NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = T.Vertse

Found 69 matches.

Back to query form

2018ID02      Phys.Rev. C 97, 024307 (2018)

R.M.Id Betan, A.T.Kruppa, T.Vertse

Shadow poles in coupled-channel problems calculated with the Berggren basis

NUCLEAR STRUCTURE 5He; calculated locations of the poles of the S matrix for the Cox potential for 3/2+ resonant state of 5He formed in t+d -> α+n fusion reaction using phenomenological two-channel model and Berggren basis for expanding the coupled-channels solutions; deduced shadow pole of 5He migrates between Riemann sheets when the coupling strength is varied.

doi: 10.1103/PhysRevC.97.024307
Citations: PlumX Metrics

2017SA40      Eur.Phys.J. A 53, 152 (2017)

P.Salamon, T.Vertse

Smoothed square well potential

NUCLEAR STRUCTURE A>208; calculated single-particle neutron levels, J, π using CWS (Cut-off Woods-Saxon), SV (Salamon-Vertse), SSQW (Smoothed SQuare Well) potentials.

doi: 10.1140/epja/i2017-12342-2
Citations: PlumX Metrics

2016SA19      Nucl.Phys. A952, 1 (2016)

P.Salamon, A.Baran, T.Vertse

Distributions of the S-matrix poles in Woods-Saxon and cut-off Woods-Saxon potentials

doi: 10.1016/j.nuclphysa.2016.04.010
Citations: PlumX Metrics

2015BA32      Eur.Phys.J. A 51, 76 (2015)

A.Baran, Cs.Noszaly, P.Salamon, T.Vertse

Calculating broad neutron resonances in a cut-off Woods-Saxon potential

NUCLEAR REACTIONS 208Pb(n, x), E not given; calculated resonance pole trajectories using CWS (cut-off Woods Saxon) potential.

doi: 10.1140/epja/i2015-15076-1
Citations: PlumX Metrics

2014SA32      Phys.Rev. C 89, 054609 (2014)

P.Salamon, R.G.Lovas, R.M.Id Betan, T.Vertse, L.Balkay

Strictly finite-range potential for light and heavy nuclei

doi: 10.1103/PhysRevC.89.054609
Citations: PlumX Metrics

2011RA29      Phys.Rev. C 84, 037602 (2011)

A.Racz, P.Salamon, T.Vertse

Trajectories of S-matrix poles in a new finite-range potential

NUCLEAR STRUCTURE 16O, 208Pb; calculated radial shapes, trajectories of resonant poles. Finite-range Phenomenological potential model.

doi: 10.1103/PhysRevC.84.037602
Citations: PlumX Metrics

2010SA13      Phys.Rev. C 81, 064322 (2010)

P.Salamon, A.T.Kruppa, T.Vertse

New method for calculating shell correction

NUCLEAR STRUCTURE 16,18,20,22,24O, 20Ne, 40,48Ca, 68,78Ni, 90,122,124Zr, 100,132Sn, 146Gd, 180,208Pb; calculated neutron shell corrections using the smoothed finite-range weight function and the generalized Strutinski procedure. Comparison with the semiclassical shell correction.

doi: 10.1103/PhysRevC.81.064322
Citations: PlumX Metrics

2009DU16      Phys.Rev. C 80, 064311 (2009)

G.G.Dussel, R.Id Betan, R.J.Liotta, T.Vertse

Collective excitations in the continuum

NUCLEAR STRUCTURE 208,210Pb, 210Po, 210Bi; calculated giant pairing (particle-particle and particle-hole) resonance (GPR) wave functions using shell-model formalism in the complex energy plane.

NUCLEAR REACTIONS 208Pb(3He, n), E=100 MeV; calculated σ(θ) for two-particle transfer to GPR in 210Po using optical potential model.

doi: 10.1103/PhysRevC.80.064311
Citations: PlumX Metrics

2009MI01      J.Phys.(London) G36, 013101 (2009)

M.Michel, W.Nazarewicz, M.Ploszajczak, T.Vertse

Shell model in the complex energy plane

doi: 10.1088/0954-3899/36/1/013101
Citations: PlumX Metrics

2008ID01      Phys.Rev. C 78, 044308 (2008)

