NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = Z.Wu

Found 79 matches.

Back to query form



2024HU03      Eur.Phys.J. A 60, (2024)

Y.Hu, Yu.M.Gledenov, Z.Cui, J.Liu, H.Bai, C.Xia, Zh.Chen, Z.Wu, W.Ren, W.Cao, T.Fan, G.Zhang, E.Sansarbayar, G.Khuukhenkhuu, L.Krupa, I.Chuprakov, Q.Fan, X.Ruan, H.Huang, J.Ren, Y.Gao, X.Yang

Cross section measurement for the 14N(n, α0, 1)11B reactions in the 4.5–11.5 MeV neutron energy region

NUCLEAR REACTIONS 14N(n, α), E=4.5 -11.5 MeV; measured reaction products, En, In, Eα, Iα; deduced σ and uncertainties. Comparison with EXFOR, ENDF/B-VIII.0, ENDF/B-VII.1, JEFF-3.3, CENDL-3.2, ROSFOND-2010, ADS-2.0, JENDL-5, BROND-3.1, BROND-2.2, FENDL-3.2b, and TENDL-2021 libraries. The 4.5 MV Van de Graaff accelerator at Peking University and the HI-13 tandem accelerator of China Institute of Atomic Energy (CIAE).

doi: 10.1140/epja/s10050-024-01268-9
Citations: PlumX Metrics


2024WU07      Chin.Phys.C 48, 024101 (2024)

Z.Wu, D.Wen

From masses and radii of neutron stars to EOS of nuclear matter through neural network

doi: 10.1088/1674-1137/ad0e04
Citations: PlumX Metrics


2024ZH02      Phys.Rev. C 109, 014303 (2024)

J.Zhao, Zh.-G.Wu

Exotic nonaxial-octupole shapes in N=184 isotones from covariant density functional theories

doi: 10.1103/PhysRevC.109.014303
Citations: PlumX Metrics


2023WU03      Phys.Rev. C 107, 034902 (2023)

Z.-M.Wu, G.-C.Yong

Probing the incompressibility of dense hadronic matter near the QCD phase transition in relativistic heavy-ion collisions

doi: 10.1103/PhysRevC.107.034902
Citations: PlumX Metrics


2023WU05      Nucl.Phys. A1036, 122671 (2023)

Z.-H.Wu, H.-B.Fu, T.Zhong, D.Huang, D.-D.Hu, X.-G.Wu

α0(980)-meson twist-2 distribution amplitude within the QCD sum rules and investigation of D → α0(980)(→ ηπ)e+ ve

doi: 10.1016/j.nuclphysa.2023.122671
Citations: PlumX Metrics


2023WU08      New Journal of Physics 25, 093039 (2023)

Z.W.Wu, Z.Q.Tian, C.Z.Dong, A.Surzhykov, S.Fritzsche

Hyperfine-induced effects on Kα1 linear polarization following electron-impact excitation of heliumlike Tl79+ ions with nuclear spin I=1/2

NUCLEAR MOMENTS 207Tl; calculated linear polarization of characteristic lines following electron-impact excitation of atoms or ions with arbitrary nuclear spin using the multi-configurational Dirac-Fock method and relativistic distorted-wave theory.

doi: 10.1088/1367-2630/acf8e9
Citations: PlumX Metrics


2023XI04      Appl.Radiat.Isot. 197, 110817 (2023)

Y.Xie, C.Cheng, W.Zhang, X.Wang, W.Qin, W.Liu, S.Lin, P.Xiao, Z.Wu, W.Jia

Feasibility study of on-line monitoring gadolinium based on neutron induced gamma activation

doi: 10.1016/j.apradiso.2023.110817
Citations: PlumX Metrics


2022WU05      Phys.Lett. B 825, 136886 (2022)

Z.Wu, L.Guo, Z.Liu, G.-X.Peng

Production of proton-rich nuclei in the vicinity of 100Sn via multinucleon transfer reactions

NUCLEAR REACTIONS 112Sn(58Ni, X)Pd/Ag/Cd/In/Sn/Xe/I/Te/Sb, E(cm)=221.77 MeV; analyzed available data; calculated σ using TDHF+GEMINI approach.

doi: 10.1016/j.physletb.2022.136886
Citations: PlumX Metrics


2021ZH44      Chin.Phys.C 48, 084001 (2021)

J.Zhong, L.-T.Deng, S.-P.Hu, X.-G.Wu, P.C.Srivastava, A.Saxena, G.-S.Li, Y.Zheng, C.-B.Li, Q.-M.Chen, C.-Y.He, W.-K.Zhou, B.-J.Zhu, Q.-W.Fang, H.Hua, J.-J.Sun, H.-B.Sun, L.Gan, H.-G.Zhao, Q.Luo, Z.-X.Wu

High spin states in 71Ga

NUCLEAR REACTIONS 70Zn(7Li, 2nα)71Ga, E=30, 35 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies and intensities, J, π, level scheme, positive and negative parity bands. Comparison with calculations in the framework of nuclear shell models with JUN45 and jj44b interactions.

doi: 10.1088/1674-1137/ac0098
Citations: PlumX Metrics


2021ZH66      Nucl. Sci. Tech. 32, 107 (2021)

J.Zhong, X.-G.Wu, S.-P.Hu, Y.-J.Ma, Y.Zheng, C.-B.Li, G.-S.Li, B.-J.Zhu, T.-X.Li, Y.-J.Jin, Y.-X.Gao, Q.-W.Fan, K.-Y.Ma, D.Yang, H.-B.Sun, H.-G.Zhao, L.Gan, Q.Luo, Z.X.Wu

Lifetime measurements in 138Nd

NUCLEAR REACTIONS 123Sb(19F, 4n), E=87 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies and relative intensities, J, π, partial level scheme, level T1/2, B(E2). Comparison with Grodzins systematics and available data. The recoil distance Doppler shift technique in combination with the differential decay curve method. The HI-13 tandem accelerator of the China Institute of Atomic Energy (CIAE) in Beijing.

doi: 10.1007/s41365-021-00953-4
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020XU03      Chin.Phys.C 44, 034101 (2020)

Y.-L.Xu, Y.-L.Han, H.-Y.Liang, Z.-D.Wu, H.-R.Guo, C.-H.Cai

Applicability of 9Be global optical potential to description of 8, 10, 11B elastic scattering

NUCLEAR REACTIONS 12C, 27Al, 28Si, 58Ni, 208Pb(8B, 8B), 9Be, 12C, 16O, 28Si, 58Ni, 120Sn, 208Pb(10B, 10B), 12C, 28Si, 58Ni, 208Pb, 209Bi(11B, 11B), E<50 MeV; analyzed available data. 8,10,11B; calculated σ; deduced global phenomenological optical model potentials.

doi: 10.1088/1674-1137/44/3/034101
Citations: PlumX Metrics


2020XU04      Chin.Phys.C 44, 034101 (2020)

Y.-L.Xu, Y.-L.Han, H.-Y.Liang, Z.-D.Wu, H.-R.Guo, C.-H.Cai

Applicability of 9Be global optical potential to description of 8, 10, 11B elastic scattering

NUCLEAR REACTIONS 27Al, 58Ni, 208Pb, 12C, 28Si(8B, 8B), E<100 MeV; 27Al, 28Si, 58Ni, 120Sn, 16O, 9Be, 208Pb(10B, 10B), E<100 MeV; 28Si, 58Ni, 209Bi, 12C, 209Bi(11B, 11B), E<100 MeV; analyzed available data. 9Be; deduced optical model potential parameters, σ, σ(θ).

doi: 10.1088/1674-1137/44/3/034101
Citations: PlumX Metrics


2020ZH26      Chin.Phys.C 44, 094001 (2020)

J.Zhong, Y.-J.Ma, X.-G.Wu, B.-J.Zhu, C.-B.Li, G.-S.Li, Y.Zheng, Q.-M.Chen, C.-Y.He, L.-T.Deng, W.-K.Zhou, K.-Y.Ma, D.Yang, H.Guo, J.-Q.Wang, X.Guang, J.Sun, H.-B.Sun, S.-P.Hu, L.Gan, H.-G.Zhao, Q.Luo, Z.-X.Wu

Lifetime measurement for the 21+ state in 106Cd

NUCLEAR REACTIONS 94Zr(16O, 4n)106Cd, E=87 MeV; measured reaction products, Eγ, Iγ; deduced γ-ray energies, J, π, lifetime, B(E2). The Recoil Distance Doppler Shift technique in combination with the Differential Decay Curve Method.

doi: 10.1088/1674-1137/44/9/094001
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019CH53      J.Radioanal.Nucl.Chem. 322, 1605 (2019)

Y.Chen, S.-H.Huang, R.i-X.Hu, Y.-G.Zhao, L.-L.Li, J.-J.Zhou, C.Li, J.-L.Zhang, Z.-H.Wu

Age determination for uranium standard samples by 231Pa/235U radiochronometer

doi: 10.1007/s10967-019-06922-x
Citations: PlumX Metrics


2019HU06      Nucl.Phys. A982, 927c (2019)

H.Huang, B.Xiao, H.Xiong, Z.Wu, Y.Mu, H.Song

Applications of deep learning to relativistic hydrodynamics

doi: 10.1016/j.nuclphysa.2018.11.004
Citations: PlumX Metrics


2019WU07      Phys.Rev. C 99, 064902 (2019)

S.Wu, Z.Wu, H.Song

Universal scaling of the σ field and net-protons from Langevin dynamics of model A

doi: 10.1103/PhysRevC.99.064902
Citations: PlumX Metrics


2019WU09      Phys.Rev. C 100, 014612 (2019)

Z.Wu, L.Guo

Microscopic studies of production cross sections in multinucleon transfer reaction 58Ni 124Sn

