NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = A.G.Magner

Found 55 matches.

Back to query form



2024MA02      Eur.Phys.J. A 60, 6 (2024)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, U.V.Grygoriev, S.Shlomo

Pairing correlations within the micro-macroscopic approach for the level density

NUCLEAR STRUCTURE 40,48Ca, 52,54Fe, 56Ni, 115Sn, 144Sm, 208Pb; calculated level densities for low-energy states within the microscopic-macroscopic approach (MMA). Comparison with available data.

doi: 10.1140/epja/s10050-023-01222-1
Citations: PlumX Metrics


2023MA07      Phys.Rev. C 107, 024610 (2023)

A.G.Magner, S.N.Fedotkin, U.V.Grygoriev

Particle-number fluctuations near the critical point of nuclear matter

doi: 10.1103/PhysRevC.107.024610
Citations: PlumX Metrics


2023MA40      Iader.Fiz.Enerh. 24, 175 (2023)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, U.V.Grygoriev, S.Shlomo

Nuclear level density in the statistical semiclassical micro-macroscopic approach

NUCLEAR STRUCTURE 140,142,145Nd, 144,150Sm, 166Ho, 208Pb, 230Th, 240Pu; analyzed available data; deduced level density parameters using Least Mean-Square (LMS) fit.

doi: 10.15407/jnpae2023.03.175
Citations: PlumX Metrics


2022FE03      Phys.Rev. C 105, 024621 (2022)

S.N.Fedotkin, A.G.Magner, U.V.Grygoriev

Quantum statistics effects near the critical point in systems with different interparticle interactions

doi: 10.1103/PhysRevC.105.024621
Citations: PlumX Metrics


2022MA14      Nucl.Phys. A1021, 122423 (2022)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Level density within a micro-macroscopic approach

NUCLEAR STRUCTURE 240Pu, 150Sm, 166Ho; analyzed available data; deduced statistical level density for nucleonic system with a given energy E, particle number A and other integrals of motion in the micro-macroscopic approximation beyond the standard saddle-point method of the Fermi gas model.

doi: 10.1016/j.nuclphysa.2022.122423
Citations: PlumX Metrics


2021GO07      Int.J.Mod.Phys. E30, 2150008 (2021)

D.V.Gorpinchenko, A.G.Magner, J.Bartel

Semiclassical and quantum shell-structure calculations of the moment of inertia

doi: 10.1142/S0218301321500087
Citations: PlumX Metrics


2021MA67      Phys.Rev. C 104, 044319 (2021)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Semiclassical shell-structure micro-macroscopic approach for the level density

NUCLEAR STRUCTURE 144,148Sm, 166Ho, 208Pb, 230Th; calculated level densities for low-energy states with different approximations, maximal mean errors in the statistical distribution of states; derived statistical level density as function of the entropy within the micro-macroscopic approximation (MMA) using the mixed micro- and grand-canonical ensembles beyond the standard saddle point method of the Fermi gas model, using mean-field semiclassical periodic-orbit theory. Comparison with experimental densities.

doi: 10.1103/PhysRevC.104.044319
Citations: PlumX Metrics


2021MA79      Int.J.Mod.Phys. E30, 2150092 (2021)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Shell-structure and asymmetry effects in level densities

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192,194,196,198,200Pt; analyzed available data; deduced level densities within the semiclassical extended Thomas-Fermi and periodic-orbit theory beyond the Fermi-gas saddle-point method.

doi: 10.1142/S0218301321500920
Citations: PlumX Metrics


2020LE07      Phys.Rev. C 102, 014308 (2020)

A.I.Levon, D.Bucurescu, C.Costache, T.Faestermann, R.Hertenberger, A.Ionescu, R.Lica, A.G.Magner, C.Mihai, R.Mihai, C.R.Nita, S.Pascu, K.P.Shevchenko, A.A.Shevchuk, A.Turturica, H.-F.Wirth