R.Id Betan, A.T.Kruppa, T.Vertse

Complex energy approaches for calculating isobaric analogue states

doi: 10.1103/PhysRevC.78.044308
Citations: PlumX Metrics

2008SA12      Phys.Rev. C 77, 037302 (2008)

P.Salamon, T.Vertse

New simple form for a phenomenological nuclear potential

doi: 10.1103/PhysRevC.77.037302
Citations: PlumX Metrics

2007DU23      Nucl.Phys. A789, 182 (2007)

G.G.Dussel, R.Id Betan, R.J.Liotta, T.Vertse

One- and two-quasiparticle states in the complex energy plane

doi: 10.1016/j.nuclphysa.2007.04.005
Citations: PlumX Metrics

2006ID01      Nucl.Phys. A771, 93 (2006)

R.Id Betan, N.Sandulescu, T.Vertse

Quasiparticle resonances in the BCS approach

NUCLEAR STRUCTURE 17O, 79Ni; calculated single-particle states; 20,22O, 84Ni; calculated pairing energies, radii, single-particle states, quasiparticle resonances. Berggren representation.

doi: 10.1016/j.nuclphysa.2006.03.003
Citations: PlumX Metrics

2006RE02      Phys.Rev. C 73, 014309 (2006)

P.-G.Reinhard, M.Bender, W.Nazarewicz, T.Vertse

From finite nuclei to the nuclear liquid drop: Leptodermous expansion based on self-consistent mean-field theory

doi: 10.1103/PhysRevC.73.014309
Citations: PlumX Metrics

2005ID01      J.Phys.(London) G31, S1329 (2005)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Description of the continuum part of the spectrum by using the complex energy plane

NUCLEAR STRUCTURE 80Ni; calculated resonance energies, continuum features. 11Li; calculated ground state wave function, resonance and halo features. Complex energy plane.

doi: 10.1088/0954-3899/31/8/011
Citations: PlumX Metrics

2005ID02      Phys.Rev. C 72, 054322 (2005)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse, R.Wyss

Complex shell model representation including antibound states

NUCLEAR STRUCTURE 11Li, 72Ca; calculated ground and excited states energies, two-particle wave functions; deduced halo features. Shell model formalism with antibound states.

doi: 10.1103/PhysRevC.72.054322
Citations: PlumX Metrics

2004ID01      Phys.Lett. B 584, 48 (2004)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

A shell model representation with antibound states

NUCLEAR STRUCTURE 11Li, 72Ca; calculated two-particle resonance features, role of antibound states.

doi: 10.1016/j.physletb.2004.01.042
Citations: PlumX Metrics

2004ID02      Few-Body Systems 34, 51 (2004)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Two-Particle Resonances in the Complex Energy Plane

NUCLEAR STRUCTURE 11Li; calculated resonance energies.

doi: 10.1007/s00601-004-0028-4
Citations: PlumX Metrics

2003ID01      Phys.Rev. C 67, 014322 (2003)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Shell model in the complex energy plane and two-particle resonances

NUCLEAR STRUCTURE 78Ni, 100Sn; calculated single-particle states, two-particle resonance features. Shell model in the complex energy plane.

doi: 10.1103/PhysRevC.67.014322
Citations: PlumX Metrics

2003ID03      Acta Phys.Hung.N.S. 18, 267 (2003)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Clusters as Many-Body Resonances

NUCLEAR STRUCTURE 80Ni; calculated two-particle resonance energies.

doi: 10.1556/APH.18.2003.2-4.24
Citations: PlumX Metrics

2003KR22      Acta Phys.Pol. B34, 2315 (2003)

W.Krolas, R.Grzywacz, K.P.Rykaczewski, J.C.Batchelder, C.R.Bingham, C.J.Gross, D.Fong, J.H.Hamilton, D.J.Hartley, J.K.Hwang, Y.Larochelle, T.A.Lewis, K.H.Maier, J.W.McConnell, A.Piechaczek, A.V.Ramayya, K.Rykaczewski, D.Shapira, M.N.Tantawy, J.A.Winger, C.-H.Yu, E.F.Zganjar, A.T.Kruppa, W.Nazarewicz, T.Vertse

First observation of excited states in 140Dy

NUCLEAR REACTIONS 92Mo(54Fe, 4n2p), E=315 MeV; measured Eγ, Iγ, γγ-, (recoil)γ-coin; deduced σ. 140Dy deduced levels, J, π, isomer T1/2. Level systematics in neighboring nuclides discussed.