NUCLEAR REACTIONS 124Sn(58Ni, X), E(cm)=150, 153, 157, 160.6 MeV; calculated multinucleon transfer and production σ(E) for secondary fragments as function of number of transferred neutrons, energy dependence of the total cross sections integrated over all the neutron transfer channels, total kinetic energy loss, neutron to proton ratio of projectile-like and target-like fragments, transferred nucleon number, and neutron pickup and proton removal transfer probabilities using combined microscopic time-dependent Hartree-Fock (TDHF) and GEMINI++ statistical model approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014612
Citations: PlumX Metrics


2019XU05      Phys.Rev. C 99, 034618 (2019)

Y.Xu, Y.Han, H.Liang, Z.Wu, H.Guo, C.Cai

Global optical model potential for the weakly bound projectile 9Be

NUCLEAR REACTIONS Mg(9Be, 9Be), E=14.0, 20.0, 26.0 MeV; 27Al(9Be, 9Be), E=12.0, 14.0, 18.0, 20.0, 22.0, 25.0, 28.0, 32.0, 33.0, 35.0.40.0, 47.5 MeV; 28Si(9Be, 9Be), E=12.0, 13.0, 14.0, 17.0, 20.0, 23.0, 26.0, 30.0, 45.0, 50.0, 60.0 MeV; 40Ca(9Be, 9Be), E=14.0, 20.0, 26.0, 45.0.50.0, 60.0 MeV; 58Ni(9Be, 9Be), E=20.0, 26.0 MeV; 64Zn(9Be, 9Be), E=17.0, 19.0, 21.0, 23.0, 26.0, 28.0, 28.4, 28.97 MeV; 89Y(9Be, 9Be), E=18.6, 20.6, 22.7, 24.7, 26.7, 28.7, 33.2 MeV; Ag(9Be, 9Be), E=26.0 MeV; 144Sm(9Be, 9Be), E=30.0, 31.5, 33.0, 34.0, 35.0, 37.0, 39.0, 41.0, 44.0, 48.0 MeV; 208Pb(9Be, 9Be), E=37.0, 37.8, 38.0, 38.2, 38.5, 38.7, 39.0, 9.5, 40.0, 41.0, 42.0, 44.0, 46.0, 47.2, 48.0, 50.0, 60.0, 68.0, 75.0 MeV; 209Bi(9Be, 9Be), E=37.0, 37.8, 38.0, 38.2, 38.5, 38.7, 39.0, 39.5, 40.0, 41.0, 42.0, 44.0, 46.0, 48.0 MeV; analyzed elastic σ(θ, E) data for global phenomenological energy-dependent optical model potential parameters for 9Be. 9Be, 12,13C, 27Al, 64Zn, 89Y, 144Sm(9Be, X), E=10-300 MeV; 28Si, Cu(9Be, X), E=10-500 MeV; 89Y(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (9Be, X), (11B, X); calculated reaction σ(E) using optical model and compared with experimental data. 9Be(9Be, 9Be), E=14.0, 20.0, 26.0 MeV; 12C(9Be, 9Be), E=13.0, 14.0, 14.5, 17.3, 19.0, 20.0, 21.0, 26.0, 153.8 MeV; 13C(9Be, 9Be), E=19.46, 25.05 MeV; 16O(9Be, 9Be), E=20.0, 25.94 MeV; calculated elastic σ(θ, E) using optical model parameters and compared with experimental data.

doi: 10.1103/PhysRevC.99.034618
Citations: PlumX Metrics


2018GU21      Phys.Rev. C 98, 064609 (2018)

L.Guo, C.Shen, C.Yu, Z.Wu

Isotopic trends of quasifission and fusion-fission in the reactions 48Ca + 239, 244Pu

NUCLEAR REACTIONS 239,244Pu(48Ca, X), E=204.02, 216.76 MeV; calculated time evolution of the mass density of 48Ca+239Pu, contact time, mass and charge of heavy fragments as a function of impact parameter for the tip and side collisions, mass-angle and total kinetic energy-mass distributions of quasi-fission (QF) fragments. Microscopic time-dependent Hartree-Fock (TDHF) method for the fusion and quasifission dynamics with the statistical evaporation model HIVAP for fusion-fission dynamics.

doi: 10.1103/PhysRevC.98.064609
Citations: PlumX Metrics


2018LI33      Phys.Rev. C 98, 014618 (2018)

F.Li, L.Zhu, Z.-H.Wu, X.-B.Yu, J.Su, C.-C.Guo

Predictions for the synthesis of superheavy elements Z=119 and 120

NUCLEAR REACTIONS 238U, 242,244Pu, 243Am, 245,248Cm, 249Bk, 249Cf(48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=25-60 MeV; calculated evaporation residue σ(E), and compared with available experimental data. 252Es(40Ca, 3n), E(cm)=204.08 MeV; 252Es(42Ca, 3n), E(cm)=203.00 MeV; 249Cf(45Sc, 3n), E(cm)=211.09 MeV; 255Es(40Ca, 4n), E(cm)=207.02 MeV; 254Es(40Ca, 3n), E(cm)=203.60 MeV; 247Bk(47Ti, 3n), E(cm)=219.19 MeV; 248Bk(46Ti, 3n), E(cm)=217.76 MeV; 242Cm(51V, 2n), E(cm)=225.86 MeV; 248Cf(45Sc, 2n), E(cm)=209.29 MeV; 241Am(52Cr, 2n), E(cm)=231.94 MeV; 252Es(44Ca, 3n), E(cm)=204.27 MeV; 253Es(43Ca, 3n), E(cm)=202.49 MeV; 254Es(42Ca, 3n), E(cm)=201.65 MeV; 251Cf(45Sc, 3n), E(cm)=210.03 MeV; 249Bk(47Ti, 3n), E(cm)=217.18 MeV; 248Bk(48Ti, 3n), E(cm)=219.47 MeV; 245Cm(51V, 3n), E(cm)=229.29 MeV; 247Bk(49Ti, 3n), E(cm)=222.17 MeV; 246Cm(50V, 3n), E(cm)=225.70 MeV; 244Cm(51V, 2n), E(cm)=224.00 MeV; 255Es(42Ca, 4n), E(cm)=205.95 MeV; 243Am(53Cr, 3n), E(cm)=236.20 MeV; 254Es(43Ca, 4n), E(cm)=206.90 MeV; 253Es(44Ca, 4n), E(cm)=210.94 MeV; 243Am(52Cr, 2n), E(cm)=229.49 MeV; 254Es(44Ca, 3n), E(cm)=201.64 MeV; 255Es(43Ca, 3n), E(cm)=201.49 MeV; 255Es(44Ca, 4n), E(cm)=207.59 MeV; 252Es(46Ca, 3n), E(cm)=206.00 MeV; 248Bk(50Ti, 3n), E(cm)=222.48 MeV; 247Cm(51V, 3n), E(cm)=226.83 MeV; 254Cf(45Sc, 4n), E(cm)=211.93 MeV; 249Bk(49Ti, 3n), E(cm)=218.88 MeV; 254Es(46Ca, 3n), E(cm)=203.64 MeV; 255Es(46Ca, 4n), E(cm)=210.13 MeV; 252Es(48Ca, 3n), E(cm)=208.42 MeV; 255Es(46Ca, 3n), E(cm)=204.13; 254Es(48Ca, 3n), E(cm)=205.96 MeV; 255Es(48Ca, 4n), E(cm)=212.72 MeV; 242Cm(50Cr, 2n), E(cm)=234.22 MeV; 249Cf(46Ti, 3n), E(cm)=222.89 MeV; 248Cf(46Ti, 2n), E(cm)=219.12 MeV; 257Fm(40Ca, 5n), E(cm)=222.66 MeV; 257Fm(40Ca, 4n), E(cm)=211.66 MeV; 257Fm(40Ca, 3n), E(cm)=205.66 MeV; 251Cf(46Ti, 3n), E(cm)=220.39 MeV; 252Es(45Sc, 3n), E(cm)=214.17 MeV; 250Cf(46Sc, 2n), E(cm)=218.88 MeV; 247Bk(50V, 3n), E(cm)=231.13 MeV; 244Cm(52Cr, 2n), E(cm)=234.88 MeV; 245Cm(52Cr, 3n), E(cm)=240.80 MeV; 243Cm(53Cr, 2n), E(cm)=236.02 MeV; 247Cm(50Cr, 3n), E(cm)=235.12 MeV; 257Fm(42Ca, 3n), E(cm)=205.29 MeV; 254Es(45Sc, 3n), E(cm)=213.40 MeV; 257Fm(43Ca, 4n), E(cm)=210.97 MeV; 257Fm(44Ca, 3n), E(cm)=205.27 MeV; 257Fm(46Ca, 3n), E(cm)=207.84 MeV; 250Cm(53Cr, 3n), E(cm)=234.59 MeV; 257Fm(48Ca, 3n), E(cm)=211.07 MeV; calculated production σ for Z=119 and 120 superheavy isotopes. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.98.014618
Citations: PlumX Metrics


2018WU06      Phys.Rev. C 97, 064609 (2018)