High-resolution study of excited states in 158Gd with the (p, t) reaction

NUCLEAR REACTIONS 160Gd(p, t), E=22 MeV; measured triton spectra, exclusive differential σ(θ), integrated σ using the Q3D spectrograph at the Tandem accelerator of the Maier-Leibnitz-Laboratory in Munich. Enriched target. DWBA analysis of σ(θ) data using coupled-channel approximation CHUCK3 code. 158Gd; deduced levels, J, π. Discussed bands, moment of inertia, B(E1), B(E2). Comparison with theoretical calculations using the spdf version of the interacting boson model (IBM). 154,155,156Gd; identified ground and first excited states from (p, t) reaction on other Gd isotopes.

doi: 10.1103/PhysRevC.102.014308
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2526. Data from this article have been entered in the XUNDL database. For more information, click here.


2019FE08      Phys.Rev. C 100, 054334 (2019)

S.N.Fedotkin, A.G.Magner, M.I.Gorenstein

Effects of quantum statistics near the critical point of nuclear matter

doi: 10.1103/PhysRevC.100.054334
Citations: PlumX Metrics


2019LE13      Phys.Rev. C 100, 034307 (2019)

A.I.Levon, D.Bucurescu, C.Costache, T.Faestermann, R.Hertenberger, A.Ionescu, R.Lica, A.G.Magner, C.Mihai, R.Mihai, C.R.Nita, S.Pascu, K.P.Shevchenko, A.A.Shevchuk, A.Turturica, H.-F.Wirth

New data on 0+ states in 158Gd

NUCLEAR REACTIONS 160Gd(p, t), E=22 MeV; measured E(t), I(t), σ(θ) using enriched target and high-precision Q3D spectrometer at the Munich Tandem accelerator facility. 158Gd; deduced 230 levels between 1700 and 4300 keV, J, π, 36 levels with Jπ=0+ below 3.4 MeV; analyzed σ(θ) by DWBA calculations using optical model parameters from CHUCK3. Comparison with calculations within the spdf-IBM model, and with previous experimental results.

doi: 10.1103/PhysRevC.100.034307
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2480. Data from this article have been entered in the XUNDL database. For more information, click here.


2018LE07      Phys.Rev. C 97, 044305 (2018)

A.I.Levon, A.G.Magner, S.V.Radionov

Statistical analysis of excitation energies in actinide and rare-earth nuclei

NUCLEAR STRUCTURE 228,230Th, 232U, 240Pu, 158Gd, 168Er, 152,154Gd, 162Dy, 168Er, 170Yb, 176Hf, 180,184W, 190Os; analyzed experimental data for 0+ states in rare-earth nuclei, and 0+, 2+, 4+, and 6+ states in actinides by overall nearest-neighbor spacing distribution (NNSD) method, and Weigner and Poisson contributions using linear Wigner-Dyson (LWD) approximation and Brody approach. Data for actinides taken from (p, t) experiments.

doi: 10.1103/PhysRevC.97.044305
Citations: PlumX Metrics


2018MA72      Eur.Phys.J. A 54, 214 (2018)

A.G.Magner, A.I.Levon, S.V.Radionov

Simple approach to the chaos-order contributions and symmetry breaking in nuclear spectra

doi: 10.1140/epja/i2018-12645-8
Citations: PlumX Metrics


2018MO03      J.Phys.(London) G45, 035101 (2018)

A.Motornenko, L.Bravina, M.I.Gorenstein, A.G.Magner, E.Zabrodin

Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations

doi: 10.1088/1361-6471/aaa78a
Citations: PlumX Metrics


2016GO05      Phys.Rev. C 93, 024304 (2016)

D.V.Gorpinchenko, A.G.Magner, J.Bartel, J.P.Blocki

Surface corrections to the moment of inertia and shell structure in finite Fermi systems

doi: 10.1103/PhysRevC.93.024304
Citations: PlumX Metrics


2016MA76      Phys.Rev. C 94, 054620 (2016)

A.G.Magner, M.I.Gorenstein, U.V.Grygoriev, V.A.Plujko

Shear viscosity of nuclear matter

doi: 10.1103/PhysRevC.94.054620
Citations: PlumX Metrics


2015BL05      Phys.Scr. 90, 114009 (2015)

