  1(+)     3098.6 10 
  3143.8 10 
   56 14 
  100
(M1)
(M1)
     45.2431
      0.0
2+
0+
   3434 7           K        (0+) < 20 ns    684.5 7 
 
(E0)
   2750
(0+)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   3550.0 17               O    24+ 0.41 ps 8     469 1 
  100
E2
   3081.0
22+
   4039.0 20               O    26+ 0.33 ps 9     489 1 
  100
E2
   3550.0
24+
   4549.0 22               O    28+ 0.17 ps 7     510 1 
  100
E2
   4039.0
26+
   5077 4               O    (30+)     ≈528
  100
(E2)
   4549.0
28+

E(level): Deduced by evaluator from a least-squares fit to adopted γ-ray energies.

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 1 - Kπ=0+ GS Rotational band
      0.0 0+ 2.342×107 y 4 
% α = 100
% SF = 9.4×10-8 4
     
     45.2431 20  2+ 235 ps 6      45.243 2 
  100
E2
      0.0
0+
    149.480 5  4+ 130 ps 9     104.237 4 
  100
E2
     45.2431
2+
    309.788 6  6+ 58 ps 3     160.308 3 
  100
E2
    149.480
4+
    522.26 4  8+ 23.9 ps 19     212.47 4 
  100
E2
    309.788
6+
    782.4 5  10+ 11.6 ps 11     260.1 5 
  100
E2
    522.26
8+
   1085.4 7  12+ 5.5 ps +18-33     303.0 5 
  100
E2
    782.4
10+
   1426.4 9  14+ 2.8 ps 3     341.0 5 
  100
E2
   1085.4
12+
   1801.0 10  16+ 2.1 ps 2     374.6 5 
  100
E2
   1426.4
14+
   2204.0 12  18+ 1.17 ps 12     403.0 5 
  100
E2
   1801.0
16+
   2631.8 13  20+ 0.84 ps 12     427.8 5 
  100
E2
   2204.0
18+
   3081.0 14  22+ 0.65 ps 15     449.2 5 
  100
E2
   2631.8
20+
   3550.0 17  24+ 0.41 ps 8     469 1 
  100
E2
   3081.0
22+
   4039.0 20  26+ 0.33 ps 9     489 1 
  100
E2
   3550.0
24+
   4549.0 22  28+ 0.17 ps 7     510 1 
  100
E2
   4039.0
26+
   5077 4  (30+)     ≈528
  100
(E2)
   4549.0
28+
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 2 - Kπ=0- Octupole vibrational band
    687.56 4  1- 3.78 ns 9       
    744.18 7  3-       56.6 8 
   594.5 3 
   ≈5
  100
[E2]
[E1]
    687.56
    149.480
1-
4+
    848.3 10  5-     ≈103.4
  100
(E2)
    744.18
3-
    999.8 12  7-      151.5 5 
  100
E2
    848.3
5-
   1198.6 12  9-      198.8 3 
  100
E2
    999.8
7-
   1443.6 13  11-      245.0 5 
  100
E2
   1198.6
9-
   1732.6 17  13-      289 1 
  100
E2
   1443.6
11-
   2060.6 19  15-      328 1 
  100
E2
   1732.6
13-
   2426.6 22  17-      366 1 
  100
E2
   2060.6
15-
   2823 4  (19-)     ≈396
  100
(E2)
   2426.6
17-
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 3 - Kπ=3- Configuration=((n,7/2(743))-(n,1/2(631)))
   1191.6 10  (3-)        
   1232.2 10  (4-)     
   1282.2 10  (5-)     
   1342.8 10  (6-)     
   1413.3 19  (7-)     
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 4 - Kπ=6- Configuration=((n,7/2(743))+(n,5/2(622)))
   1471.7 10  (6-)        
   1541.8 13  (7-)     
   1621.8 12  (8-)     
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 5 - Kπ=0+
    919.18 12  0+        
    960.05 20  (2+)     ≈810.9
   914.8 2 
  ≈959.9
  ≈68
  100
  ≈80

(E0+M1)

    149.480
     45.2431
      0.0
4+
2+
0+
   1050.86 15  (4+)      901.25 17 
  1006.0 3 
 
  100
(E0+E2)

    149.480
     45.2431
4+
2+
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 6 - Kπ=(2+)
    957.90 15  2+        
   1001.6 3  (3+)     ≈258.4
  ≈852.2
   956.3 3 
 
  ≈13
  100 12 



    744.18
    149.480
     45.2431
3-
4+
2+
   1058.8 3  (4+)      909.3 3 
  1014.1
  100 9 
  ≈69
M1

    149.480
     45.2431
4+
2+
   1127.38 20  (5+)      977.9 2 
  100

    149.480
4+
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 7 - Kπ=1- Configuration=((n,7/2(743))-(n,5/2(622)))
    966.58 9  (1-)        
    987.66 8  2-      243.6 2 
   300.0 1 
   942.4 2 
   26 3 
   17 3 
  100 7 
M1+E2
[M1+E2]
(E1)
    744.18
    687.56
     45.2431
3-
1-
2+
   1035.6 22  3-     ≈886.2
  ≈990.2
  100
  ≈88
[E1]
[E1]
    149.480
     45.2431
4+
2+
   1070.0 10  (4-)      920.5
  100

    149.480
4+
  ≈1164 (5-)     
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 8 - Kπ=4- Configuration=((n,7/2(743))+(n,1/2(631)))
   1052.9 4  4- 101 ns 6       
   1104.4 14  (5-)     
   1164 3  (6-)     
  ≈1232 (7-)     
   1320 4  (8-)     
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 9 - Kπ=2-
   1110.66 8  (2-)        
   1149.4 10  (3-)      405.2
  100