Z.-H.Wu, L.Zhu, F.Li, X.-B.Yu, J.Su, C.-C.Guo

Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model

NUCLEAR REACTIONS 242,244Pu, 243Am, 245,248,250Cm, 249Bk, 250,251Cf(48Ca, 2n), (48Ca, 3n), (48Ca, 4n), (48Ca, 5n), E*=25-60 MeV; 234Th(42S, 2n), (42S, 3n), (42S, 4n), (42S, 5n), E*=20-65 MeV; 234Th, 244Pu(46Ar, 2n), (46Ar, 3n), (46Ar, 4n), (46Ar, 5n), E*=20-65 MeV; 234Th, 238U, 248Cm, 255Es(44Cl, 2n), (44Cl, 3n), (44Cl, 4n), (44Cl, 5n), E*=20-65 MeV; 228Ra(45Cl, 2n), (45Cl, 3n), (45Cl, 4n), (45Cl, 5n), E*=20-65 MeV; 244Pu, 248Cm(43Cl, 2n), (43Cl, 3n), (43Cl, 4n), (43Cl, 5n), E*=20-65 MeV; 244Pu, 254Cf, 255Es(41S, 2n), (41S, 3n), (41S, 4n), (41S, 5n), E*=20-65 MeV; 257Fm(42Ar, 2n), (42Ar, 3n), (42Ar, 4n), (42Ar, 5n), E*=20-65 MeV; 260Md(38Cl, 2n), (38Cl, 3n), (38Cl, 4n), (38Cl, 5n), E*=20-65 MeV; calculated evaporation residue σ. 228Ra(45Cl, 2n), E*=36.0 MeV; 228Ra(46Cl, 3n), E*=46.0 MeV; 226Ra(47Cl, 2n), E*=36.0 MeV; 234Th(42S, 4n), E*=43.0 MeV; 228Ra(46Ar, 2n), E*=34.0 MeV; 234Th(43S, 5n), E*=51.0 MeV; 234Th(42S, 3n), E*=41.0 MeV; 234Th(43S, 4n), E*=46.0 MeV; 234Th(44S, 5n), E*=59.0 MeV; 234Th(44Cl, 2n), E*=37.0 MeV; 234Th(45Cl, 3n), E*=44.0 MeV; 228Ra(50K, 2n), E*=36.0 MeV; 234Th(46Ar, 2n), E*=34.0 MeV; 238U(43S, 3n), E*=41.0 MeV; 238U(42S, 2n), E*=37.0 MeV; 238U(44Cl, 3n), E*=38.0 MeV; 238U(43Cl, 2n), E*=36.0 MeV; 238U(43S, 3n), E*=41.0 MeV; 234Th(47K, 2n), E*=33.0 MeV; 244Pu(41S, 3n), E*=38.0 MeV; 244Pu(42S, 4n), E*=42.0 MeV; 238U(46Ar, 2n), E*=33.0 MeV; 244Pu(43Cl, 4n), E*=44.0 MeV; 242Pu(44Cl, 3n), E*=37.0 MeV; 244Pu(42Cl, 3n), E*=38.0 MeV; 244Pu(46Ar, 4n), E*=38.0 MeV; 244Pu(45Ar, 3n), E*=44.0 MeV; 242Pu(46Ar, 2n), E*=33.0 MeV; 248Cm(43Cl, 4n), E*=38.0 MeV; 250Cm(42Cl, 5n), E*=43.0 MeV; 248Cm(44Cl, 5n), E*=43.0 MeV; 248Cm(44Cl, 4n), E*=38.0 MeV; 250Cm(42Cl, 4n), E*=39.0 MeV; 250Cm(43Cl, 5n), E*=45.0 MeV; 254Cf(41S, 5n), E*=40.0 MeV; 253Cf(42S, 5n), E*=40.0 MeV; 250Cm(44Ar, 4n), E*=37.0 MeV; 255Es(41S, 5n), E*=40.0 MeV; 254Cf(42Cl, 5n), E*=40.0 MeV; 253Cf(43Cl, 5n), E*=39.0 MeV; 255Es(41S, 4n), E*=37.0 MeV; 253Cf(43Cl, 4n), E*=36.0 MeV; 254Cf(42Cl, 4n), E*=37.0 MeV; 250Cm(48Ca, 4n), E*=35.0 MeV; 248Cm(48Ca, 2n), E*=31.0 MeV; 250Cm(46Ca, 2n), E*=35.0 MeV; 255Es(44Cl, 5n), E*=40.0 MeV; 254Cf(44Ar, 4n), E*=36.0 MeV; 257Fm(41S, 4n), E*=37.0 MeV; 250Cm(48Ca, 3n), E*=31.0 MeV; 255Es(44Cl, 4n), E*=36.0 MeV; 253Cf(46Ar, 4n), E*=34.0 MeV; 254Cf(46Ar, 5n), E*=41.0 MeV; 250Cf(48Ca, 3n), E*=34.0 MeV; 250Cm(49Ti, 4n), E*=42.0 MeV; 252Cf(46Ca, 3n), E*=36.0 MeV; 260Md(38Cl, 3n), E*=41.0 MeV; 260Md(39Cl, 4n), E*=42.0 MeV; 257Fm(42Ar, 4n), E*=41.0 MeV; 251Cf(48Ca, 3n), E*=30.0 MeV; 252Cf(48Ca, 4n), E*=38.0 MeV; 250Cm(49Ti, 3n), E*=34.0 MeV; 257Fm(42Ar, 3n), E*=33.0 MeV; 257Fm(43Ar, 4n), E*=38.0 MeV; 260Md(39Cl, 3n), E*=37.0 MeV; 244Pu(43Cl, n), E*=40.0 MeV; 238Cm(48Ca, 2np), E*=41.0 MeV; 254Cf(41S, 5n), E*=40.0 MeV; 248Cm(48Ca, 2nα), E*=46.0 MeV; 248Cm(43Cl, 4n), E*=38.0 MeV; 242Pu(48Ca, 2np), E*=35.0 MeV; 248Cm(44Cl, 4n), E*=38.0 MeV; 242Pu(48Ca, np), E*=40.0 MeV; 244Pu(48Ca, 3np), E*=45.0 MeV; 255Es(41S, 5n), E*=40.0 MeV; 245Cm(48Ca, np), E*=32.0 MeV; 249Bk(48Ca, 2nα), E*=37.0 MeV; 255Es(41S, 4n), E*=37.0 MeV; 248Cm(48Ca, 3np), E*=44.0 MeV; 249Bk(48Ca, nα), E*=32.0 MeV; calculated evaporation residue σ, and optimal incident beam energies. 48Ca(238U, 2n), (238U, 3n), (238U, 4n), E(cm)=184.13-214.13 MeV; calculated evaporation residue σ, potential energy surface, driving potential, survival and complete fusion probabilities, and capture σ. Dinuclear system model. 271Db, 272,273Sg, 276Bh, 278Hs, 279Mt, 282Ds, 283Rg, 286Cn, 287,288Nh, 290Fl, 291,292Mc, 294,295Lv, 295,296Og; calculated evaporation residue σ, and optimal incident beam energies for various reactions. Comparison with available experimental data. Relevance to synthesis of neutron-rich superheavy nuclei using radioactive ion beams, such as those at ATLAS-ANL.

doi: 10.1103/PhysRevC.97.064609
Citations: PlumX Metrics


2018XU01      Phys.Rev. C 97, 014615 (2018)

Y.Xu, Y.Han, J.Hu, H.Liang, Z.Wu, H.Guo, C.Cai

Global phenomenological optical model potential for the 7Li projectile nucleus

NUCLEAR REACTIONS 9Be(7Li, 7Li), E=15.75, 24.0, 30.0, 63.0, 130.0 MeV; 12C(7Li, 7Li), E=7.5, 9.0, 12.0, 15.0, 36.0, 131.8 MeV; 16O(7Li, 7Li), E=26.0, 36.0, 42.0, 50.0 MeV; 11B, 12,13C, 24Mg(7Li, 7Li), E=34.0 MeV; 24,26Mg(7Li, 7Li), E=88.7 MeV; 27Al(7Li, 7Li), E=6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 16.0, 18.0, 19.0, 24.0 MeV; 28Si(7Li, 7Li), E=8.0, 8.5, 9.0, 10.0, 11.0, 11.5, 13.0, 15.0, 16.0, 21.0, 26.0, 36.0, 177.8 MeV; 40,44,48Ca(7Li, 7Li), E=34.0; 40Ca(7Li, 7Li), E=88.7 MeV; 46,48Ti(7Li, 7Li), E=17.0 MeV; 54Fe(7Li, 7Li), E=36.0, 42.0, 48.0 MeV; 56Fe, 65Cu, 90Zr(7Li, 7Li), E=34.0 MeV; 58Ni(7Li, 7Li), E=14.22, 16.25.18.28, 19.0, 20.31.34.0, 42.0 MeV; 60,62Ni, 64,68Zn(7Li, 7Li), E=34.0 MeV; 80Se(7Li, 7Li), E=14.0, 14.5, 15.0, 15.5, 16.0, 17.0, 18.0, 19.0, 20.0, 23.0, 26.0 MeV; 89Y(7Li, 7Li), E=60.0 MeV; 116Sn(7Li, 7Li), E=18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 26.0, 30.0, 35.0 MeV; 120Sn(7Li, 7Li), E=19.5, 20.0, 20.5, 22.0, 24.0, 25.0, 26.0, 28.0, 30.044.0 MeV; 138Ba(7Li, 7Li), E=21.0, 22.0, 23.0, 24.0, 28.0, 30.0, 32.0, 52.0 MeV; 140Ce, 142Nd(7Li, 7Li), E=52.0 MeV; 144Sm(7Li, 7Li), E=21.6, 22.1, 22.6.23.0, 25.0, 27.0, 29.0, 30.0, 32.0, 35.0, 40.8, 52.0 MeV; 208Pb(7Li, 7Li), E=27.0, 29.0, 33.0, 39.0, 42.0, 52.0 MeV; 232Th(7Li, 7Li), E=24.0, 26.0, 30.0, 32.0, 35.0, 40.0, 44.0 MeV; analyzed σ(θ, E) experimental data by global phenomenological optical model potential. 13C, 27Al, 64Zn, 116Sn, 138Ba, (7Li, X), E<300 MeV; 28Si, Cu, 208Pb(7Li, X), E<400 MeV; calculated reaction σ(E) using optical model, and compared with experimental data.

