NSR Query Results
Output year order : Descending NSR database version of April 11, 2024. Search: Author = S.Moylan Found 8 matches. 2024DE04 Phys.Rev.Lett. 132, 062702 (2024) R.J.deBoer, M.Febbraro, D.W.Bardayan, C.Boomershine, K.Brandenburg, C.Brune, S.Coil, M.Couder, J.Derkin, S.Dede, R.Fang, A.Fritsch, A.Gula, Gy.Gyurky, B.Hackett, G.Hamad, Y.Jones-Alberty, R.Kelmar, K.Manukyan, M.Matney, J.McDonaugh, Z.Meisel, S.Moylan, J.Nattress, D.Odell, P.O'Malley, M.W.Paris, D.Robertson, Shahina, N.Singh, K.Smith, M.S.Smith, E.Stech, W.Tan, M.Wiescher Measurement of the ^{13}C(α, n_{0})^{16}O Differential Cross Section from 0.8 to 6.5 MeV NUCLEAR REACTIONS ^{13}C(α, n), E=0.8-6.5 MeV; measured reaction products, En, IN; deduced σ(θ), σ, S-factor. Comparison with available data, R-matrix results from ENDF/B-VIII.0 library. The Oak Ridge National Laboratory Deuterated Spectroscopic Array (ODeSA), 5 MV Stable ion Accelerator for Nuclear Astrophysics, the University of Notre Dame Nuclear Science Laboratory.
doi: 10.1103/PhysRevLett.132.062702
2023GU04 Phys.Rev. C 107, 025805 (2023) A.Gula, R.J.deBoer, S.Aguilar, J.Arroyo, C.Boomershine, B.Frentz, J.Gorres, S.Henderson, R.Kelmar, S.McGuinness, K.V.Manukyan, S.Moylan, D.Robertson, C.Seymour, Shahina, E.Stech, W.Tan, J.Wilkinson, M.Wiescher ^{10}B + α reactions at low energies NUCLEAR REACTIONS ^{10}B(α, p), (α, d), E(cm)=186-1430 keV; measured Ep, Ip, deuteron spectrum; deduced σ(θ) for (α, p_{0}), (α, p_{1}), (α, p_{2}), (α, p_{3}) and (α, d) channels, resonances, astrophysical reaction rate (T=0.01-2 GK), S-factor. ^{10}B(α, α), (α, n), (α, p), (α, d); analyzed present and previous experimental data for σ(θ) distributions by R-matrix formalism using AZURE2 code. ^{10}B(α, n), E(cm)=0.21-1.42 MeV; deduced astrophysical reaction rate (T=0.01-2 GK). ^{14}N; deduced resonances, J, π, decay widths. Comparison to previous experimental data. Target surrounded by 2 silicon surface barrier detectors (SSBD) detectors at Stable ion Accelerator for Nuclear Astrophysics (Univ. Notre Dame).
doi: 10.1103/PhysRevC.107.025805
2022FR09 Phys.Rev. C 106, 065803 (2022) B.Frentz, A.Aprahamian, A.Boeltzig, T.Borgwardt, A.M.Clark, R.J.deBoer, G.Gilardy, J.Gorres, M.Hanhardt, S.L.Henderson, K.B.Howard, T.Kadlecek, Q.Liu, K.T.Macon, S.Moylan, C.S.Reingold, D.Robertson, C.Seymour, S.Y.Strauss, F.Strieder, B.Vande Kolk, M.Wiescher Investigation of the ^{14}N(p, γ)^{15}O reaction and its impact on the CNO cycle NUCLEAR REACTIONS ^{14}N(p, γ), E=0.27-1.07 MeV; measured Eγ, Iγ; deduced σ(θ, E) for particular transitions in daughter nuclei, astrophysical differential and total S-factor, astrophysical reaction rate for T=0.01-10 GK. Multichannel R-matrix analysis for the transition to the ground state, the excited states at 6.17 and 6.79 MeV, as well as ^{14}N(p, p) differential scattering data. Discussed implication of the obtained data on the CNO neutrino production. Comparison to other experimental results. Single coaxial HPGe detector. Beam from 1 MV JN Van de Graaff at the Compact Accelerator System for Performing Astrophysical Research (CASPAR) at the Sanford Underground Research Facility.