2002ID01      Phys.Rev.Lett. 89, 042501 (2002)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Two-Particle Resonant States in a Many-Body Mean Field

NUCLEAR STRUCTURE 80Ni; calculated two-particle resonance energies. Berggren representation.

doi: 10.1103/PhysRevLett.89.042501
Citations: PlumX Metrics

2002KR04      Phys.Rev. C65, 031303 (2002)

W.Krolas, R.Grzywacz, K.P.Rykaczewski, J.C.Batchelder, C.R.Bingham, C.J.Gross, D.Fong, J.H.Hamilton, D.J.Hartley, J.K.Hwang, Y.Larochelle, T.A.Lewis, K.H.Maier, J.W.McConnell, A.Piechaczek, A.V.Ramayya, K.Rykaczewski, D.Shapira, M.N.Tantawy, J.A.Winger, C.-H.Yu, E.F.Zganjar, A.T.Kruppa, W.Nazarewicz, T.Vertse

First Observation of the Drip Line Nucleus 140Dy: Identification of a 7 μs K Isomer Populating the Ground State Band

NUCLEAR REACTIONS 92Mo(54Fe, 2nα), E=315 MeV; measured delayed Eγ, Iγ, γγ-, (X-ray)γ-, (recoil)γ-coin. 140Dy deduced isomer J, π, T1/2, configuration. Mass separator, comparisons with model predictions. Level systematics in neighboring nuclides discussed.

RADIOACTIVITY 141Ho(p); calculated proton decay branching ratios, fine structure features.

doi: 10.1103/PhysRevC.65.031303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2002NA18      Nucl.Phys. A701, 165c (2002)

W.Nazarewicz, M.Bender, S.Cwiok, P.H.Heenen, A.T.Kruppa, P.-G.Reinhard, T.Vertse

Theoretical Description of Superheavy Nuclei

NUCLEAR STRUCTURE 257No, 261Rf, 265Sg, 269Hs, 271Ds, 277Cn; calculated levels, J, π, Qα. Z=120; calculated neutron shell correction energies. Skyrme-Hartree-Fock and relativistic mean-field calculations.

doi: 10.1016/S0375-9474(01)01567-6
Citations: PlumX Metrics

2001BA26      Nucl.Phys. A682, 256c (2001)

B.Barmore, A.T.Kruppa, W.Nazarewicz, T.Vertse

A New Approach to Deformed Proton Emitters: Non-adiabatic coupled-channels

doi: 10.1016/S0375-9474(00)00648-5
Citations: PlumX Metrics

2001CI07      Phys.Rev. C64, 057305 (2001)

O.Civitarese, R.J.Liotta, T.Vertse

Temperature Dependent BCS-Gap Equations in the Continuum

NUCLEAR STRUCTURE Z=50-112; calculated quasiparticle energies, pair gaps for N=50, 114. 106Ba, 204Th; calculated pair gap vs temperature. Suitability of BCS method near proton drip line discussed.

doi: 10.1103/PhysRevC.64.057305
Citations: PlumX Metrics

2000BB02      Phys.Rev. C62, 054315 (2000)

B.Barmore, A.T.Kruppa, W.Nazarewicz, T.Vertse

Theoretical Description of Deformed Proton Emitters: Nonadiabatic coupled-channel method

RADIOACTIVITY 109I, 113Cs, 117La, 131Eu, 141,141mHo(p); calculated proton decay T1/2, branching ratios. Nonadiabatic coupled-channels method, comparison with data.

doi: 10.1103/PhysRevC.62.054315
Citations: PlumX Metrics

2000KR03      Phys.Rev. C61, 034313 (2000)

A.T.Kruppa, M.Bender, W.Nazarewicz, P.-G.Reinhard, T.Vertse, S.Cwiok

Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

NUCLEAR STRUCTURE Z=120; calculated neutron single-particle levels, shell corrections. Z=110-130; calculated proton shell corrections, macroscopic energies. Self-consistent Skyrme-Hartree-Fock and relativistic mean field calculations.

doi: 10.1103/PhysRevC.61.034313
Citations: PlumX Metrics

2000KR07      Phys.Rev.Lett. 84, 4549 (2000)