doi: 10.1103/PhysRevC.97.014615
Citations: PlumX Metrics


2018XU10      Phys.Rev. C 98, 024619 (2018)

Y.Xu, Y.Han, J.Hu, H.Liang, Z.Wu, H.Guo, C.Cai

6Li global phenomenological optical model potential

NUCLEAR REACTIONS 24Mg, 48Ca(6Li, 6Li), E=240.0 MeV; 25,26Mg, 39K, 91Zr(6Li, 6Li), E=34.0 MeV; 27Al(6Li, 6Li), E=7.0, 8.0, 10.0, 12.0, 18.0, 34.0 MeV; 28Si(6Li, 6Li), E=7.5, 9.0, 11.0, 13.0, 16.0, 20.0, 21.0, 25.0, 27.0, 34.0, 46.0, 99.0, 135.0, 154.0, 210.0, 240.0, 318.0, 350.0 MeV; 40Ca(6Li, 6Li), E=50.6, 99.0, 156.0, 210.0, 240.0 MeV; 54Fe(6Li, 6Li), E=38.0, 44.0, 50.0 MeV; 59Co(6Li, 6Li), E=12.0, 18.0, 26.0, 30.0 MeV; 58Ni(6Li, 6Li), E=9.85, 11.21, 12.13, 13.04, 14.04, 34.0, 50.6, 73.7, 90.0, 99.0, 210.0, 240.0 MeV; 65Cu(6Li, 6Li), E=25.0 MeV; 64Zn(6Li, 6Li), E=10.77, 11.69, 12.0, 12.43, 13.0, 13.54, 13.8, 14.92, 15.0, 16.30, 16.5, 18.0, 18.14, 19.98, 22.0 MeV; 72,74,76Ge(6Li, 6Li), E=28.0 MeV; 80Se(6Li, 6Li), E=14.0, 14.5, 15.0, 15.5, 16.0, 17.0, 18.0, 19.0, 20.0, 22.19, 23.0, 26.0 MeV; 89Y(6Li, 6Li), E=60.0 MeV; 90Zr(6Li, 6Li), E=11.0, 12.0, 13.0, 15.0, 17.0, 19.0, 21.0, 25.0, 30.0, 34.0, 60.0, 70.0, 73.7, 99.0, 156.0, 210.0, 240.0 MeV; 92,94,96Zr(6Li, 6Li), E=70.0 MeV; 112Sn(6Li, 6Li), E=21.0, 22.0, 23.0, 25.0, 30.0, 35.0 MeV; 116Sn(6Li, 6Li), E=20.0, 21.0, 22.0, 23.0, 24.0, 26.0, 30.0, 35.0, 40.0 MeV; 118Sn(6Li, 6Li), E=42.0 MeV; 120Sn(6Li, 6Li), E=30.0, 44.0, 90.0 MeV; 124Sn(6Li, 6Li), E=73.7 MeV; 138Ba(6Li, 6Li), E=21.0, 22.0, 23.0, 24.0, 26.0, 28.0 MeV; 144Sm(6Li, 6Li), E=21.0, 22.1, 22.6, 24.1, 26.0, 28.0, 30.1, 32.2, 35.1, 42.3 MeV; 208Pb(6Li, 6Li), E=25.0, 29.0, 31.0, 33.0, 35.0, 36.0, 37.0, 39.0, 42.0, 43.0, 46.0, 48.0, 50.6, 73.7, 88.0, 90.0, 99.0, 156.0, 210.0 MeV; 209Bi(6Li, 6Li), E=24.0, 26.0, 28.0, 29.9, 30.0, 32.0, 32.8, 34.0, 36.0, 40.0, 44.0, 50.0 MeV; 232Th(6Li, 6Li), E=26.0, 30.0, 32.0, 35.0, 40.0, 44.0 MeV; analyzed differential σ(θ, E) data; deduced a new set of 6Li global phenomenological energy-dependent optical potential parameters based on the form of the Woods-Saxon potential within the optical model. 63,65Cu, 64Zn, 112,116Sn, 138Ba, 208Pb(6Li, X), E<400 MeV; calculated reaction σ(E), and compared with experimental data.

doi: 10.1103/PhysRevC.98.024619
Citations: PlumX Metrics


2017LI21      Nucl.Sci.Eng. 187, 107 (2017)

H.Liang, Z.Wu, Z.Zhang, Y.Han, X.Jiao

Calculations and Analysis of n+93Nb Reaction

NUCLEAR REACTIONS 93Nb(n, X), E<200 MeV; calculated σ, σ(E), σ(θ), σ(θ, E) using theoretical models. Comparison with ENDF/B-VII, JENDL-4, TENDL-2015 libraries, experimental data.

doi: 10.1080/00295639.2017.1295699
Citations: PlumX Metrics


2017SU16      Phys.Rev. C 95, 054606 (2017)

X.W.Su, Y.L.Han, H.Y.Liang, Z.D.Wu, H.R.Guo, C.H.Cai

Global phenomenological optical model potential for 8Li projectile

NUCLEAR REACTIONS 9Be(8Li, 8Li), E=14, 19.6, 27 MeV; 12C(8Li, 8Li), E=14, 23.9 MeV; 13C, 14N, 27Al, 197Au(8Li, 8Li), E=14 MeV; 51V(8Li, 8Li), E=18.5, 26 MeV; 58Ni(8Li, 8Li), E=14, 19.6, 20.2, 22 MeV; 208Pb(8Li, 8Li), E=24.4, 27.9, 28.9, 30.6, 33.1 MeV; calculated σ(θ, E) by optical potential model, and compared with experimental data; deduced global phenomenological optical model parameters (OMPs) for 8Li. 9Be(8Li, X), E=19.6 MeV; 12C(8Li, X), E=14 MeV; 51V(8Li, X), E=18.5, 26.0 MeV; 208Pb(8Li, X), E=24.4, 27.6, 28.89, 30.57, 33.13 MeV; calculated total σ(E), and compared with experimental data.

doi: 10.1103/PhysRevC.95.054606
Citations: PlumX Metrics


2017YA06      Phys.Rev. C 95, 034616 (2017)

L.Yang, C.J.Lin, H.M.Jia, D.X.Wang, L.J.Sun, N.R.Ma, F.Yang, Z.D.Wu, X.X.Xu, H.Q.Zhang, Z.H.Liu, P.F.Bao

Optical model potentials for 6He + 64Zn from 63Cu (7Li, 6He) 64Zn reactions

NUCLEAR REACTIONS 63Cu(7Li, 7Li), (7Li, 6He), E=12.67, 15.21, 16.33, 23.30, 27.30, 30.96 MeV; measured particle spectra, σ(θ, E) for elastic scattering and transfer reaction using Q3D magnetic spectrometer and multilayer position sensitive focal plane gas detector at HI-13 accelerator facility of CIAE; deduced optical model potential parameters of 7Li+63Cu and 6He+64Zn using optical model. Coupled-reaction-channels (CRC) and distorted-wave-Born-approximation (DWBA) analysis.

doi: 10.1103/PhysRevC.95.034616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0210.


2017YA20      Phys.Rev.Lett. 119, 042503 (2017)

L.Yang, C.J.Lin, H.M.Jia, D.X.Wang, N.R.Ma, L.J.Sun, F.Yang, X.X.Xu, Z.D.Wu, H.Q.Zhang, Z.H.Liu

Is the Dispersion Relation Applicable for Exotic Nuclear Systems? The Abnormal Threshold Anomaly in the 6He+209Bi System

NUCLEAR REACTIONS 208Pb(7Li, 6He), E=21.20, 24.30, 25.67, 28.55 MeV; measured reaction products; deduced σ(θ), precise optical potentials.

doi: 10.1103/PhysRevLett.119.042503
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0214.


2017YA26      Phys.Rev. C 96, 044615 (2017)

L.Yang, C.J.Lin, H.M.Jia, D.X.Wang, N.R.Ma, L.J.Sun, F.Yang, X.X.Xu, Z.D.Wu, H.Q.Zhang, Z.H.Liu

Abnormal behavior of the optical potential for the halo nuclear system 6He + 209Bi

NUCLEAR REACTIONS 208Pb(7Li, 6He), (7Li, 7Li), E=21.20, 24.30, 25.67, 28.55 MeV; measured transfer reaction products, particle spectra, σ(θ, E) for elastic channel and for (7Li, 6He) at the China Institute of Atomic Energy, Beijing, , data analyzed by optical model, distorted-wave Born approximation (DWBA), and coupled reaction channel (CRC) calculations; deduced S factors, configurations, real and imaginary potentials by CRC and DWBA calculations. 209Bi(6He, 6He), E=14.3, 17.3, 18.6, 21.4 MeV; analyzed previous σ(θ, E) data; deduced OMP parameters from CRC and DWBA calculations. Discussed dispersion relation for halo nuclear system.

doi: 10.1103/PhysRevC.96.044615
Citations: PlumX Metrics


2016LI45      Yuan.Wul.Ping. 33, 160 (2016); Nucl.Phys.Rev. 33, 160 (2016)

C.Lin, X.Xu, J.Wang, L.Sun, H.Jia, L.Yang, P.Ma, J.Ma, Y.Yang, S.Jin, M.Huang, Z.Bai, Z.Wu, F.Yang, Z.Hu, M.Wang, X.Lei, H.Zhang, H.Xu, G.Xiao

Proton and Two-proton Emissions from Proton-rich Nuclei with 10 ≤ Z ≤ 20

RADIOACTIVITY 28,29S, 26,27P, 17,18Ne(2p), 27S, 26P, 22,25Si, 20Mg, 23Si, 22Al, 21Mg, 24Si, 23Al, 36,37Ca(β+p), (β+2p); measured decay products, Ep, Ip; deduced energy, T1/2, branching-ratios.