    744.18
3-

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
     45.2431 2+ 235 ps 6      45.243 2 E2 589B(E2)(W.u.)=248 8, α=589 8, α(L)=429 6, α(M)=118.6 17, α(N)=32.1 5, α(O)=7.36 10, α(P)=1.191 17, α(Q)=0.00285 4
    149.480 4+ 130 ps 9     104.237 4 E2 10.99B(E2)(W.u.)=340 24, α=10.99 15, α(L)=8.00 11, α(M)=2.220 31, α(N)=0.603 8, α(O)=0.1385 19, α(P)=0.02268 32, α(Q)=9.41E-5 13
    309.788 6+ 58 ps 3     160.308 3 E2 1.761B(E2)(W.u.)=385 21, α=1.761 25, α(K)=0.2079 29, α(L)=1.132 16, α(M)=0.313 4, α(N)=0.0850 12, α(O)=0.01958 27, α(P)=0.00325 5, α(Q)=2.327E-5 33
    522.26 8+ 23.9 ps 19     212.47 4 E2 0.599B(E2)(W.u.)=3.9×102 4, α=0.599 8, α(K)=0.1400 20, α(L)=0.335 5, α(M)=0.0920 13, α(N)=0.02498 35, α(O)=0.00577 8, α(P)=0.000968 14, α(Q)=1.068E-5 15
    687.56 1- 3.78 ns 9     538.09 7 E3 0.20B(E3)(W.u.)=56 5, α=0.20 8, α(K)=0.0623 9, α(L)=0.0587 8, α(M)=0.01603 22, α(N)=0.00437 6, α(O)=0.001025 14, α(P)=0.0001801 25, α(Q)=4.97E-6 7
1- 3.78 ns 9     642.23 7 E1(+M2+E3) 0.15B(E1)(W.u.)=5.81E-8 22, α=0.15 2, α(K)=0.0091 23, α(L)=0.0017 6, α(M)=4.2E-4 14, α(N)=1.1E-4 4, α(O)=2.7E-5 9, α(P)=5.2E-6 17, α(Q)=3.9E-7 13
1- 3.78 ns 9     687.59 6 E1 0.31B(E1)(W.u.)=2.59E-8 8, α=0.31 2, α(K)=0.00596 8, α(L)=0.001038 15, α(M)=0.0002473 35, α(N)=6.63E-5 9, α(O)=1.599E-5 22, α(P)=3.03E-6 4, α(Q)=2.237E-7 31
    744.18 3-       56.6 8 [E2] 199α=199 14, α(L)=145 11, α(M)=40.1 29, α(N)=10.9 8, α(O)=2.50 18, α(P)=0.405 29, α(Q)=0.00107 7
3-      594.5 3 [E1] 0.00964α=0.00964 14, α(K)=0.00781 11, α(L)=0.001381 19, α(M)=0.000330 5, α(N)=8.83×10-5 12, α(O)=2.128E-5 30, α(P)=4.01E-6 6, α(Q)=2.91E-7 4
    782.4 10+ 11.6 ps 11     260.1 5 E2 0.297B(E2)(W.u.)=3.6×102 4, α=0.297 5, α(K)=0.0979 14, α(L)=0.1456 23, α(M)=0.0397 6, α(N)=0.01078 17, α(O)=0.00250 4, α(P)=0.000423 7, α(Q)=6.40E-6 9
    848.3 5-     ≈103.4(E2) 11.41α=11.41 16, α(L)≈8.31, α(M)≈2.305, α(N)≈0.626, α(O)≈0.1438, α(P)≈0.02355, α(Q)≈9.69×10-5
    919.18 0+      873.98 12 [E2] 0.01439α=0.01439 20, α(K)=0.01060 15, α(L)=0.00283 4, α(M)=0.000711 10, α(N)=0.0001917 27, α(O)=4.58×10-5 6, α(P)=8.47E-6 12, α(Q)=4.85E-7 7
    957.90 2+      912.4 3 [M1+E2] 0.032α=0.032 18, α(K)=0.025 15, α(L)=0.0050 25, α(M)=0.0012 6, α(N)=3.3×10-4 16, α(O)=8.E-5 4, α(P)=1.5E-5 8, α(Q)=1.1E-6 7
2+      958.0 2 [E2] 0.01204α=0.01204 17, α(K)=0.00902 13, α(L)=0.002264 32, α(M)=0.000565 8, α(N)=0.0001522 21, α(O)=3.64×10-5 5, α(P)=6.77E-6 9, α(Q)=4.08E-7 6
    966.58 (1-)      921.2 2 (E1) 0.00432α=0.00432 6, α(K)=0.00353 5, α(L)=0.000599 8, α(M)=0.0001423 20, α(N)=3.81×10-5 5, α(O)=9.22E-6 13, α(P)=1.757E-6 25, α(Q)=1.345E-7 19
(1-)      966.8 2 (E1) 0.00397α=0.00397 6, α(K)=0.00325 5, α(L)=0.000549 8, α(M)=0.0001302 18, α(N)=3.49×10-5 5, α(O)=8.44E-6 12, α(P)=1.610E-6 23, α(Q)=1.239E-7 17
    987.66 2-      243.6 2 M1+E21.5 40.81α=0.81 21, α(K)=0.51 19, α(L)=0.216 13, α(M)=0.0564 23, α(N)=0.0153 6, α(O)=0.00360 17, α(P)=0.00064 4, α(Q)=2.6×10-5 9
2-      300.0 1 [M1+E2] 0.6α=0.6 4, α(K)=0.4 4, α(L)=0.12 4, α(M)=0.030 7, α(N)=0.0081 20, α(O)=0.0019 5, α(P)=3.6×10-4 11, α(Q)=2.1E-5 16
2-      942.4 2 (E1) 0.00415α=0.00415 6, α(K)=0.00339 5, α(L)=0.000575 8, α(M)=0.0001365 19, α(N)=3.66×10-5 5, α(O)=8.85E-6 12, α(P)=1.686E-6 24, α(Q)=1.294E-7 18
    999.8 7-      151.5 5 E2 2.21α=2.21 4, α(K)=0.2183 31, α(L)=1.455 30, α(M)=0.403 8, α(N)=0.1093 22, α(O)=0.0252 5, α(P)=0.00417 8, α(Q)=2.75×10-5 5
   1035.6 3-     ≈886.2[E1] 0.00463α=0.00463 6, α(K)≈0.00378, α(L)≈0.000643, α(M)≈0.0001528, α(N)≈4.09×10-5, α(O)≈9.90E-6, α(P)≈1.885E-6, α(Q)≈1.437E-7
3-     ≈990.2[E1] 0.00381α=0.00381 5, α(K)≈0.00311, α(L)≈0.000526, α(M)≈0.0001247, α(N)≈3.34×10-5, α(O)≈8.09E-6, α(P)≈1.543E-6, α(Q)≈1.190E-7
   1050.86 (4+)     1006.0 3   0.01097α=0.01097 15
   1052.9 4- 101 ns 6     ≈65(E2) 102.4α=102.4 14, α(L)≈74.6, α(M)≈20.66, α(N)≈5.61, α(O)≈1.286, α(P)≈0.2088, α(Q)≈0.000597