A.T.Kruppa, B.Barmore, W.Nazarewicz, T.Vertse

Fine Structure in the Decay of Deformed Proton Emitters: Nonadiabatic approach

RADIOACTIVITY 131Eu, 141Ho, 141mHo(p); calculated T1/2, ground and first excited state branching ratios. Comparison with data, solution of Schroedinger equation in complex energy plane.

doi: 10.1103/PhysRevLett.84.4549
Citations: PlumX Metrics

2000VE03      Phys.Rev. C61, 064317 (2000)

T.Vertse, A.T.Kruppa, W.Nazarewicz

Shell Corrections for Finite-Depth Deformed Potentials: Green's function oscillator expansion method

NUCLEAR STRUCTURE 298Fl, 132,154Sn, 100,110,120Zr; calculated shell corrections, related quantities. Green's function oscillator expansion method, Woods-Saxon potential, generalized Strutinsky smoothing procedure.

doi: 10.1103/PhysRevC.61.064317
Citations: PlumX Metrics

1999RY04      Phys.Rev. C60, 011301 (1999)

K.Rykaczewski, J.C.Batchelder, C.R.Bingham, T.Davinson, T.N.Ginter, C.J.Gross, R.Grzywacz, M.Karny, B.D.MacDonald, J.F.Mas, J.W.McConnell, A.Piechaczek, R.C.Slinger, K.S.Toth, W.B.Walters, P.J.Woods, E.F.Zganjar, B.Barmore, L.Gr.Ixaru, A.T.Kruppa, W.Nazarewicz, M.Rizea, T.Vertse

Proton Emitters 140Ho and 141Ho: Probing the structure of unbound Nilsson orbitals

NUCLEAR REACTIONS 92Mo(54Fe, xnp)140Ho/141Ho/141mHo, E=315 MeV; measured proton spectra following residual nucleus decay, (recoil)(decay)-coin; deduced production σ.

RADIOACTIVITY 140,141mHo(p) [from 92Mo(54Fe, xnp)]; measured Ep, T1/2. 140,141Ho deduced proton resonance features, configurations, deformation effects. Coupled-channels analysis.

doi: 10.1103/PhysRevC.60.011301
Citations: PlumX Metrics

1998DE05      Phys.Rev. C57, 986 (1998)

D.S.Delion, R.J.Liotta, N.Sandulescu, T.Vertse

Probing Monopole Double Giant Resonances by Dilepton (E0) Emission

NUCLEAR STRUCTURE 208Pb; calculated two-particle plus two-hole levels, partial decay widths; deduced continuum coupling role, monopole, double giant resonances decay features.

doi: 10.1103/PhysRevC.57.986
Citations: PlumX Metrics

1998VE02      Phys.Rev. C57, 3089 (1998)

T.Vertse, A.T.Kruppa, R.J.Liotta, W.Nazarewicz, N.Sandulescu, T.R.Werner

Shell Corrections for Finite Depth Potentials: Particle continuum effects

NUCLEAR STRUCTURE 78Ni, 90,96,104,106,108,110,122Zr, 124Zr, 132Sn, 146Gd, 208Pb, 298Fl; calculated neutron shell correction energies. 48Ni, 90Zr, 100,132Sn, 146Gd, 180,208Pb; calculated proton shell correction energies. 146Gd, 208Pb calculated smoothed level densities. Smoothing procedure with particle continuum contribution.

doi: 10.1103/PhysRevC.57.3089
Citations: PlumX Metrics

1997SA08      Phys.Rev. C55, 1250 (1997)

N.Sandulescu, O.Civitarese, R.J.Liotta, T.Vertse

Effects Due to the Continuum on Shell Corrections at Finite Temperatures

NUCLEAR STRUCTURE 208Pb; calculated neutrons shell correction to free energy; deduced corrections wash out temperature. Extension of Strutinsky method, finite depth mean field potential continuum spectrum included.

doi: 10.1103/PhysRevC.55.1250
Citations: PlumX Metrics

1996BL05      Phys.Rev. C53, 2001 (1996)

J.Blomqvist, O.Civitarese, E.D.Kirchuk, R.J.Liotta, T.Vertse

Feeding of Hole States by Proton Decay of Gamow-Teller and Isobaric Analog State Resonances