doi: 10.11804/NuclPhysRev.33.02.160#
Citations: PlumX Metrics


2016LI51      Chin.Phys.C 40, 114104 (2016)

E.T.Li, B.Guo, Z.H.Li, Y.B.Wang, Y.J.Li, Z.D.Wu, J.Su, D.Y.Pang, X.X.Bai, X.C.Du, Q.W.Fan, L.Gan, Z.Y.Han, X.Hao, S.P.Hu, J.J.He, L.Jing, S.J.Jin, L.Li, X.Y.Li, Z.C.Li, G.Lian, J.C.Liu, Q.Luo, L.H.Qiao, Y.P.Shen, H.B.Sun, S.Q.Yan, X.Q.Yu, S.Zeng, D.H.Zhang, L.Y.Zhang, W.J.Zhang, Y.Zhou, W.P.Liu

Radii of the bound states in 16N from the asymptotic normalization coefficients

RADIOACTIVITY 16N(n) [from 15N(7Li, 6Li)16N, E=44 MeV]; analyzed available data; deduced asymptotic normalization coefficients (ANCs), rms radii of the valence neutron, probabilities of the valence neutron staying out of the core potentials.

doi: 10.1088/1674-1137/40/11/114104
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016MA70      Chin.Phys.C 40, 114001 (2016)

N.-R.Ma, H.-M.Jia, C.-J.Lin, L.Yang, X.-X.Xu, L.-J.Sun, F.Yang, Z.-D.Wu, H.-Q.Zhang, Z.-H.Liu, D.-X.Wang

Self-consistent analysis of sub-barrier fusion enhancement effect in Ca + Ca and Ni + N

NUCLEAR REACTIONS 40Ca(40Ca, X), (48Ca, X), 48Ca(48Ca, X), 58Ni(58Ni, X), 58Ni(64Ni, X), 64Ni(64Ni, X), E(cm)<110 MeV; calculated σ. Self-consistent method based on the CCFULL calculations.

doi: 10.1088/1674-1137/40/11/114001
Citations: PlumX Metrics


2016SU13      Int.J.Mod.Phys. E25, 1650033 (2016)

X.-W.Su, Y.-L.Han, H.-Y.Liang, Z.-D.Wu, H.-R.Guo, C.-H.Cai

Global 6He optical model potential

NUCLEAR REACTIONS 6,7Li, 9Be, 12C, 27Al, 28Si, 51V, 48Ti, 58Ni, 63,65Cu, 64Zn, 120Sn, 197Au, 206,208Pb, 209Bi(6He, X), (6He, 6He), E<300 MeV; analyzed available data; deduced optical potential; calculated σ, σ(θ).

doi: 10.1142/S0218301316500336
Citations: PlumX Metrics


2016SU22      Yuan.Wul.Ping. 33, 230 (2016); Nucl.Phys.Rev. 33, 230 (2016)

L.Sun, X.Xu, C.Lin, J.Wang, D.Fang, Z.Li, Y.Wang, J.Li, L.Yang, N.Ma, K.Wang, H.Zhang, H.Wang, C.Li, C.Shi, M.Nie, X.Li, H.Li, J.Ma, P.Ma, S.Jin, M.Huang, Z.Bai, J.Wang, F.Yang, H.Jia, H.Zhang, Z.Liu, P.Bao, S.Wang, Z.Wu, Y.Yang, Z.Chen, J.Su, Y.Shen, Y.Zhou, W.Ma, J.Chen

An implantation and detection system for spectroscopy of 22, 24Si

RADIOACTIVITY 22,24Si(β+p); measured decay products, Ep, Ip; deduced energy levels, J, π, T1/2, branchning ratios.

doi: 10.11804/NuclPhysRev.33.02.230
Citations: PlumX Metrics


2016WU01      Phys.Rev. C 93, 034334 (2016)

Z.Wu, S.A.Changizi, C.Qi

Empirical residual neutron-proton interaction in odd-odd nuclei

ATOMIC MASSES A=10-260; analyzed np interactions from experimental binding energies for odd-A, even-even, odd-odd, and for all known (except N=Z) nuclei; calculated δnp interaction using mac-mic mass formula, shell model mass formulas with parameters taken from literature, and the HFB mass formula. Z=9-131, N=7-219; deduced δnp interaction for all the predicted 2564 odd-odd nuclei from mass formulas. Z=5-103, N=5-153; deduced δnp interaction for all the known 486 odd-odd nuclei from experimental binding energies and nuclear mass formula calculations. Numerical results for individual nuclei are given in two supplementary files.

doi: 10.1103/PhysRevC.93.034334
Citations: PlumX Metrics


2015SU01      Chin.Phys.Lett. 32, 012301 (2015)

L.-J.Sun, C.-J.Lin, X.-X.Xu, J.-S.Wang, H.-M.Jia, F.Yang, Y.-Y.Yang, L.Yang, P.-F.Bao, H.-Q.Zhang, s.-L.Jin, Z.-D.Wu, N.-T.Zhang, S.-Z.Chen, J.-B.Ma, P.Ma, N.-R.Ma, Z.-H.Liu

Experimental Study of Beta-Delayed Proton Emission of 36, 37Ca

RADIOACTIVITY 36,37Ca(β+p) [from 9Be(20Ca, X), E=69.42 MeV/nucleon]; measured decay products, Eβ, Iβ, Ep, Ip; deduced T1/2 and their uncertainties, branching ratios. Comparison with available data.

doi: 10.1088/0256-307X/32/1/012301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015WU04      Phys.Rev. C 92, 024306 (2015)

Z.-Y.Wu, C.Qi, R.Wyss, H.-L.Liu

Global calculations of microscopic energies and nuclear deformations: Isospin dependence of the spin-orbit coupling

NUCLEAR STRUCTURE A=16-375, N=8-270; 24,26,28,30,32,34,36,38,40,42,44Si, 44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Cr, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82Fe, 62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104Ge, 66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116Se, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Kr, 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124Zr, 82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Mo, 86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Ru, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated microscopic binding energies and ground-state nuclear deformations β2, γ and β4 for 1850 even-even nuclei. Macroscopic-microscopic framework using three Woods-Saxon parametrizations with different isospin dependencies. Comparison with results of other macroscopic-microscopic mass models. Discussed isospin dependence of spin-orbital force.

doi: 10.1103/PhysRevC.92.024306
Citations: PlumX Metrics


2014GU02      Phys.Rev. C 89, 012801 (2014)

B.Guo, Z.H.Li, Y.J.Li, J.Su, D.Y.Pang, S.Q.Yan, Z.D.Wu, E.T.Li, X.X.Bai, X.C.Du, Q.W.Fan, L.Gan, J.J.He, S.J.Jin, L.Jing, L.Li, Z.C.Li, G.Lian, J.C.Liu, Y.P.Shen, Y.B.Wang, X.Q.Yu, S.Zeng, L.Y.Zhang, W.J.Zhang, W.P.Liu

Spectroscopic factors for low-lying 16N levels and the astrophysical 15N(n, γ)16N

NUCLEAR REACTIONS 15N(7Li, 6Li)16N, E=44 MeV; measured 6Li spectrum, σ(θ) using Q3D magnetic spectrograph at CIAE's HI-13 tandem accelerator facility. 16N; deduced levels, J, π, configurations, spectroscopic factors for ground and first three excited states. DWBA analysis. Comparison with shell model calculations. 15N(n, γ)16N, at T=0.01-3 GK; deduced astrophysical reaction rates. Comparison with previous experimental and theoretical results.

doi: 10.1103/PhysRevC.89.012801
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0095. Data from this article have been entered in the XUNDL database. For more information, click here.


2014JI03      Phys.Rev. C 89, 064605 (2014)

H.M.Jia, C.J.Lin, F.Yang, X.X.Xu, H.Q.Zhang, Z.H.Liu, Z.D.Wu, L.Yang, N.R.Ma, P.F.Bao, L.J.Sun

Fusion of 32S + 94Zr: Further exploration of the effect of the positive Qxn value neutron transfer channels

NUCLEAR REACTIONS 94Zr(32S, X), E=95-130 MeV; measured reaction products, fusion σ(E), fusion barrier distribution as function of incident energy at HI-13 accelerator facility of CIAE. Comparison with previous σ(E) results from 90,96Zr(32S, X), E(cm)=70-90 MeV and 90,94,96Zr(40Ca, X) reactions, and with couple channel (CC) calculations.

doi: 10.1103/PhysRevC.89.064605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0205.


2014JI08      Phys.Rev. C 90, 031601 (2014)

H.M.Jia, C.J.Lin, F.Yang, X.X.Xu, H.Q.Zhang, Z.H.Liu, Z.D.Wu, L.Yang, N.R.Ma, P.F.Bao, L.J.Sun

Extracting the hexadecapole deformation from backward quasi-elastic scattering

NUCLEAR REACTIONS 152Sm, 170Er, 174Yb(16O, 16O), E=40-80 MeV; measured particle spectra, quasielastic (QEL) σ(E) at backward angles using HI-13 tandem accelerator facility at CIAE; deduced β4 deformation parameter. Coupled-channel calculations using CCFULL computer code.

doi: 10.1103/PhysRevC.90.031601
Citations: PlumX Metrics


2014LI10      Ann.Nucl.Energy 69, 301 (2014)

H.Liang, Z.Wu, Y.Han, Q.Shen

The energy spectra and double-differential cross-sections for p+92, 94, 95, 96, 97, 98, 100Mo reactions at the incident energies from threshold to 200 MeV

NUCLEAR REACTIONS 92,94,95,96,97,98,100Mo(p, xn), (p, xp), (p, xd), (p, xα), (p, xt), E<160 MeV; calculated σ(E), σ(E, θ). Exciton model including the improved Iwamoto-Harada model, comparison with experimental data.

doi: 10.1016/j.anucene.2014.02.008
Citations: PlumX Metrics


2014LI49      Phys.Rev. C 90, 067601 (2014)

E.T.Li, Z.H.Li, Y.J.Li, B.Guo, Y.B.Wang, D.Y.Pang, J.Su, S.Q.Yan, S.Zeng, L.Gan, Z.C.Li, J.C.Liu, X.X.Bai, Z.D.Wu, S.J.Jin, L.Y.Zhang, X.Q.Yu, L.Li, H.B.Sun, G.Lian, Q.W.Fan, W.P.Liu

Proton spectroscopic factor of the 12C ground state from the 12C(11B, 12C) 11B elastic transfer reaction

NUCLEAR REACTIONS 12C(11B, 11B), (11B, 12C)11B, E=50 MeV; measured particle spectra, angular distributions using Q3D magnetic spectrometer at the HI-13 tandem accelerator of CIAE facility. 12C; deduced optical potential parameters, proton spectroscopic factor for 12C g.s., DWBA calculations. Comparison with previous experimental and theoretical results.

doi: 10.1103/PhysRevC.90.067601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0198. Data from this article have been entered in the XUNDL database. For more information, click here.