J.P.Blocki, A.G.Magner, P.Ring

Derivative corrections to the symmetry energy and the isovector dipole-resonance structure in nuclei

NUCLEAR STRUCTURE 132Sn; calculated isovector dipole-resonance strength functions. Skyrme forces, comparison with available data.

doi: 10.1088/0031-8949/90/11/114009
Citations: PlumX Metrics


2015BL07      Phys.Rev. C 92, 064311 (2015)

J.P.Blocki, A.G.Magner, P.Ring

Slope-dependent nuclear-symmetry energy within the effective-surface approximation

NUCLEAR STRUCTURE 68Ni, 132Sn, 208Pb; calculated isovector energy and stiffness coefficients for several Skyrme forces, isovector dipole resonance (IVDR) strength functions, IVDR n-p transition densities, slope parameter. 116,118,120,122,124,126,128,130,132Sn; calculated IVDR splittings versus the asymmetry parameter, neutron skin thicknesses as function of slope parameter. Nuclear effective-surface (ES) approximation with analytical isovector surface-energy constants in the framework of Fermi-liquid droplet (FLD) model. Comparison with other theoretical approaches, and available experimental data for isovector giant-dipole resonances (IVGDR).

doi: 10.1103/PhysRevC.92.064311
Citations: PlumX Metrics


2015GO19      Phys.Scr. 90, 114008 (2015)

D.V.Gorpinchenko, A.G.Magner, J.Bartel, J.P.Blocki

Semiclassical moment of inertia shell-structure within the phase-space approach

doi: 10.1088/0031-8949/90/11/114008
Citations: PlumX Metrics


2015KO17      Phys.Scr. 90, 114011 (2015)

M.V.Koliesnik, Y.D.Krivenko-Emetov, A.G.Magner, K.Arita, M.Brack

Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

doi: 10.1088/0031-8949/90/11/114011
Citations: PlumX Metrics


2014BL13      Phys.Scr. 89, 054019 (2014)

J.P.Blocki, A.G.Magner, P.Ring

Isovector dipole-resonance structure within the effective surface approximation

NUCLEAR STRUCTURE 68Ni, 132Sn, 208Pb; calculated dipole resonance structure, γ strength function, sum rule using Thomas-Fermi approach to Fermi liquid droplet model with different Skyrme interactions and account for pygmy resonances; deduced symmetry energy, other parameters.

doi: 10.1088/0031-8949/89/5/054019
Citations: PlumX Metrics


2013BL03      Phys.Rev. C 87, 044304 (2013)

J.P.Blocki, A.G.Magner, P.Ring, A.A.Vlasenko

Nuclear asymmetry energy and isovector stiffness within the effective surface approximation

doi: 10.1103/PhysRevC.87.044304
Citations: PlumX Metrics


2013BL06      Phys.Scr. T154, 014006 (2013)

J.P.Blocki, A.G.Magner

Transport coefficients for a slow Fermi-particle motion

doi: 10.1088/0031-8949/2013/T154/014006
Citations: PlumX Metrics


2012BL06      Int.J.Mod.Phys. E21, 1250034 (2012)

J.P.Blocki, A.G.Magner, I.S.Yatsyshyn

Gross-shell effects in the dissipative nuclear dynamics

doi: 10.1142/S0218301312500346
Citations: PlumX Metrics


2012BL07      Phys.Rev. C 85, 064311 (2012)

J.P.Blocki, A.G.Magner

Chaoticity and shell effects in the nearest-neighbor distributions for an axially-symmetric potential

doi: 10.1103/PhysRevC.85.064311
Citations: PlumX Metrics


2012BL13      Iader.Fiz.Enerh. 13, 333 (2012); Nuc.phys.atom.energ. 13, 333 (2012)

J.P.Blocki, A.G.Magner, A.A.Vlasenko

Nuclear asymmetry energy, neutron skin and isovector stiffness

doi: 10.15407/jnpae
Citations: PlumX Metrics


2011BL04      Int.J.Mod.Phys. E20, 292 (2011)