NUCLEAR STRUCTURE 209Bi; calculated Gamow-Teller, IAR proton decay partial widths. RPA, Breggren representation.

doi: 10.1103/PhysRevC.53.2001
Citations: PlumX Metrics

1996FO09      Phys.Rev. C54, 3279 (1996)

S.Fortunato, A.Insolia, R.J.Liotta, T.Vertse

Two-Particle - One-Hole Excitations in the Continuum

NUCLEAR STRUCTURE 209Bi; calculated i11/2, j15/2 states strength function. 209Pb; calculated neutron decay associated branching ratios. Resonant multi-step shell model method.

doi: 10.1103/PhysRevC.54.3279
Citations: PlumX Metrics

1996LI08      Nucl.Phys. A599, 327c (1996)

R.J.Liotta, E.Maglione, T.Vertse

Microscopic Structure and Decay Characteristics of Giant Resonances

NUCLEAR STRUCTURE 208Pb; calculated monopole, dipole, quadrupole resonances, sum rule exhaustion, decay (in some cases) features. Continuum RPA.

doi: 10.1016/0375-9474(96)00075-9
Citations: PlumX Metrics

1996LI57      Phys.Lett. 367B, 1 (1996)

R.J.Liotta, E.Maglione, N.Sandulescu, T.Vertse

A Representation to Describe Nuclear Processes in the Continuum

doi: 10.1016/0370-2693(95)01415-2
Citations: PlumX Metrics

1995VE02      Nucl.Phys. A584, 13 (1995)

T.Vertse, R.J.Liotta, E.Maglione

Exact and Approximate Calculation of Giant Resonances

NUCLEAR STRUCTURE 208Pb; calculated giant resonances, decay widths, energy weighted sum rules. Exact, approximate approaches.

doi: 10.1016/0375-9474(94)00502-E
Citations: PlumX Metrics

1994LI68      Z.Phys. A347, 231 (1994)

P.Lind, R.J.Liotta, E.Maglione, T.Vertse

Resonant State Expansions of the Continuum

doi: 10.1007/BF01289789
Citations: PlumX Metrics

1993LE13      Phys.Rev. C48, 1463 (1993)

S.M.Lenzi, O.Dragun, E.E.Maqueda, R.J.Liotta, T.Vertse

Description of Alpha Clustering Including Continuum Configuration

NUCLEAR STRUCTURE 212Po; calculated α-cluster formation amplitude vs radius; deduced clustering can be described beyond daughter nucleus surface.

doi: 10.1103/PhysRevC.48.1463
Citations: PlumX Metrics

1993MA01      Phys.Lett. 298B, 1 (1993)

E.Maglione, R.J.Liotta, T.Vertse

Partial Decay Widths from Giant Resonances in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated giant resonance partial decay width. Continuum RPA.

doi: 10.1016/0370-2693(93)91695-J
Citations: PlumX Metrics

1992DU03      Phys.Rev. C46, 558 (1992)

G.G.Dussel, R.J.Liotta, H.Sofia, T.Vertse

Temperature Dependent Resonant Random Phase Approximation

NUCLEAR STRUCTURE 208Pb; calculated giant resonance escape widths; deduced thermal fluctuations role. Temperature dependent, resonant RPA.

doi: 10.1103/PhysRevC.46.558
Citations: PlumX Metrics

1990VE15      Phys.Rev. C42, 2605 (1990)

T.Vertse, P.Curutchet, R.J.Liotta

Approximate Treatment of the Continuum

NUCLEAR STRUCTURE Z=82; calculated single particle, particle-hole response functions. Square well plus Coulomb potential, Green function pole expansion.

doi: 10.1103/PhysRevC.42.2605
Citations: PlumX Metrics

1989CU01      Phys.Rev. C39, 1020 (1989)

P.Curutchet, T.Vertse, R.J.Liotta

Resonant Random Phase Approximation

NUCLEAR STRUCTURE 208Pb; calculated multipole giant resonace excitation. Resonant RPA.

doi: 10.1103/PhysRevC.39.1020
Citations: PlumX Metrics

1989VE09      Acta Phys.Acad.Sci.Hung. 65, 305 (1989)

T.Vertse, P.Curutchet, R.J.Liotta, J.Bang

On the Role of Anti-Bound States in the RPA Description of the Giant Monopole Resonance

NUCLEAR STRUCTURE 16O; calculated giant monopole resonance escape widths. Resonant RPA.