2014WU03      Phys.Rev. C 89, 054315 (2014)

Z.D.Wu, B.Guo, Z.H.Li, Y.J.Li, J.Su, D.Y.Pang, S.Q.Yan, E.T.Li, X.X.Bai, X.C.Du, Q.W.Fan, L.Gan, J.J.He, S.J.Jin, L.Jing, L.Li, Z.C.Li, G.Lian, J.C.Liu, Y.P.Shen, Y.B.Wang, X.Q.Yu, S.Zeng, D.H.Zhang, L.Y.Zhang, W.J.Zhang, W.P.Liu

Proton widths of the low-lying 16F states from the 15N(7Li, 6Li)16N reaction

NUCLEAR REACTIONS 15N(7Li, 7Li), (7Li, 6Li), E=34.5, 44 MeV; measured particle spectra, elastic and inelastic σ(θ) using Q3D magnetic spectrograph at CIAE facility. 16N; deduced levels, J, π, asymptotic normalization coefficients (ANCs), spectroscopic factors. DWBA analysis. 16F; deduced proton and single-particle widths, spectroscopic factors for first four levels from mirror analogy with 16N. Comparison with previous experimental results and compilation.

doi: 10.1103/PhysRevC.89.054315
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0095. Data from this article have been entered in the XUNDL database. For more information, click here.


2014WU07      Ann.Nucl.Energy 73, 17 (2014)

Z.Wu, H.Liang, J.Li, Z.Zhang, Y.Han

Theoretical calculations and evaluations of n + 32, 33, 34, 36, nat.S reactions

NUCLEAR REACTIONS 32,33,34,36S, S(n, n), (n, n'), (n, X), (n, p), (n, t), (n, xn), (n, xp), E<200 MeV; calculated σ, σ(θ, E), σ(θ). APMN nuclear model code, comparison ENDF/B-VII, JENDL-4, and TENDL-2012 libraries.

doi: 10.1016/j.anucene.2014.05.032
Citations: PlumX Metrics


2014WU08      Chin.Phys.Lett. 31, 092401 (2014)

Z.-D.Wu, L.Yang, C.-J.Lin, H.-M.Jia, F.Yang, X.-X.Xu, H.-Q.Zhang, Z.-H.Liu, P.-F.Bao, L.-J.Sun, N.-R.Ma, L.Zheng

A Sensitivity Test of Extracting the Optical Potential Parameters for 6He+209Bi from the Transfer Reaction 208Pb(7Li, 6He)209Bi

NUCLEAR REACTIONS 208Pb(7Li, 6He), E=25.67 MeV; analyzed available data; calculated σ(θ); deduced optical model potential parameters.

doi: 10.1088/0256-307X/31/9/092401
Citations: PlumX Metrics


2014YA09      Phys.Rev. C 89, 044615 (2014)

L.Yang, C.J.Lin, H.M.Jia, F.Yang, Z.D.Wu, X.X.Xu, H.Q.Zhang, Z.H.Liu, P.F.Bao, L.J.Sun, N.R.Ma

Optical model potentials for the 6He + 209Bi reaction from a 208Pb(7Li, 6He)209Bi reaction analysis

NUCLEAR REACTIONS 208Pb(7Li, 7Li), (7Li, 6He), E=25.67, 28.55, 32.55, 37.55, 42.55 MeV; measured ΔE-E and ΔE-Position spectra for 6,7He, σ(θ, E) for elastic scattering and for first three levels in 209Bi using Q3D magnetic spectrometer at CIAE accelerator facility. 209Bi; deduced levels, J, π, spectroscopic factors. Optical model potential (OMP), coupled reaction channel (CRC) and DWBA calculations and analysis of 7Li+208Pb and 6He+209Bi systems.

doi: 10.1103/PhysRevC.89.044615
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0096.


2013LI09      Phys.Rev. C 87, 017601 (2013)

Z.H.Li, Y.J.Li, J.Su, B.Guo, E.T.Li, K.J.Dong, X.X.Bai, Z.C.Li, J.C.Liu, S.Q.Yan, Y.B.Wang, S.Zeng, G.Lian, B.X.Wang, S.J.Jin, X.Liu, W.J.Zhang, W.Z.Huang, Q.W.Fan, L.Gan, Z.D.Wu, W.P.Liu

New determination of the proton spectroscopic factor in 9Be from the 13C(9Be, 8Li)14N angular distribution

NUCLEAR REACTIONS 13C(9Be, 8Li)14N, 12,13C(9Be, 9Be), E=40 MeV; measured particle spectra, Eα, differential s(θ) using Q3D magnetic spectrometer at HI-13 tandem accelerator facility in Beijing. 9Be; deduced proton spectroscopic factor for g.s. Optical model and DWBA analysis. Comparison with previous experimental and theoretical studies. Relevance to astrophysical S factor for 8Li(p, γ)9Be reaction.

doi: 10.1103/PhysRevC.87.017601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0075. Data from this article have been entered in the XUNDL database. For more information, click here.


2013XU13      Phys.Lett. B 727, 126 (2013)

X.X.Xu, C.J.Lin, H.M.Jia, F.Yang, H.Q.Zhang, Z.H.Liu, Z.D.Wu, L.Yang, P.F.Bao, L.J.Sun, H.S.Xu, J.S.Wang, Y.Y.Yang, Z.Y.Sun, Z.G.Hu, M.Wang, S.L.Jin, J.L.Han, N.T.Zhang, S.Z.Chen, X.G.Lei, M.R.Huang, P.Ma, J.B.Ma, Y.H.Zhang, X.H.Zhou, X.W.Ma, G.Q.Xiao

Correlations of two protons emitted from excited states of 28S and 27P

RADIOACTIVITY 28S, 27P(2p) [from 9Be(32S, X), E=80.4 MeV/nucleon]; measured decay products, Ep, Ip; deduced excitation spectra, Si-p-p and Al-p-p coincidences, σ(θ), distributions of the opening angle and the relative momentum of two protons emitted from excited levels, diproton branching ratio. Comparison with available data.

doi: 10.1016/j.physletb.2013.10.029
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2012ZH21      Eur.Phys.J. A 48, 65 (2012)

G.L.Zhang, C.L.Zhang, H.Q.Zhang, C.J.Lin, D.Y.Pang, X.K.Wu, H.M.Jia, G.P.An, Z.D.Wu, X.X.Xu, F.Yang, Z.H.Liu, S.Kubono, H.Yamaguchi, S.Hayakawa, D.N.Binh, Y.K.Kwon, N.Iwasa, M.Mazzocco, M.La Commara, M.Romoli, C.Signorini

Quasi-elastic scattering of the proton drip line nucleus 17F on 12C at 60 MeV

NUCLEAR REACTIONS 12C(17F, 17F'), E=60 MeV; measured E(17F), I(17F, θ); deduced σ(θ), σ; calculated σ(θ) using optical model and CDCC; deduced parameters. Compared with data, also for nearby projectiles.

doi: 10.1140/epja/i2012-12065-x
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2377.


2011WU01      Nucl.Instrum.Methods Phys.Res. B269, 671 (2011)

Z.Wu, Y.Han

Calculation of cross-sections for p+ 92, 94, 95, 96, 97, 98, 100Mo reactions up to 160 MeV

NUCLEAR REACTIONS 92,94,95,96,97,98,100Mo(p, p), (p, p'), (p, α), (p, nα), (p, pα), (p, n), (p, 2n), (p, 3α), (p, 3n), (p, 4n), (p, 4n2p), (p, 3He), (p, np), E<200 MeV; calculated σ. MEND nuclear reaction model code.

doi: 10.1016/j.nimb.2011.01.126
Citations: PlumX Metrics


2010FA10      Nucl.Phys. A834, 183c (2010)

G.T.Fan, W.Xu, C.J.Lin, B.J.Xu, F.Jia, G.W.Fan, H.M.Jia, L.F.Yang, Y.J.Li, Q.Y.Pan, W.Luo, X.X.Xu, Z.D.Wu

Systematic uncertainty studies for precision measurement on electric polarizabilities of 3He and 4He

doi: 10.1016/j.nuclphysa.2009.12.034
Citations: PlumX Metrics


2010JI11      Phys.Rev. C 82, 027602 (2010)

H.M.Jia, C.J.Lin, H.Q.Zhang, Z.H.Liu, N.Yu, F.Yang, F.Jia, X.X.Xu, Z.D.Wu, S.T.Zhang, C.L.Bai

Barrier distribution from 9Be+208Pb quasielastic scattering: Breakup effects in the interaction processes

NUCLEAR REACTIONS 208Pb(9Be, 9Be), E=23.9-44.0 MeV; measured particle-spectra, σ(E) for quasielastic scattering; deduced barrier distribution. Comparison with coupled-channel model calculations.

doi: 10.1103/PhysRevC.82.027602
Citations: PlumX Metrics


2010LI33      Nucl.Phys. A834, 450c (2010)

C.J.Lin, X.X.Xu, H.M.Jia, F.Yang, F.Jia, Z.D.Wu, S.T.Zhang, Z.H.Liu, H.Q.Zhang, H.S.Xu, Z.Y.Sun, J.S.Wang, Z.G.Hu, M.Wang, R.F.Chen, X.Y.Zhang, C.Li, X.G.Lei, Z.G.Xu, G.Q.Xiao, W.L.Zhan

Experimental study of the two-proton correlated emission from the excited states of 17, 18Ne and 28, 29S

NUCLEAR REACTIONS 197Au(17Ne, 17Ne'), (18Ne, 18Ne'), (28S, 28S'), (29S, 29S'), E not given; measured Coulomb excitation Ep, Ip(θ), pp-coin, E(particle), I(particle), relative energy spectra, angular distributions; deduced 2p halo states. Kinematically complete experiment, secondary radioactive beams.