4- 101 ns 6     204.6 10 (E2) 0.687α=0.687 16, α(K)=0.1490 24, α(L)=0.393 10, α(M)=0.1080 27, α(N)=0.0293 7, α(O)=0.00678 17, α(P)=0.001134 29, α(Q)=1.179×10-5 23
4- 101 ns 6     307.9 10 M1+E21.3 50.46α=0.46 18, α(K)=0.32 16, α(L)=0.100 16, α(M)=0.0256 34, α(N)=0.0069 9, α(O)=0.00165 24, α(P)=0.00030 5, α(Q)=1.6×10-5 7
4- 101 ns 6     903.6 4 (E1) 0.00447α=0.00447 6, α(K)=0.00365 5, α(L)=0.000621 9, α(M)=0.0001474 21, α(N)=3.95×10-5 6, α(O)=9.55E-6 13, α(P)=1.819E-6 26, α(Q)=1.390E-7 19
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   1058.8 (4+)      909.3 3 M1 0.0505α=0.0505 7, α(K)=0.0404 6, α(L)=0.00760 11, α(M)=0.001830 26, α(N)=0.000493 7, α(O)=0.0001198 17, α(P)=2.313×10-5 32, α(Q)=1.852E-6 26
   1085.4 12+ 5.5 ps +18-33     303.0 5 E2 0.1826B(E2)(W.u.)=4.1×102 7, α=0.1826 27, α(K)=0.0736 11, α(L)=0.0798 12, α(M)=0.02163 33, α(N)=0.00587 9, α(O)=0.001364 21, α(P)=0.000233 4, α(Q)=4.44E-6 6
   1198.6 9-      198.8 3 E2 0.764α=0.764 12, α(K)=0.1561 22, α(L)=0.444 7, α(M)=0.1222 19, α(N)=0.0332 5, α(O)=0.00766 12, α(P)=0.001281 20, α(Q)=1.273×10-5 19
   1426.4 14+ 2.8 ps 3     341.0 5 E2 0.1285B(E2)(W.u.)=4.5×102 5, α=0.1285 19, α(K)=0.0589 8, α(L)=0.0511 8, α(M)=0.01375 21, α(N)=0.00373 6, α(O)=0.000869 13, α(P)=0.0001497 22, α(Q)=3.38E-6 5
   1443.6 11-      245.0 5 E2 0.363α=0.363 6, α(K)=0.1091 16, α(L)=0.1855 30, α(M)=0.0507 8, α(N)=0.01377 23, α(O)=0.00319 5, α(P)=0.000538 9, α(Q)=7.42×10-6 11
   1732.6 13-      289 1 E2 0.211α=0.211 4, α(K)=0.0805 12, α(L)=0.0959 19, α(M)=0.0260 5, α(N)=0.00706 14, α(O)=0.001641 32, α(P)=0.000280 5, α(Q)=4.97×10-6 8
   1791.3 1(+)     1746.1 10 (M1) 0.00926α=0.00926 13, α(K)=0.00717 10, α(L)=0.001332 19, α(M)=0.000320 5, α(N)=8.61×10-5 12, α(O)=2.096E-5 30, α(P)=4.05E-6 6, α(Q)=3.27E-7 5
1(+)     1791.3 10 (M1) 0.00870α=0.00870 12, α(K)=0.00669 9, α(L)=0.001243 18, α(M)=0.000299 4, α(N)=8.04×10-5 11, α(O)=1.957E-5 28, α(P)=3.78E-6 5, α(Q)=3.05E-7 4
   1801.0 16+ 2.1 ps 2     374.6 5 E2 0.0987B(E2)(W.u.)=3.8×102 4, α=0.0987 14, α(K)=0.0493 7, α(L)=0.0363 5, α(M)=0.00971 14, α(N)=0.00263 4, α(O)=0.000614 9, α(P)=0.0001066 16, α(Q)=2.74E-6 4
   2054.2 1(+)     2009.0 10 (M1) 0.00668α=0.00668 9, α(K)=0.00492 7, α(L)=0.000913 13, α(M)=0.0002193 31, α(N)=5.90×10-5 8, α(O)=1.436E-5 20, α(P)=2.77E-6 4, α(Q)=2.243E-7 32
1(+)     2054.2 10 (M1) 0.00637α=0.00637 9, α(K)=0.00463 7, α(L)=0.000859 12, α(M)=0.0002065 29, α(N)=5.56×10-5 8, α(O)=1.352E-5 19, α(P)=2.61E-6 4, α(Q)=2.113E-7 30
   2060.6 15-      328 1 E2 0.1439α=0.1439 24, α(K)=0.0634 10, α(L)=0.0591 11, α(M)=0.01593 29, α(N)=0.00432 8, α(O)=0.001006 18, α(P)=0.0001729 31, α(Q)=3.70×10-6 6
   2086.54 1(-)     2041.3 1 (E1) 1.66×10-3α=1.66×10-3 2, α(K)=0.000929 13, α(L)=0.0001512 21, α(M)=3.57E-5 5, α(N)=9.57E-6 13, α(O)=2.325E-6 33, α(P)=4.48E-7 6, α(Q)=3.64E-8 5
1(-)     2086.5 2 (E1) 1.65×10-3α=1.65×10-3 2, α(K)=0.000896 13, α(L)=0.0001458 20, α(M)=3.44E-5 5, α(N)=9.22E-6 13, α(O)=2.242E-6 31, α(P)=4.32E-7 6, α(Q)=3.52E-8 5
   2095.7 1(+)     2050.5 10 (M1) 0.00639α=0.00639 9, α(K)=0.00466 7, α(L)=0.000864 12, α(M)=0.0002075 29, α(N)=5.58×10-5 8, α(O)=1.359E-5 19, α(P)=2.63E-6 4, α(Q)=2.123E-7 30
1(+)     2095.7 10 (M1) 0.00610α=0.00610 9, α(K)=0.00439 6, α(L)=0.000814 11, α(M)=0.0001956 27, α(N)=5.26×10-5 7, α(O)=1.281E-5 18, α(P)=2.475E-6 35, α(Q)=2.002E-7 28
   2188.8 1(+)     2143.6 10 (M1) 0.00582α=0.00582 8, α(K)=0.00413 6, α(L)=0.000766 11, α(M)=0.0001840 26, α(N)=4.95×10-5 7, α(O)=1.205E-5 17, α(P)=2.328E-6 33, α(Q)=1.884E-7 26
1(+)     2188.8 10 (M1) 0.00558α=0.00558 8, α(K)=0.00391 5, α(L)=0.000724 10, α(M)=0.0001738 24, α(N)=4.68×10-5 7, α(O)=1.139E-5 16, α(P)=2.200E-6 31, α(Q)=1.781E-7 25
   2204.0 18+ 1.17 ps 12     403.0 5 E2 0.0811B(E2)(W.u.)=4.9×102 5, α=0.0811 12, α(K)=0.0430 6, α(L)=0.0280 4, α(M)=0.00746 11, α(N)=0.002021 30, α(O)=0.000473 7, α(P)=8.25E-5 12, α(Q)=2.330E-6 33