1988VE02      Phys.Rev. C37, 876 (1988)

T.Vertse, P.Curutchet, O.Civitarese, L.S.Ferreira, R.J.Liotta

Application of Gamow Resonances to Continuum Nuclear Spectra

NUCLEAR STRUCTURE 208Pb; calculated neutron, proton Gamow resonances.

doi: 10.1103/PhysRevC.37.876
Citations: PlumX Metrics

1987DR11      Z.Phys. A328, 61 (1987)

O.Dragun, R.J.Liotta, T.Vertse

Study of Pairing Deformations by Means of Two-Particle Transfer Reactions

NUCLEAR REACTIONS 208Pb(16O, 18O), E=69, 73, 86 MeV; 208Pb(p, t), E=22-80 MeV; 64Ni(16O, 18O), E=50, 57, 65 MeV; 58,60Ni(16O, 18O), E=50, 57, 60 MeV; 60Ni(p, t), E=27 MeV; 62Ni(p, t), E=27-46.5 MeV; 204,206Pb(p, t), E=26, 30 MeV; analyzed σ(θ); deduced pairing deformation parameters. 208Pb(16O, 12C), E=93 MeV; analyzed σ(θ); deduced model applicability. Macroscopic DWBA.

1986BA63      Z.Phys. A325, 399 (1986)

V.Barci, H.El-Samman, A.Gizon, J.Gizon, R.Kossakowski, B.M.Nyako, T.Vertse, S.Elfstrom, D.Jerrestam, W.Klamra, Th.Lindblad, T.Bengtsson

Effective Moment of Inertia in 132Ce, 134Nd and 136Nd

NUCLEAR STRUCTURE 132Ce, 134,136Nd; calculated effective moments of inertia. Cranking Nilsson-Strutinsky model.

NUCLEAR REACTIONS 96Zr, 98,100Mo(40Ar, X), E=160-189 MeV; measured continuum Eγ, Iγ, σ(Eγ, E), γ(θ). 132Ce, 134,136Nd deduced moments of inertia. NaI(Tl) detectors. Cranking Nilsson-Strutinsky model.

1986HE02      Nucl.Phys. A448, 441 (1986)

M.W.Herzog, O.Civitarese, L.Ferreira, R.J.Liotta, T.Vertse, L.J.Sibanda

Two-Particle Transfer Reactions Leading to Giant Pairing Resonances

NUCLEAR REACTIONS 208Pb(3He, n), E=33 MeV; 208Pb(t, p), E=20-100 MeV; calculated residual level relative σ, integrand function vs θ.

NUCLEAR STRUCTURE 210Pb; calculated ground state, pairing giant resonance pairing density function. 210Po; calculated two-particle wave functions, low-lying levels.

doi: 10.1016/0375-9474(86)90337-4
Citations: PlumX Metrics

1985HE26      Phys.Lett. 165B, 35 (1985)

M.W.Herzog, R.J.Liotta, T.Vertse

Hole Pairing Giant Resonance

NUCLEAR REACTIONS 208Pb(p, t), E ≈ 20-100 MeV; calculated residual 0+ state relative excitation σ. 206Pb deduced hole pairing giant resonance. Two-hole pairing collective TDA.

doi: 10.1016/0370-2693(85)90685-9
Citations: PlumX Metrics

1984HI02      Phys.Scr. 29, 47 (1984)

L.Hildingsson, J.Bialkowski, J.Gizon, S.A.Hjorth, D.Jerrestam, A.Johnson, W.Klamra, Th.Lindblad, T.Vertse

Gamma-Gamma Energy Correlation Studies in Cerium Isotopes

NUCLEAR REACTIONS 122,128,130Te(12C, xn), E=100 MeV; measured γγ-energy correlation. 130,134,136Ce deduced high-spin state γ-decay characteristics.

doi: 10.1088/0031-8949/29/1/007
Citations: PlumX Metrics

1984KL11      Nucl.Phys. A431, 367 (1984)

W.Klamra, J.Bialkowski, L.Hildingsson, D.Jerrestam, A.Johnson, J.Kownacki, Th.Lindblad, J.Nyberg, T.Vertse, T.Bengtsson