doi: 10.1103/PhysRevC.106.065803
2021FR05 Phys.Rev. C 103, 045802 (2021) B.Frentz, A.Aprahamian, A.M.Clark, R.J.deBoer, C.Dulal, J.D.Enright, J.Gorres, S.L.Henderson, J.D.Hinnefeld, K.B.Howard, R.Kelmar, K.Lee, L.Morales, S.Moylan, Z.Rahman, W.Tan, L.E.Weghorn, M.Wiescher Lifetime measurements of excited states in ^{15}O NUCLEAR REACTIONS ^{14}N(p, γ)^{15}O, E=1020, 1570 keV; measured Eγ, Iγ, half-lives of 5.18-, 6.17- and 6.79-MeV levels in ^{15}O by Doppler-shift attenuation method (DSAM) using three separate, nitrogen-implanted targets with Mo, Ta, and W backings at the Nuclear Science Laboratory (NSL) of University of Notre Dame. Comparison with previous half-life measurements. Monte Carlo simulations of Doppler-shift attenuation factors. R-matrix analysis of asymptotic normalization constants (ANCs) and radiative widths Γ_{γ} using AZURE2 code for g.s. and levels between 6793 and 9609 keV, including half-lives measured in the present work and experimental data in literature. Relevance to CNO chain of reactions and uncertainty in the ^{14}N(p, γ)^{15}O reaction rate.
doi: 10.1103/PhysRevC.103.045802
2020TA08 Phys.Rev.Lett. 124, 192702 (2020) W.P.Tan, A.Boeltzig, C.Dulal, R.J.deBoer, B.Frentz, S.Henderson, K.B.Howard, R.Kelmar, J.J.Kolata, J.Long, K.T.Macon, S.Moylan, G.F.Peaslee, M.Renaud, C.Seymour, G.Seymour, B.Vande Kolk, M.Wiescher, E.F.Aguilera, P.Amador-Valenzuela, D.Lizcano, E.Martinez-Quiroz New Measurement of ^{12}C+^{12}C Fusion Reaction at Astrophysical Energies NUCLEAR REACTIONS ^{12}C(^{12}C, X), E(cm)=2.2-5.0 MeV; measured reaction products, Eγ, Iγ; deduced σ, S-factor. Comparison with available data.
doi: 10.1103/PhysRevLett.124.192702
2019HE11 Phys.Rev. C 99, 064320 (2019) S.L.Henderson, T.Ahn, M.A.Caprio, P.J.Fasano, A.Simon, W.Tan, P.O'Malley, J.Allen, D.W.Bardayan, D.Blankstein, B.Frentz, M.R.Hall, J.J.Kolata, A.E.McCoy, S.Moylan, C.S.Reingold, S.Y.Strauss, R.O.Torres-Isea First measurement of the B(E2; 3/2^{-} → 1/2^{-}) transition strength in ^{7}Be: Testing ab initio predictions for A = 7 nuclei NUCLEAR REACTIONS ^{197}Au(^{7}Be, ^{7}Be'), E=31.3 MeV, [secondary ^{7}Be beam from ^{2}H(^{6}Li, n), E=34.0 MeV primary reaction]; measured reaction products, particle spectra, Eγ, Iγ, (particle)γ-coin using silicon detector for charged particle detection and HPGe detectors for γ detection at the University of Notre Dame FN Tandem Van de Graaff accelerator facility. ^{7}Be; deduced levels, J, π, Coulomb excitation cross section, B(E2) for 3/2- to 1/2- (g.s. to the first excited state) transition. Comparison with ab initio no-core shell model (NCSM) calculations.