   2284.7 1(+)     2239.5 10 (M1) 0.00533α=0.00533 7, α(K)=0.00367 5, α(L)=0.000680 10, α(M)=0.0001634 23, α(N)=4.40×10-5 6, α(O)=1.070E-5 15, α(P)=2.068E-6 29, α(Q)=1.674E-7 24
1(+)     2284.7 10 (M1) 0.00512α=0.00512 7, α(K)=0.00348 5, α(L)=0.000644 9, α(M)=0.0001547 22, α(N)=4.17×10-5 6, α(O)=1.014E-5 14, α(P)=1.959E-6 28, α(Q)=1.586E-7 22
   2426.6 17-      366 1 E2 0.1052α=0.1052 17, α(K)=0.0515 8, α(L)=0.0394 7, α(M)=0.01057 18, α(N)=0.00286 5, α(O)=0.000669 12, α(P)=0.0001158 20, α(Q)=2.88×10-6 4
   2435.6 1(+)     2390.4 10 (M1) 0.00471α=0.00471 7, α(K)=0.00308 4, α(L)=0.000570 8, α(M)=0.0001368 19, α(N)=3.68×10-5 5, α(O)=8.96E-6 13, α(P)=1.732E-6 24, α(Q)=1.404E-7 20
1(+)     2435.6 10 (M1) 0.00456α=0.00456 6, α(K)=0.00292 4, α(L)=0.000541 8, α(M)=0.0001300 18, α(N)=3.50×10-5 5, α(O)=8.52E-6 12, α(P)=1.646E-6 23, α(Q)=1.334E-7 19
   2440.2 1(+)     2395.0 10 (M1) 0.00470α=0.00470 7, α(K)=0.00306 4, α(L)=0.000567 8, α(M)=0.0001361 19, α(N)=3.66×10-5 5, α(O)=8.92E-6 13, α(P)=1.723E-6 24, α(Q)=1.396E-7 20
1(+)     2440.2 10 (M1) 0.00455α=0.00455 6, α(K)=0.00291 4, α(L)=0.000539 8, α(M)=0.0001293 18, α(N)=3.48×10-5 5, α(O)=8.47E-6 12, α(P)=1.637E-6 23, α(Q)=1.328E-7 19
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   2457.3 1(+)     2412.1 10 (M1) 0.00464α=0.00464 7, α(K)=0.00300 4, α(L)=0.000556 8, α(M)=0.0001335 19, α(N)=3.59×10-5 5, α(O)=8.75E-6 12, α(P)=1.690E-6 24, α(Q)=1.370E-7 19
1(+)     2457.3 10 (M1) 0.00449α=0.00449 6, α(K)=0.00285 4, α(L)=0.000528 7, α(M)=0.0001269 18, α(N)=3.42×10-5 5, α(O)=8.31E-6 12, α(P)=1.607E-6 23, α(Q)=1.303E-7 18
   2494.5 1(+)     2449.3 10 (M1) 0.00452α=0.00452 6, α(K)=0.00288 4, α(L)=0.000533 7, α(M)=0.0001280 18, α(N)=3.45×10-5 5, α(O)=8.39E-6 12, α(P)=1.621E-6 23, α(Q)=1.314E-7 18
1(+)     2494.5 10 (M1) 0.00438α=0.00438 6, α(K)=0.00274 4, α(L)=0.000507 7, α(M)=0.0001218 17, α(N)=3.28×10-5 5, α(O)=7.98E-6 11, α(P)=1.542E-6 22, α(Q)=1.251E-7 18
   2498.5 1(+)     2453.3 10 (M1) 0.00451α=0.00451 6, α(K)=0.00287 4, α(L)=0.000531 7, α(M)=0.0001275 18, α(N)=3.43×10-5 5, α(O)=8.35E-6 12, α(P)=1.614E-6 23, α(Q)=1.308E-7 18
1(+)     2498.5 10 (M1) 0.00437α=0.00437 6, α(K)=0.00273 4, α(L)=0.000505 7, α(M)=0.0001213 17, α(N)=3.26×10-5 5, α(O)=7.95E-6 11, α(P)=1.535E-6 22, α(Q)=1.245E-7 17
   2631.8 20+ 0.84 ps 12     427.8 5 E2 0.0694B(E2)(W.u.)=5.1×102 8, α=0.0694 10, α(K)=0.0385 5, α(L)=0.02281 33, α(M)=0.00605 9, α(N)=0.001638 24, α(O)=0.000384 6, α(P)=6.73E-5 10, α(Q)=2.047E-6 29
   2699.0 1(+)     2653.8 10 (M1) 0.00398α=0.00398 6, α(K)=0.002315 32, α(L)=0.000428 6, α(M)=0.0001028 14, α(N)=2.77×10-5 4, α(O)=6.74E-6 9, α(P)=1.302E-6 18, α(Q)=1.057E-7 15
1(+)     2699.0 10 (M1) 0.00388α=0.00388 5, α(K)=0.002210 31, α(L)=0.000409 6, α(M)=9.82×10-5 14, α(N)=2.64E-5 4, α(O)=6.43E-6 9, α(P)=1.243E-6 17, α(Q)=1.009E-7 14
   2712.1 1(-)     2666.9 10 (E1) 1.67×10-3α=1.67×10-3 2, α(K)=0.000603 8, α(L)=9.74E-5 14, α(M)=2.296E-5 32, α(N)=6.15E-6 9, α(O)=1.497E-6 21, α(P)=2.89E-7 4, α(Q)=2.378E-8 33
1(-)     2712.1 10 (E1) 1.68×10-3α=1.68×10-3 2, α(K)=0.000587 8, α(L)=9.47E-5 13, α(M)=2.234E-5 31, α(N)=5.99E-6 8, α(O)=1.456E-6 20, α(P)=2.81E-7 4, α(Q)=2.315E-8 32
   2750 (0+) 67 ns 3 
% IT = 88 3
% SF = 12 3
   560 10 (E1) 0.0108B(E1)(W.u.)=5.6E-10 4, α=0.0108 4, α(K)=0.00875 33, α(L)=0.00156 6, α(M)=0.000372 15, α(N)=0.000100 4, α(O)=2.40E-5 10, α(P)=4.52E-6 18, α(Q)=3.24E-7 12
(0+) 67 ns 3 
% IT = 88 3
% SF = 12 3
  1170 10 (E1) 0.00286B(E1)(W.u.)=1.02E-10 5, α=0.00286 6, α(K)=0.00234 5, α(L)=0.000390 8, α(M)=9.25E-5 19, α(N)=2.48E-5 5, α(O)=6.00E-6 12, α(P)=1.149E-6 24, α(Q)=9.00E-8 18
(0+) 67 ns 3 
% IT = 88 3
% SF = 12 3
  1783 10 (E1) 1.76×10-3B(E1)(W.u.)=1.45E-10 6, α=1.76E-3 3, α(K)=0.001159 19, α(L)=0.0001895 32, α(M)=4.48E-5 8, α(N)=1.200E-5 20, α(O)=2.91E-6 5, α(P)=5.60E-7 9, α(Q)=4.53E-8 8
(0+) 67 ns 3 
% IT = 88 3
% SF = 12 3