Experimental Moments of Inertia in Pd and Cd Isotopes and Their Interpretation with the Extended Nilsson-Strutinsky Model

NUCLEAR REACTIONS 100Mo(12C, xnypzα), E=118 MeV; measured γγ-coin, γ-multiplicity; deduced energy-energy correlation spectrum. 104,106Pd, 106Cd deduced moment of inertia, high-spin state properties, configurations.

doi: 10.1016/0375-9474(84)90180-5
Citations: PlumX Metrics

1983PA06      Nucl.Phys. A402, 114 (1983)

K.F.Pal, R.G.Lovas, M.A.Nagarajan, B.Gyarmati, T.Vertse

Microscopic Description of 7Li and 7Be for the DWBA Treatment of Cluster Transfer Reactions

NUCLEAR REACTIONS 12C(7Li, t), E=34 MeV; calculated σ(θ); deduced potential parameters. Finite range DWBA, generator coordinate cluster for projectile, schematic nucleon-nucleon forces.

doi: 10.1016/0375-9474(83)90564-X
Citations: PlumX Metrics

1982GY02      Phys.Rev. C26, 2674 (1982)

B.Gyarmati, K.F.Pal, T.Vertse

Shape of the α Potentials in the Distorted-Wave Born Approximation Description of α Transfer

NUCLEAR REACTIONS 16O(6Li, d), E=20, 75.4 MeV; calculated σ(θ). 20Ne levels deduced relative σ. Exact finite-range DWBA, different α-particle form factors.

doi: 10.1103/PhysRevC.26.2674
Citations: PlumX Metrics

1982KL10      Nucl.Phys. A391, 184 (1982)

W.Klamra, J.Bialkowski, C.J.Herrlander, L.Hildingsson, D.Jerrestam, A.Johnson, A.Kerek, J.Kownacki, A.Kallberg, Th.Lindblad, C.G.Linden, T.Vertse

Gamma-Gamma Energy Correlations and Moment of Inertia in Light Xe Isotopes

NUCLEAR REACTIONS 114,116Cd(12C, xn), E=118 MeV; measured γγ-coin; deduced energy-energy correlation spectra. 118,120,122Xe deduced moment of inertia.

doi: 10.1016/0375-9474(82)90226-3
Citations: PlumX Metrics

1982LI05      Nucl.Phys. A378, 364 (1982)

Th.Lindblad, L.Hildingsson, D.Jerrestam, A.Kallberg, A.Johnson, C.J.Herrlander, W.Klamra, A.Kerek, C.G.Linden, J.Kownacki, J.Bialkowski, T.Vertse

On the Moment of Inertia in Deformed Ba-Xe Nuclei as Deduced from Gamma-Gamma Energy Correlation Experiments

NUCLEAR REACTIONS 114,116,118,120,122Sn(12C, xn), (12C, αxn), E=118 MeV; measured γγ-coin; deduced energy-energy correlation spectra, moment of inertia.

doi: 10.1016/0375-9474(82)90599-1
Citations: PlumX Metrics

1981AP02      Acta Phys.Acad.Sci.Hung. 51, 171 (1981)

B.Apagyi, T.Vertse

DWBA Calculation of the Cross Section of the 12C(6Li, d)16O [O+2, 6.05 MeV] Reaction

NUCLEAR REACTIONS 12C(6Li, d), E=18 MeV; analyzed σ(θ). 16O level deduced Sα, normalization. Exact finite-range DWBA analysis.

doi: 10.1007/BF03155575
Citations: PlumX Metrics

1981BI02      Nucl.Phys. A357, 261 (1981)

J.Bialkowski, B.Fant, C.J.Herrlander, L.Hildingsson, A.Johnson, W.Klamra, J.Kownacki, A.Kallberg, Th.Lindblad, C.G.Linden, T.Lonnroth, J.Sztarkier, T.Vertse, K.Wikstrom

Gamma-Gamma Energy Correlations and Moment of Inertia in 130Ce

NUCLEAR REACTIONS 124Te(12C, 6n), E=118 MeV; measured γγ-coin; deduced energy-energy correlation spectrum. 130Ce deduced collective moment of inertia.