doi: 10.1103/PhysRevC.99.064320
2019LA15 Phys.Rev. C 100, 034614 (2019) E.Lamere, M.Couder, M.Beard, A.Simon, A.Simonetti, M.Skulski, G.Seymour, P.Huestis, K.Manukyan, Z.Meisel, L.Morales, M.Moran, S.Moylan, C.Seymour, E.Stech Proton-induced reactions on molybdenum NUCLEAR REACTIONS ^{92}Mo(p, α)^{89}Nb/^{89m}Nb, (p, np)^{91}Mo/^{91m}Mo, (p, 2p)^{91m}Nb, (p, n)^{92}Tc, (p, γ)^{93}Tc/^{93m}Tc, E=10.52, 13.03, 15.07, 16.07, 17.05, 18.07 MeV; ^{94}Mo(p, α)^{91m}Nb, (p, np)^{93m}Mo, (p, 2n)^{93}Tc/^{93m}Tc, (p, n)^{94}Tc/^{94m}Tc, E=9.04, 10.06, 11.05, 12.05, 13.04, 14.04, 15.04, 16.06, 17.06, 18.05, 19.06 MeV; ^{95}Mo(p, nα)^{91m}Nb, (p, α)^{92m}Nb, (p, 2n)^{94}Tc/^{94m}Tc, (p, n)^{95m}Tc/^{95m}Tc, E=10.57, 12.01, 13.02, 4.03, 15.07, 16.03, 17.99, 19.03 MeV; ^{96}Mo(p, nα)^{92m}Nb, (p, 2n)^{95}Tc/^{95m}Tc, (p, n)^{96}Tc/^{96m}Tc, E=8.04, 10.06, 11.07, 11.55, 12.07, 12.55, 13.06, 14.05, 15.05, 16.05, 17.05, 18.05, 19.06 MeV; ^{97}Mo(p, 2n)^{96}Tc/^{96m}Tc, (p, n)^{97m}Tc, E=9.01, 10.05, 10.98, 11.98, 13.02, 14.02, 15.04 MeV; ^{98}Mo(p, α)^{95}Nb/^{95m}Nb, (p, 2n)^{97m}Tc, (p, γ)^{99m}Tc, E=10.06, 11.06, 12.05, 13.06, 14.05, 15.05, 16.06, 17.06, 18.02, 19.05 MeV; ^{100}Mo(p, nα)^{96}Nb, (p, α)^{97}Nb/^{97m}Nb, (p, np)^{99}Mo, (p, 2n)^{99m}Tc, (p, γ)^{101}Tc, E=8.01, 9.01, 10.07, 11.01, 12.02, 13.03, 14.03, 15.07, 16.04, 17.03, 18.07, 19.07 MeV; measured Eγ, Iγ, σ(E) by γ-activation method. Comparison with HF calculations using TALYS-1.8 code, and with previous experimental results. Measurement made at the Nuclear Science Laboratory at the University of Notre Dame.
doi: 10.1103/PhysRevC.100.034614
2019RE04 Eur.Phys.J. A 55, 77 (2019) C.S.Reingold, O.Olivas-Gomez, A.Simon, J.Arroyo, M.Chamberlain, J.Wurzer, A.Spyrou, F.Naqvi, A.C.Dombos, A.Palmisano, T.Anderson, A.M.Clark, B.Frentz, M.R.Hall, S.L.Henderson, S.Moylan, D.Robertson, M.Skulski, E.Stech, S.Y.Strauss, W.P.Tan, B.Vande Kolk High Efficiency Total Absorption Spectrometer HECTOR for capture reaction measurements RADIOACTIVITY ^{60}Co(IT); measured Eγ, Iγ using Total Absorption Spectrometer HECTOR; deduced sum spectrum; compared with GEANT4 simulated spectrum. NUCLEAR REACTIONS ^{27}Al(p, γ), E not given; measured Eγ, Iγ; deduced resonances, average multiplicities, summing efficiencies and resonance strengths; compared with GEANT4 simulations and with published data. Remark: Paper aimed mainly to show the possibilities of the HECTOR spectrometer.
doi: 10.1140/epja/i2019-12748-8
Back to query form |