  2062 10 (E1) 1.66×10-3B(E1)(W.u.)=2.43E-11 10, α=1.66E-3 2, α(K)=0.000914 15, α(L)=0.0001487 24, α(M)=3.51E-5 6, α(N)=9.41E-6 15, α(O)=2.29E-6 4, α(P)=4.40E-7 7, α(Q)=3.58E-8 6
   2756.2 1(+)     2711.0 10 (M1) 0.00386α=0.00386 5, α(K)=0.002184 31, α(L)=0.000404 6, α(M)=9.70×10-5 14, α(N)=2.61E-5 4, α(O)=6.36E-6 9, α(P)=1.228E-6 17, α(Q)=9.97E-8 14
1(+)     2756.2 10 (M1) 0.00377α=0.00377 5, α(K)=0.002087 29, α(L)=0.000386 5, α(M)=9.27×10-5 13, α(N)=2.496E-5 35, α(O)=6.08E-6 9, α(P)=1.174E-6 16, α(Q)=9.53E-8 13
   2770 (2+)       20 Calc. (E2) 1.96×104α=1.96×104, α(L)=1.125E4 16, α(M)=6.23E3 9, α(N)=1686 24, α(O)=385 6, α(P)=61.9 9, α(Q)=0.1021 15, α(N+)=2.13E3 3
   2817 (4+)       47.0(E2) 489α=489 7, α(L)=357 5, α(M)=98.6 14, α(N)=26.7 4, α(O)=6.12 9, α(P)=0.990 14, α(Q)=0.002409 34
   2823 (19-)     ≈396(E2) 0.0849α=0.0849 12, α(K)≈0.0444, α(L)≈0.0298, α(M)≈0.00794, α(N)≈0.002152, α(O)≈0.000503, α(P)≈8.77×10-5, α(Q)≈2.422E-6
   2823.3 1(+)     2778.1 10 (M1) 0.00373α=0.00373 5, α(K)=0.002042 29, α(L)=0.000378 5, α(M)=9.07×10-5 13, α(N)=2.442E-5 34, α(O)=5.94E-6 8, α(P)=1.149E-6 16, α(Q)=9.33E-8 13
1(+)     2823.3 10 (M1) 0.00365α=0.00365 5, α(K)=0.001954 27, α(L)=0.000361 5, α(M)=8.68×10-5 12, α(N)=2.336E-5 33, α(O)=5.69E-6 8, α(P)=1.099E-6 15, α(Q)=8.93E-8 13
   2838.3 1(+)     2793.1 10 (M1) 0.00370α=0.00370 5, α(K)=0.002013 28, α(L)=0.000372 5, α(M)=8.94×10-5 13, α(N)=2.406E-5 34, α(O)=5.86E-6 8, α(P)=1.132E-6 16, α(Q)=9.19E-8 13
1(+)     2838.3 10 (M1) 0.00363α=0.00363 5, α(K)=0.001926 27, α(L)=0.000356 5, α(M)=8.55×10-5 12, α(N)=2.303E-5 32, α(O)=5.61E-6 8, α(P)=1.083E-6 15, α(Q)=8.80E-8 12
   2877.8 1(-)     2832.6 10 (E1) 1.70×10-3α=1.70×10-3 2, α(K)=0.000547 8, α(L)=8.83E-5 12, α(M)=2.081E-5 29, α(N)=5.58E-6 8, α(O)=1.357E-6 19, α(P)=2.62E-7 4, α(Q)=2.161E-8 30
1(-)     2877.8 10 (E1) 1.71×10-3α=1.71×10-3 2, α(K)=0.000534 7, α(L)=8.60E-5 12, α(M)=2.028E-5 28, α(N)=5.44E-6 8, α(O)=1.322E-6 19, α(P)=2.55E-7 4, α(Q)=2.108E-8 30
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   2891 (6+)       73.9(E2) 55.5α=55.5 8, α(L)=40.4 6, α(M)=11.20 16, α(N)=3.04 4, α(O)=0.697 10, α(P)=0.1135 16, α(Q)=0.000352 5
   2969.0 1(+)     2923.8 10 (M1) 0.00350α=0.00350 5, α(K)=0.001775 25, α(L)=0.000328 5, α(M)=7.88×10-5 11, α(N)=2.122E-5 30, α(O)=5.17E-6 7, α(P)=9.98E-7 14, α(Q)=8.11E-8 11
1(+)     2969.0 10 (M1) 0.00344α=0.00344 5, α(K)=0.001702 24, α(L)=0.000315 4, α(M)=7.56×10-5 11, α(N)=2.035E-5 29, α(O)=4.95E-6 7, α(P)=9.57E-7 13, α(Q)=7.78E-8 11
   2991 (8+)      100.8(E2) 12.84α=12.84 18, α(L)=9.35 13, α(M)=2.59 4, α(N)=0.705 10, α(O)=0.1619 23, α(P)=0.0265 4, α(Q)=0.0001062 15
   3081.0 22+ 0.65 ps 15     449.2 5 E2 0.0614B(E2)(W.u.)=5.2×102 12, α=0.0614 9, α(K)=0.0351 5, α(L)=0.01935 28, α(M)=0.00511 7, α(N)=0.001384 20, α(O)=0.000325 5, α(P)=5.72E-5 8, α(Q)=1.844E-6 26
   3143.8 1(+)     3098.6 10 (M1) 0.00330α=0.00330 5, α(K)=0.001514 21, α(L)=0.000280 4, α(M)=6.72×10-5 9, α(N)=1.809E-5 25, α(O)=4.40E-6 6, α(P)=8.51E-7 12, α(Q)=6.92E-8 10
1(+)     3143.8 10 (M1) 0.00326α=0.00326 5, α(K)=0.001454 20, α(L)=0.000269 4, α(M)=6.45×10-5 9, α(N)=1.738E-5 24, α(O)=4.23E-6 6, α(P)=8.18E-7 11, α(Q)=6.65E-8 9
   3550.0 24+ 0.41 ps 8     469 1 E2 0.0552B(E2)(W.u.)=6.7×102 13, α=0.0552 8, α(K)=0.0324 5, α(L)=0.01678 26, α(M)=0.00442 7, α(N)=0.001196 19, α(O)=0.000281 4, α(P)=4.96E-5 8, α(Q)=1.682E-6 25
   4039.0 26+ 0.33 ps 9     489 1 E2 0.0498B(E2)(W.u.)=6.7×102 19, α=0.0498 7, α(K)=0.0300 4, α(L)=0.01465 23, α(M)=0.00385 6, α(N)=0.001041 16, α(O)=0.000245 4, α(P)=4.34E-5 7, α(Q)=1.541E-6 23
   4549.0 28+ 0.17 ps 7     510 1 E2 0.0451B(E2)(W.u.)=1.1×103 5, α=0.0451 7, α(K)=0.0278 4, α(L)=0.01281 20, α(M)=0.00335 5, α(N)=0.000907 14, α(O)=0.0002137 33, α(P)=3.80E-5 6, α(Q)=1.411E-6 21
   5077 (30+)     ≈528(E2) 0.0416α=0.0416 6, α(K)≈0.0261, α(L)≈0.01149, α(M)≈0.00300, α(N)≈0.000812, α(O)≈0.0001913, α(P)≈3.41×10-5, α(Q)≈1.313E-6