doi: 10.1016/0375-9474(81)90638-2
Citations: PlumX Metrics

1981GY01      Phys.Lett. 104B, 177 (1981)

B.Gyarmati, K.F.Pal, T.Vertse

On the Shape of the Alpha-Potential in Direct Alpha-Transfer

NUCLEAR REACTIONS 16O(6Li, d), E=20 MeV; 16O(α, α), E=23.2 MeV; calculated σ(θ); deduced alpha potential shape independence. DWBA, alpha transfer.

doi: 10.1016/0370-2693(81)90585-2
Citations: PlumX Metrics

1981GY02      J.Phys.(London) G7, L209 (1981)

B.Gyarmati, R.G.Lovas, T.Vertse, P.E.Hodgson

Low-Energy Behaviour of the Real Depth of the Proton Optical Potential

NUCLEAR REACTIONS 116Sn(p, p), (n, n), E=5-25 MeV; calculated σ(E); deduced collective effects on optical potential real term energy dependence. Model calculation, elastic to inelastic channel coupling.

doi: 10.1088/0305-4616/7/9/005
Citations: PlumX Metrics

1980AP02      Phys.Rev. C21, 779 (1980)

B.Apagyi, T.Vertse

Configuration Mixing Effect in the 12C(6Li, d)16O* α-Transfer Reaction

NUCLEAR REACTIONS 12C(6Li, d), E=18, 20, 28 MeV; calculated σ(θ). 16O levels deduced configuration mixing. Zero range DWBA, CCBA, microscopic form factors.

doi: 10.1103/PhysRevC.21.779
Citations: PlumX Metrics

1979GY02      J.Phys.(London) G5, 1225 (1979)

B.Gyarmati, T.Vertse, L.Zolnai, A.I.Baryshnikov, A.F.Gurbich, N.N.Titarenko, E.L.Yadrovsky

Low-Energy Behaviour of the Proton Optical Potential of Sn

NUCLEAR REACTIONS 116,120Sn(p, p), E=4-9 MeV; measured σ(θ); deduced optical-model parameters, energy dependence of real depth.

doi: 10.1088/0305-4616/5/9/007
Citations: PlumX Metrics

1976GY01      ATOMKI Kozlem. 18, 31 (1976)

B.Gyarmati, T.Vertse, G.Y.Tertychny, E.L.Yadrovsky

On the Complex Optical Potential in the Lane-Model

NUCLEAR STRUCTURE 209Bi; calculated IAR in microscopic model, Lane model.

1976VA20      Nucl.Phys. A270, 200 (1976)

A.Valek, T.Vertse, B.Schlenk, I.Hunyadi

A Study of the 14N(d, p)15N Reaction at Low Bombarding Energies

NUCLEAR REACTIONS 14N(d, p), E=.309-.638 MeV; measured σ(E, Ep, θ). 15N levels deduced astrophysical S(E). Natural target.

doi: 10.1016/0375-9474(76)90135-4
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF0706.

1974VE03      Nucl.Phys. A223, 207 (1974)

T.Vertse, A.Dudek-Ellis, P.J.Ellis, T.A.Belote, D.Roaf

Inelastic Processes in the 19F(3He, d)20Ne Reaction

NUCLEAR REACTIONS 19F(3He, d), (3He, 3He'), (3He, 3He), E=16.00 MeV; measured σ(Ed, θ), σ(E(3He), θ). 20Ne levels deduced effect of inelastic processes on S.

doi: 10.1016/0375-9474(74)90287-5
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF0792.

1972GY01      Nucl.Phys. A182, 315 (1972)

B.Gyarmati, T.Vertse

Easy Method for Calculating the Resonance Parameters of the Isobaric Analogue Resonance

NUCLEAR REACTIONS 208Pb(p, p), analyzed isobaric analog resonances. 209Bi deduced isobaric analog resonance parameters.

doi: 10.1016/0375-9474(72)90280-1
Citations: PlumX Metrics

1972GY02      Phys.Lett. 41B, 110 (1972)

B.Gyarmati, F.Krisztinkovics, T.Vertse

On the Expectation Value in Gamow State

doi: 10.1016/0370-2693(72)90438-8
Citations: PlumX Metrics

1971VE11      Fiz.Szemble 21, 142 (1971)


Az Isobar Analog Rezonanciak Fenomenologikus Leirasa

Back to query form