RADIOACTIVITY 17,18Ne, 29S(2p); deduced possible 2p-decay or 2He-decay branching ratios.

doi: 10.1016/j.nuclphysa.2010.01.061
Citations: PlumX Metrics


2010TI01      Int.J.Mod.Phys. E19, 307 (2010)

J.Tian, X.Li, S.Yan, Z.Wu, Z.Li

Kinematic correlation of the ternary fission for the system 197Au + 197Au

NUCLEAR REACTIONS 197Au(197Au, X), E=15 MeV/nucleon; measured reaction fragments; deduced mass number distributions, dynamical modes of ternary fission.

doi: 10.1142/S0218301310014777
Citations: PlumX Metrics


2010XU03      Phys.Rev. C 81, 054317 (2010)

X.X.Xu, C.J.Lin, H.M.Jia, F.Yang, F.Jia, Z.D.Wu, S.T.Zhang, Z.H.Liu, H.Q.Zhang, H.S.Xu, Z.Y.Sun, J.S.Wang, Z.G.Hu, M.Wang, R.F.Chen, X.Y.Zhang, C.Li, X.G.Lei, Z.G.Xu, G.Q.Xiao, W.L.Zhan

Investigation of two-proton emission from excited states of the odd-Z nucleus 28P by complete-kinematics measurements

NUCLEAR REACTIONS 197Au(28P, 28P'), E=46.5 MeV/nucleon [28P secondary beam from 9Be(32S, X), E=80.4 MeV/nucleon primary reaction]; measured Ep, Ip, time of flight, (26Al)(p)(p)-coin. 28P; deduced levels, two-proton emission from excited states.9Be(32S, X)22Ne/23Na/24Mg/25Al/26Al/27Si/28P/29S, E=80.4 MeV/nucleon; measured yields.

doi: 10.1103/PhysRevC.81.054317
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010XU11      Phys.Rev. C 82, 064316 (2010)

X.X.Xu, C.J.Lin, H.M.Jia, F.Yang, F.Jia, Z.D.Wu, S.T.Zhang, Z.H.Liu, H.Q.Zhang, H.S.Xu, Z.Y.Sun, J.S.Wang, Z.G.Hu, M.Wang, R.F.Chen, X.Y.Zhang, C.Li, X.G.Lei, Z.G.Xu, G.Q.Xiao, W.L.Zhan

Observation of two-α emission from high-lying excited states of 18Ne by complete-kinematics measurements

NUCLEAR REACTIONS 197Au(18Ne, 18Ne'), E=51.8 MeV, [18Ne secondary beam from 9Be(20Ne, X), E=78.2 MeV/nucleon primary reaction]; measured Eα, time-of-flight, (10C)αα-coin. 18Ne; deduced levels, αα(θ), relative momentum, sequential two-alpha emission via 14O excited states. Monte-Carlo simulations.

doi: 10.1103/PhysRevC.82.064316
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2010YU02      J.Phys.(London) G37, 075108 (2010)

N.Yu, H.Q.Zhang, H.M.Jia, S.T.Zhang, M.Ruan, F.Yang, Z.D.Wu, X.X.Xu, C.L.Bai

Unusual potential behavior for the weakly bound nucleus 9Be in elastic scattering from 208Pb and 209Bi near the threshold

NUCLEAR REACTIONS 208Pb, 209Bi(9Be, 9Be), E=37-50 MeV; measured reaction products; deduced σ(θ), optical potential parameters.

doi: 10.1088/0954-3899/37/7/075108
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0066.


2010ZH46      Phys.Rev. C 82, 054609 (2010)

H.Q.Zhang, C.J.Lin, F.Yang, H.M.Jia, X.X.Xu, Z.D.Wu, F.Jia, S.T.Zhang, Z.H.Liu, A.Richard, C.Beck

Near-barrier fusion of 32S+90, 96Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions

NUCLEAR REACTIONS 90Zr(32S, X), E=100-130 MeV: 96Zr(32S, X), E=95-130 MeV; measured particle spectra of fusion evaporation residues (ER), E-TOF plot of ER and beam-like particles (BLP), fusion σ(E, θ); deduced barrier distributions. Comparison with coupled-channel (CC) calculations and with data for 96Zr(40Ca, X) reaction. Effects of multi-neutron transfers.

doi: 10.1103/PhysRevC.82.054609
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0208.


2009JI02      Chin.Phys.Lett. 26, 032301 (2009)

F.Jia, C.-J.Lin, H.-Q.Zhang, F.Yang, H.-M.Jia, X.-X.Xu, Z.-D.Wu, Z.-H.Liu, G.-L.Zhang, C.-L.Zhang

Experimental Evidence of Two-Proton Emissions from 18Ne Excited State

NUCLEAR REACTIONS 197Au(18Ne, 18Ne'), E not given; measured Ep, Ip. 18Ne; deduced level energies. Two proton decay.

doi: 10.1088/0256-307X/26/3/032301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009WU01      Chin.Phys.Lett. 26, 022503 (2009)

Z.-D.Wu, C.-J.Lin, H.-Q.Zhang, Z.-H.Liu, F.Yang, G.-P.An, C.-L.Zhang, G.-L.Zhang, H.-M.Jia, X.-X.Xu, C.-L.Bai, N.Yu, F.Jia

Optical Potential Parameters for Halo Nucleus System 6He+12C from Transfer Reaction 11B(7Li, 6He)12C

NUCLEAR REACTIONS 11B(7Li, 6He), E=18.3, 28.3 MeV; analyzed σ(θ). 12C(6He, 7Li); deduced optical potential parameters.

doi: 10.1088/0256-307X/26/2/022503
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0056.


2008AN17      Chin.Phys.Lett. 25, 4237 (2008)

G.-P.An, C.-J.Lin, H.-Q.Zhang, Z.-H.Liu, F.Yang, G.-L.Zhang, C.-L.Zhang, Z.-D.Wu, F.Jia, H.-M.Jia, X.-X.Xu, C.-L.Bai, N.Yu

Optical Potential Parameters of Weakly Bound Nuclear System 17F+13C

NUCLEAR REACTIONS 16O(14N, 14N), (14N, 13C), E=76.2, 57.0 MeV; measured σ(θ). Compared results to model calculations.

doi: 10.1088/0256-307X/25/12/014
Citations: PlumX Metrics


2008JI03      Chin.Phys.Lett. 25, 2834 (2008)

H.-M.Jia, C.-J.Lin, H.-Q.Zhang, Z.-H.Liu, F.Yang, F.Jia, C.-L.Zhang, G.-P.An, Z.-D.Wu, X.-X.Xu, C.-L.Bai, N.Yu

Surface Diffuseness Anomaly in 16O+208Pb Quasi-elastic Scattering at Backward Angle

NUCLEAR REACTIONS 208Pb(16O, 16O'), E=40.50-80.25 MeV; measured quasi=elastic scattering excitation function at backward angles.

doi: 10.1088/0256-307X/25/8/028
Citations: PlumX Metrics


2008KA21      Nucl.Data Sheets 109, 1655 (2008)

J.Katakura, Z.D.Wu

Nuclear Data Sheets for A = 124

COMPILATION 124Pd, 124Ag, 124In, 124Sn, 124Sb, 124Te, 124I, 124Xe, 124Cs, 124Ba, 124La, 124Ce, 124Pr; compiled, evaluated structure data.

doi: 10.1016/j.nds.2008.06.001
Citations: PlumX Metrics

This article is in the ENSDF database. For more information, click here.


2007ZH02      Chin.Phys.Lett. 24, 397 (2007)

G.-L.Zhang, H.-Q.Zhang, Z-H.Liu, C.-L.Zhang, C.-J.Lin, F.Yang, G.-P.An, H.-M.Jia, Z.-D.Wu, X.-X.Xu, C.-L.Bai, N.Yu

Calculation of Interaction Potentials between Spherical and Deformed Nuclei

NUCLEAR REACTIONS 154Sm(32S, X), E(cm)=100-130 MeV; calculated interaction potentials, fusion σ, dependence on deformation and orientation. Double folding model.

doi: 10.1088/0256-307X/24/2/026
Citations: PlumX Metrics


2006ZH12      Chin.Phys.Lett. 23, 1146 (2006)

C.-L.Zhang, H.-Q.Zhang, C.-J.Lin, M.Ruan, Z.-H.Liu, F.Yang, X.-K.Wu, P.Zhou, G.-P.An, H.-M.Jia, Z.-D.Wu, X.-X.Xu.C.-L.Bai

Unusual Threshold Anomaly in the 6Li+208Pb System

NUCLEAR REACTIONS 208Pb(6Li, 6Li), E=25-46 MeV; measured elastic σ(θ); deduced optical potential parameters, effects of coupling to breakup channel.

doi: 10.1088/0256-307X/23/5/023
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetS0050.