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
      0.00+ 2.342×107 y 4 
% α = 100
% SF = 9.4×10-8 4
Q0=13.8 b2 2 from Isotope shifts (1978Ge10).
E(level): Q0=13.8 b2 2 from Isotope shifts (1978Ge10). Kπ=0+ GS Rotational band. From 236Pa β- decay.
     45.24312+ 235 ps 6  B(E2)=11.60 15
Measured isotopic shift, gyromagnetic factors. Δ<r2>/<r2>=-21×10-6 21 (1974Mo12), <6×10-6 (1974Me18).
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
    149.4804+ 130 ps 9  B(E4)|^=1.7 e2b4 6 (1973Be44) from Coul. ex.
E(level): B(E4)|^=1.7 e2b4 6 (1973Be44) from Coul. ex. Kπ=0+ GS Rotational band. From 236Pa β- decay.
    309.7886+ 58 ps 3  E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From Recoil Distance Doppler Method (RDDM) in Coul. ex.
    522.268+ 23.9 ps 19  B(E2)=6.1 8
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From Recoil Distance Doppler Method (RDDM) in Coul. ex.
    687.561- 3.78 ns 9  E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
Jπ(level): From cross section signature in 235U(d,p).
    744.183-   B(E3)=0.70 5
E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
Jπ(level): From cross section signature in 235U(d,p).
    782.410+ 11.6 ps 11  B(E2)=5.0 4
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From Recoil Distance Doppler Method (RDDM) in Coul. ex.
    848.35-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
    919.180+   E(level): Kπ=0+.
    957.902+   B(E2)=0.195 14
E(level): Kπ=(2+).
    960.05(2+)   E(level): Kπ=0+.
    966.58(1-)   E(level): Kπ=1- Configuration=((n,7/2(743))-(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
    987.662-   E(level): Kπ=1- Configuration=((n,7/2(743))-(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
    999.87-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   1001.6(3+)   E(level): Kπ=(2+).
   1035.63-   B(E3)=0.35 2
XREF: O(1040).
E(level): Kπ=1- Configuration=((n,7/2(743))-(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
   1050.86(4+)   E(level): Kπ=0+.
   1052.94- 101 ns 6  Configuration=((ν 1/2[631])+(ν 7/2[743])) from (d,p) strength.
E(level): Kπ=4- Configuration=((n,7/2(743))+(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1058.8(4+)   E(level): Kπ=(2+).
   1070.0(4-)   E(level): Kπ=1- Configuration=((n,7/2(743))-(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
   1085.412+ 5.5 ps +18-33  B(E2)=4.1 6
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   1104.4(5-)   E(level): Kπ=4- Configuration=((n,7/2(743))+(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1110.66(2-)   E(level): Kπ=2-.
   1127.38(5+)   E(level): Kπ=(2+).
E(level)Jπ(level)T1/2(level)Comments
   1149.4(3-)   B(E3)=0.26 3
E(level): Kπ=2-.
   1164(5-)   E(level): Kπ=1- Configuration=((n,7/2(743))-(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
   1164(6-)   E(level): Kπ=4- Configuration=((n,7/2(743))+(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1191.6(3-)   E(level): Kπ=3- Configuration=((n,7/2(743))-(n,1/2(631))).
   1198.69-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   1232(7-)   E(level): Kπ=4- Configuration=((n,7/2(743))+(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1232.2(4-)   E(level): Kπ=3- Configuration=((n,7/2(743))-(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1282.2(5-)   E(level): Kπ=3- Configuration=((n,7/2(743))-(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1320(8-)   E(level): Kπ=4- Configuration=((n,7/2(743))+(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1342.8(6-)   E(level): Kπ=3- Configuration=((n,7/2(743))-(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1413.3(7-)   E(level): Kπ=3- Configuration=((n,7/2(743))-(n,1/2(631))).
Jπ(level): From cross section signature in 235U(d,p).
   1426.414+ 2.8 ps 3  B(E2)=4.5 5
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   1443.611-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   1471.7(6-)   E(level): Kπ=6- Configuration=((n,7/2(743))+(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
   1541.8(7-)   E(level): Kπ=6- Configuration=((n,7/2(743))+(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
   1604.80(1-,2+)   XREF: F(1600.8).
   1621.8(8-)   E(level): Kπ=6- Configuration=((n,7/2(743))+(n,5/2(622))).
Jπ(level): From cross section signature in 235U(d,p).
   1732.613-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   1791.31(+)   BM1=0.38 5
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+).
   1801.016+ 2.1 ps 2  B(E2)=3.8 3
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   2054.21(+)   BM1=0.25 4
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+).
   2060.615-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   2095.71(+)   BM1=0.15 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2188.81(+)   BM1=0.92 9
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2204.018+ 1.17 ps 12  B(E2)=4.7 5
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
E(level)Jπ(level)T1/2(level)Comments
   2243.91   Jπ(level): Jπ from γ’(θ) in 236U(γ,γ’).
   2251.11(+)   BM1=0.25 4
Jπ(level): Jπ from γ’(θ) in 236U(γ,γ’).
   2284.71(+)   BM1=0.31 4
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2426.617-   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   2435.61(+)   BM1=0.25 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2440.21(+)   BM1=0.19 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2457.31(+)   BM1=0.21 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2494.51(+)   BM1=0.21 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2498.51(+)   BM1=0.20 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2631.820+ 0.84 ps 12  B(E2)=4.9 7
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   2699.01(+)   BM1=0.19 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2712.11(-)   BE1=1.4 3
Jπ(level): Jπ from γ’(θ) in 236U(γ,γ’).
   2750(0+) 67 ns 3 
% IT = 88 3
% SF = 12 3
ce’s preceding fission observed, interpreted as g.s. cascade in second minimum with inertia constant α=3.54 (1974HeZE), and α=3.36 keV 1 (1977Bo09) following E=AJ(J+1).
E(level): ce’s preceding fission observed, interpreted as g.s. cascade in second minimum with inertia constant α=3.54 (1974HeZE), and α=3.36 keV 1 (1977Bo09) following E=AJ(J+1).
   2756.21(+)   BM1=0.08 2
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2770(2+)   E(level): g.s. band in second potential well with inertia constant α=3.36 keV 1 following E=AJ(J+1).
Jπ(level): From (d,pγ). Based on ce cascade interpreted as rotational band (in second minimum) built on fission isomer.
   2817(4+)   E(level): g.s. band in second potential well with inertia constant α=3.36 keV 1 following E=AJ(J+1).
Jπ(level): From (d,pγ). Based on ce cascade interpreted as rotational band (in second minimum) built on fission isomer.
   2823(19-)   E(level): Kπ=0- Octupole vibrational band. From 235U(n,γ) E=thermal.
   2823.31(+)   BM1=0.11 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2838.31(+)   BM1=0.09 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2877.81(-)   BE1=1.6 4
Jπ(level): Jπ from γ’(θ) in 236U(γ,γ’).
   2891(6+)   E(level): g.s. band in second potential well with inertia constant α=3.36 keV 1 following E=AJ(J+1).
Jπ(level): From (d,pγ). Based on ce cascade interpreted as rotational band (in second minimum) built on fission isomer.
   2969.01(+)   BM1=0.12 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
   2991(8+)   E(level): g.s. band in second potential well with inertia constant α=3.36 keV 1 following E=AJ(J+1).
Jπ(level): From (d,pγ). Based on ce cascade interpreted as rotational band (in second minimum) built on fission isomer.
   3081.022+ 0.65 ps 15  B(E2)=4.9 11
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   3143.81(+)   BM1=0.15 3
Jπ(level): (M1) γ rays to g.s. (Jπ=0+) and 45.2-keV level (Jπ=2+). Jπ from γ’(θ) in 236U(γ,γ’).
E(level)Jπ(level)T1/2(level)Comments
   3550.024+ 0.41 ps 8  B(E2)=6.3 12
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   4039.026+ 0.33 ps 9  B(E2)=6.3 16
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   4549.028+ 0.17 ps 7  B(E2)=10 4
E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.
T1/2(level): From B(E2) in Coul. ex.
   5077(30+)   E(level): Kπ=0+ GS Rotational band. From 236Pa β- decay.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
     45.2431     45.243E(γ): weighted average of 45.29 6 (1956Ho54); 45.3 2 (1959Tr37); 45.273 20 (1971Cl03,1972ClZS); 45.242 6 (1972Sc01); 45.232 5 (1971GuZY,1976GuZN); 45.244 2 (1981He16) and 45.23 3 (1983Ah02); others: 44.2 1 (1956Gr11); 45.62 1 (1958Sa21); 45.32 (1959Ga13) and 45.28 (1968Du06).
M(γ): from 236Np ε decay (22.5 h) and 240Pu α decay.. From conversion electron subshell ratios in 236U(d,pnγ).
    149.480    104.237E(γ): weighted average of 104.244 5 (1971GuZY,1976GuZN), 104.233 5 (1972Sc01), 104.234 6 (1981He16,1986He12); others: 103.95 50 (1958Sa21), 103.6 3 (1959Tr37), 104.15 2 (1971Cl03,1972ClZS) and 104.23 2 (1983Ah02).
M(γ): from 236Np ε decay (155×103 y). From conversion electron subshell ratios in 236U(d,pnγ).
    309.788    160.308E(γ): weighted average of 160.280 15 (1971GuZY,1976GuZN), 160.310 8 (1972Sc01), 160.312 10 (1975OtZX), 160.308 3 (1981He16,1986He12), others: 160.0 15 (1959Tr37), 160.27 2 (1971Cl03,1972ClZS) and 160.33 2 (1983Ah02).
M(γ): from 236Np ε decay (155×103 y). From conversion electron subshell ratios in 236U(d,pnγ).
    522.26    212.47E(γ): weighted average of 212.48 5 (1975OtZX) and 212.46 5 (1982Ow01).
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
    687.56    538.09E(γ): weighted average of 538.25 20 (1969Le05), 538.09 15 (1975OtZX), 537.92 20 (1977Po05) and 538.1 1 (1984Mi02).
I(γ): weighted average of 1.11 12 (1969Le05) 1.1 1 (1975OtZX), 1.6 6 (1977Po05) and 1.6 3 (1984Mi02).
M(γ): from α(L1+L2)exp=0.086 27 (1969Le05) and α(K)exp=0.11 5 (1983Fa15).
    642.23E(γ): weighted average of 642.42 10 (1969Le05), 642.06 17 (1969BaZW), 642.48 15 (1971Cl03,1972ClZS), 641.8 1 (1972MaYR), 642.2 1 (1973Gr20), 642.3 3 (1973Or06), 642.33 10 (1975OtZX), 642.24 10 (1977Po05) and 642.3 1 (1984Mi02).
M(γ): from α(K)exp=0.112 10, α(K)/α(L)=3.59 11, α(L1)/α(L2)=11 4, α(L1+L2)/α(L3)=36 +10-7 (1969Le05); α(K)exp=0.11 3, α(L)exp=0.031 9, α(K)/α(L)=3.56 50 (1977Po05); α(K)exp=0.11 1, α(L1)exp=0.032 3, α(L2)exp=0.0034 4, α(L3)exp=0.0016 11, α(M1)exp=0.0058 7, Anomalous conversion due to penetration effect. The M2 and E3 admixtures are smalls (1983Fa15).
    687.59E(γ): Weighted average of 687.71 10 (1969Le05), 687.39 17 (1969BaZW), 688.01 15 (1971Cl03,1972ClZS), 687.5 10 (1972MaYR), 687.5 1 (1973Gr20), 687.6 3 (1973Or06), 687.57 16 (1975OtZX), 687.52 10 (1977Po05) and 687.5 1 (1984Mi02).
I(γ): weighted average of 26.5 5 (1969Le05), 28.5 5 (1971GuZY,1976GuZN), 24.8 36 (1973Or06), 21 3 (1973Gr20), 26.2 7 (1975OtZX), 29.4 9 (1977Po05), 26.8 20 (1984Mi02) and 29 4 (1979McZP).
M(γ): from α(K)exp=0.22 2, α(K)/α(L)=3.26 16, α(L1)/α(L2)=7 3, α(L1+L2)/α(L3)=46 +40-20 (1969Le05); α(K)exp=0.219 14, α(L)exp=0.069 9, α(K)/α(L)=3.19 38 (1977Po05); α(L1)exp=0.059 3, α(L2)exp=0.0129 15, α(L3)exp=0.0016 11, α(M1)exp=0.0195 23, Anomalous conversion due to penetration effects. The M2 and E3 admixtures are small (1983Fa15).
    744.18     56.6E(γ): from 236U(d,pnγ), uncertainty deduced from level energy difference,
I(γ): deduced from γ-ray intensity balance in 236Pa β- decay; other: Iγ|>5 from 236U(d,pnγ).
    594.5E(γ): from 236Pa β- decay.
    782.4    260.1E(γ): from Coul. ex.
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
    848.3    103.4E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
    919.18    873.98E(γ): weighted average of 874.1 2 (1984Mi02) and 873.92 15 (1975OtZX).
    918.9E(γ): From 235U(n,γ) E=thermal
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    957.90    912.4E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
    958.0E(γ): from 236Pa β- decay.. From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal. From 235U(n,γ) E=thermal
    960.05    810.9E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
    914.8E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    959.9E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
    966.58    279.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    921.2E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    966.8E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    987.66    243.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    300.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    942.4E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    999.8    151.5E(γ): From 236U(d,pnγ)
I(γ): From 236U(d,pnγ)
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
E(level)E(gamma)Comments
   1001.6    258.4E(γ): From 235U(n,γ) E=thermal
    852.2E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
    956.3E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1035.6    886.2E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
    990.2E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1050.86    901.25E(γ): From 235U(n,γ) E=thermal
   1006.0E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1052.9     65M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    204.6M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    307.9M(γ): From conversion electron data in 235U(n,γ) E=thermal.
    903.6I(γ): from delayed Iγ in 235U(n,γ) E=thermal
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
   1058.8    909.3E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
M(γ): From conversion electron data in 235U(n,γ) E=thermal.
   1014.1E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1070.0    920.5E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1085.4    303.0E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
   1110.66    366.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    423.1E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1065.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1127.38    977.9E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1149.4    405.2E(γ): From 235U(n,γ) E=thermal
I(γ): From 235U(n,γ) E=thermal
   1198.6    198.8E(γ): From 236U(d,pnγ)