2004WA08      Phys.Rev. C 69, 034608 (2004)

N.Wang, Z.Li, Z.Wu, J.Tian, Y.X.Zhang, M.Liu

Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 114,132Sn, 140Ce, 208Pb; calculated binding energies, radii.

NUCLEAR REACTIONS 48Ca, 90Zr(40Ca, X), 16O, 208Pb(16O, X), 131I(131I, X), 208Pb(54Cr, X), 230Th(32S, X), 250Fm(12C, X), E not given; calculated static Coulomb barriers. 48Ca(40Ca, X), E(cm)=52, 54, 58, 60 MeV; calculated fusion probability. 48Ca, 48Ti, 90,96Zr(40Ca, X), E(cm)=48-112 MeV; 46Ti(46Ti, X), E(cm)=58-72 MeV; 89Y(32S, X), (34S, X), E(cm)=72-92 MeV; 92Zr(28Si, X), (35Cl, X), E(cm)=65-100 MeV; 64Ni(132Sn, X), E(cm)=140-168 MeV; calculated fusion σ. Improved quantum molecular dynamics model, comparison with data.

doi: 10.1103/PhysRevC.69.034608
Citations: PlumX Metrics


2003WA37      High Energy Phys. and Nucl.Phys. (China) 27, 309 (2003)

X.-D.Wang, S.-W.Xu, Z.-K.Li, Y.-X.Xie, Z.-Y.Wu, F.-R.Xu, B.Guo, C.-G.Leng, C.-F.Wang, Y.Yu

β-Delayed Proton Decay of 93Pd


2003WU06      Chin.Phys.Lett. 20, 1702 (2003)

Z.-Y.Wu, F.-R.Xu, E.-G.Zhao, C.-K.Zheng

Spherical and Deformed Shell Closures in Superheavy nuclei

NUCLEAR STRUCTURE 270Hs, 298Fl, 306Og; calculated energy vs deformation. 250,252,254,256Fm, 252,254,256No, 256Rf, 260Sg, 264Hs; calculated binding energies. 270,288Hs, 298Fl, 304120; calculated single-particle levels. 250,252,254,256Fm, 252,254,256No, 256,262Rf, 260,266Sg, 264,266,270Hs, 270,280Ds, 284,286Cn, 288,290,292,298Fl, 292,294Lv, 292,294Og; calculated deformation, α-decay energy, T1/2. Macroscopic-microscopic model, comparisons with data.

doi: 10.1088/0256-307X/20/10/314
Citations: PlumX Metrics


1999GO04      Chin.Phys.Lett. 16, 95 (1999)

Q.-B.Gou, Y.-T.Zhu, H.-S.Xu, Z.-Y.Wei, J.Lu, Y.-H.Zhang, Q.Wang, S.-L.Li, Z.-L.Wu

Angular Distributions of Intermediate Mass Fragments Emitted in 30 MeV/u 40Ar Induced Reactions

NUCLEAR REACTIONS 58,64Ni, 115In(40Ar, X), E=30 MeV/nucleon; measured intermediate mass fragments σ(θ) vs charge; deduced interaction time, other reaction mechanism features.

doi: 10.1088/0256-307X/16/2/007
Citations: PlumX Metrics


1997AR02      Phys.Rev. C55, 788 (1997)

A.Aranda, J.A.Lopez, Z.Wu

Preferred Modes of Decay in Nuclear Fragmentation

NUCLEAR STRUCTURE 120Sn; 240Pu; calculated partial widths ratio related quantity vs energy following fragmentation; deduced preferred modes of decay related features. Transition state theory.

doi: 10.1103/PhysRevC.55.788
Citations: PlumX Metrics


1997XU02      Chin.Phys.Lett. 14, 413 (1997)

H.-S.Xu, Y.-T.Zhu, Z.-Y.Wei, J.Lu, Q.Wang, S.-L.Li, Y.-H.Zhang, Y.-X.Xie, Z.-L.Wu, Q.-Z.Zhao, Q.-B.Gou

Target Dependence of N/Z Ratio of the Fragments Produced in 30 MeV/u 40Ar Induced Reactions

NUCLEAR REACTIONS 58,64Ni, 115In(40Ar, X), E=30 MeV/nucleon; measured intermediate mass fragments charge, mass, energy distributions; deduced target dependence, fragmentation process features.


1990XI02      Phys.Rev. C41, R1355 (1990)

L.Xiong, J.Q.Wu, Z.G.Wu, C.M.Ko, J.H.Shi

Dielectron Production in Proton-Nucleus Reactions

NUCLEAR REACTIONS 9Be(p, e+e-), E=1.05, 2.1, 4.9 GeV; calculated invariant mass spectra.

doi: 10.1103/PhysRevC.41.R1355
Citations: PlumX Metrics


1988LI15      Chin.J.Nucl.Phys. 10, 52 (1988)

Li Jianwei, Wu Zhihua, Wu Songmao, Song Linggen, Yu Junsheng

Measurements of the Cross Sections of the Reactions 115In(n, 2n)114mIn and 113In(n, 2n)112mIn

NUCLEAR REACTIONS 113,115In(n, 2n), E=12.7-18.6 MeV; measured isomer production σ(E). 115In(n, 2n), E=15.75 MeV; measured isomer production. Activation technique.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset30782.


1987GR23      Phys.Rev.Lett. 59, 1080 (1987)

N.Grion, R.Rui, F.M.Rozon, T.Anderl, J.Ernst, D.R.Gill, M.Hanna, J.J.Kraushaar, R.R.Johnson, R.Olszewski, M.E.Sevior, G.Sheffer, G.R.Smith, R.P.Trelle, Z.Wu

Measurement of the 16O(π+, π+π-) Reaction at T(π+) = 280 MeV

NUCLEAR REACTIONS 16O(π+, π+π-), E=280 MeV; measured σ(E(π+), θ(π+), θ(π-)), σ(E(π+)). Tof.

doi: 10.1103/PhysRevLett.59.1080
Citations: PlumX Metrics


1987WA29      Chin.J.Nucl.Phys. 9, 193 (1987)

Wang Xiaozhong, Tang Hongqing, Zhang Ying, Xu Jun, Yu Chunying, Yu Zhirong, Wu Zhongming, Bai Xixiang

Preequilibrium Effect in the Neutron Angular Distribution of the 40Ar(α, n)43Ca Reaction

NUCLEAR REACTIONS, MECPD 40Ar(α, n), E=26 MeV; measured σ(En, θn). Gas target, tof. Exciton model.


1986FA15      Chin.J.Nucl.Phys. 8, 102 (1986)

Fan Guoying, Zhu Yongtai, Miao Hobin, Li Songli, Yin Xu, Wang Qi, Feng Enpu, Shen Wenqing, Jin Genming, Zhan Wenlong, Wu Zhongli, Xie Yuonxiang, Song Shizhan, Guo Zhongyan, Qiao Weimin, Cai Jin-Gxiang, Wang Xiaoming

Study of α-Particle Emission Mechanism in N + Ni Reaction at 96 MeV

NUCLEAR REACTIONS 58Ni(14N, αX), E=96 MeV; measured Eα, αX-coin; deduced α-emission mechanism, shadow effect. ΔE-E telescopes.


1985SO11      Chin.J.Nucl.Phys. 7, 58 (1985)

Song Linggen, Wu Songmao, Xu Zhizheng, Yu Junsheng, Wu Zhihua

Measurement of Inelastic Cross Sections for the Reaction 87Sr(n, n')87mSr

NUCLEAR REACTIONS 87Sr(n, n'), E=0.9-1.8, 3.2-5.7 MeV; measured σ(E), isomer production.Enriched target, activation techniques.

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset32503.


1984LI26      Chin.J.Nucl.Phys. 6, 250 (1984)

Ling Yinsheng, Wu Zumei, Tu Chuanshi

Group Theoretical Disscussion about the Energy Spectrum of Odd A Nucleus by Enlarging the Fermions Configuration Space

NUCLEAR STRUCTURE 159Tb; calculated levels, B(E2). Group theoretical methods.


1982GU16      Chin.J.Nucl.Phys. 4, 209 (1982)

Guo Zhendi, Qian Jinhua, Wu Zhihua, Xu Zhizheng, He Mianhong, Huang Shibin, Yang Fujia

The γ Resonant Absorption Experiments of the 9.966 MeV Bound State in 24Mg and the 12.33 MeV Unbound State in 28Si

NUCLEAR REACTIONS 24Mg(γ, γ'), E=9.983 MeV; 28Si(γ, γ'), E=12.33 MeV; measured level widths. Resonant absorption method, proton capture reaction gamma source.


1979CH42      Chin.J.Nucl.Phys. 1, 31 (1979)

Chu Yung-Tai, Fan Guo-Ying, Wu Zhong-Li, Feng En-Pu, Liang Guo-Zhao, Li Fa-Wei, Jiao Dun-Long, Li Xian-Hui, Guo Ying-Xiang, Xia Guo-Zhong, Su Ying-Quan, Xiao Qin-Pian

The Research of Scattering and Transfer Reaction of 12C with 12C

NUCLEAR REACTIONS 12C(12C, 12C), (12C, 12C'), (12C, 11C), (12C, 13N), E=49, 60, 72.5 MeV; measured σ(θ). Optical model, zero-range DWBA analyses.


Back to query form


Note: The following list of authors and aliases matches the search parameter Z.Wu: , Z.D.WU, Z.G.WU, Z.H.WU, Z.L.WU, Z.M.WU, Z.W.WU, Z.X.WU, Z.Y.WU