I(γ): From 236U(d,pnγ)
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
   1271.10    526.7E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1225.9E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1426.4    341.0E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
   1443.6    245.0E(γ): From 236U(d,pnγ)
I(γ): From 236U(d,pnγ)
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
E(level)E(gamma)Comments
   1580   1580E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
   1604.80    333.7E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    617.1E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    860.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    917.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1559.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1604.9E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1662.36    674.5E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
    975.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1617.1E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1662.4E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1732.6    289E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
   1791.3   1746.1E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   1791.3E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   1801.0    374.6E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From conversion electron subshell ratios in 236U(d,pnγ).
   1807.88   1762.7E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1807.8E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1865.39   1177.7E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1865.5E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1972.62   1927.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1972.7E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1979.15   1234.9E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1291.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1934.1E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1981.04    870.4E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1023.1E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   1981.0E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
E(level)E(gamma)Comments
   2054.2   2009.0E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2054.2E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2060.6    328E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   2086.54   2041.3E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2086.5E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2095.7   2050.5E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2095.7E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2155.40    550.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   2188.8   2143.6E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2188.8E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2190   2190E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
   2204.0    403.0E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   2226.9   2181.6E(γ): From 236Pa β- decay
I(γ): From 236Pa β- decay
   2243.9   2243.9E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
   2251.1   2205.9E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
   2251.1E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
   2284.7   2239.5E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2284.7E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2426.6    366E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   2435.6   2390.4E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2435.6E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2440.2   2395.0E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2440.2E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2457.3   2412.1E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2457.3E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
E(level)E(gamma)Comments
   2494.5   2449.3E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2494.5E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2498.5   2453.3E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2498.5E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2631.8    427.8E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   2699.0   2653.8E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2699.0E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2712.1   2666.9E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
   2712.1E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
   2750    560E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From γγ angular correlations in 235U(d,pγ).
   1170E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From γγ angular correlations in 235U(d,pγ).
   1783E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
   2062E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
   2756.2   2711.0E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2756.2E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2770     20E(γ): from level energy difference. From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From in-band transition of rotational band in the second well of the nuclear potential in 235U(d,pγ).
   2817     47.0E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From in-band transition of rotational band in the second well of the nuclear potential in 235U(d,pγ).
   2823    396E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   2823.3   2778.1E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2823.3E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2838.3   2793.1E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2838.3E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2877.8   2832.6E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2877.8E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2891     73.9E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From in-band transition of rotational band in the second well of the nuclear potential in 235U(d,pγ).
E(level)E(gamma)Comments
   2969.0   2923.8E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2969.0E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   2991    100.8E(γ): From 235U(d,pγ)
I(γ): From 235U(d,pγ)
M(γ): From in-band transition of rotational band in the second well of the nuclear potential in 235U(d,pγ).
   3081.0    449.2E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   3143.8   3098.6E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   3143.8E(γ): From 236U(γ,γ’)
I(γ): From 236U(γ,γ’)
M(γ): From γ’(θ) and systematics of branching ratios to the first Jπ=2+ excited states in 236U(γ,γ’).
   3550.0    469E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   4039.0    489E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   4549.0    510E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): From E2 matrix elements deduced in Coulomb excitation measurements.
   5077    528E(γ): From Coulomb excitation
I(γ): From Coulomb excitation
M(γ): from in-band transition of ground-state band in Coul. ex.

Back to top