J.P.Blocki, A.G.Magner, I.S.Yatsyshyn

The internal excitation of the gas of independent particles in a time dependent potential

doi: 10.1142/S0218301311017648
Citations: PlumX Metrics


2010BL11      Iader.Fiz.Enerh. 11, 239 (2010); Nuc.phys.atom.energ. 11, 239 (2010)

J.P.Blocki, A.G.Magner, I.S.Yatsyshyn

The excitation of an independent-particle gas by a time dependent potential well


2010MA22      Int.J.Mod.Phys. E19, 735 (2010)

A.G.Magner, A.M.Gzhebinsky, A.S.Sitdikov, A.A.Khamzin, J.Bartel

Semiclassical shell structure of moments of inertia in deformed Fermi systems

doi: 10.1142/S0218301310015175
Citations: PlumX Metrics


2010MA30      Phys.Rev. C 81, 064302 (2010)

A.G.Magner, A.S.Sitdikov, A.A.Khamzin, J.Bartel

Semiclassical shell structure in rotating Fermi systems

doi: 10.1103/PhysRevC.81.064302
Citations: PlumX Metrics


2010MA74      Iader.Fiz.Enerh. 11, 227 (2010); Nuc.phys.atom.energ. 11, 227 (2010)

A.G.Magner

Semiclassical shell structure and nuclear double-humped fission barriers


2009MA42      Int.J.Mod.Phys. E18, 885 (2009)

A.G.Magner, A.I.Sanzhur, A.M.Gzhebinsky

Asymmetry and spin-orbit effects in binding energy in the effective nuclear surface approximation

doi: 10.1142/S0218301309013002
Citations: PlumX Metrics


2009MA77      Iader.Fiz.Enerh. 10, 239 (2009); Nuc.phys.atom.energ. 10, 239 (2009)

A.G.Magner, A.S.Sitdikov, A.A.Khamzin, J.Bartel, A.M.Gzhebinsky

Semiclassical shell-structure moments of inertia in heated Fermi systems

doi: 10.15407/jnpae
Citations: PlumX Metrics


2008GZ01      Iader.Fiz.Enerh. 9 no.2, 7 (2008); Nuc.phys.atom.energ. 9, no.2, 7 (2008)

A.M.Gzhebinsky, A.G.Magner, S.N.Fedotkin

Semiclassical approach to the low-lying collective excitations in nuclei

NUCLEAR STRUCTURE A=10-220; calculated B(E2) for low-lying states in even-even nuclei, quadrupole energies, quadrupole energy weighted quadrupole sum rules, T1/2.Extended Thomas-Fermi approach. Comparison with experimental data.

doi: 10.15407/jnpae
Citations: PlumX Metrics


2007GZ01      Phys.Rev. C 76, 064315 (2007)

A.M.Gzhebinsky, A.G.Magner, S.N.Fedotkin

Low-lying collective excitations of nuclei as a semiclassical response

NUCLEAR STRUCTURE A=20-220; calculated B(E2) values for low-lying states in even-even nuclei, quadrupole energies using Thomas-Fermi model, comparisons with experimental data.

doi: 10.1103/PhysRevC.76.064315
Citations: PlumX Metrics


2007GZ02      Iader.Fiz.Enerh. 8 no.1, 17 (2007); Nuc.phys.atom.energ. 8, no.1, 17 (2007)

A.M.Gzhebinsky, A.G.Magner, A.S.Sitdikov

Semiclassical inertia for nuclear collective rotation

doi: 10.15407/jnpae
Citations: PlumX Metrics


2007MA34      Phys.Atomic Nuclei 70, 647 (2007)

A.G.Magner, A.M.Gzhebinsky, S.N.Fedotkin

Semiclassical Inertia of Nuclear Collective Dynamics

NUCLEAR STRUCTURE A < 220; calculated the transport coefficients for the low lying collective excitation in nuclei within the periodic-orbit theory in the extended Thomas-Fermi approach.

doi: 10.1134/S10637788070400059
Citations: PlumX Metrics


2006KO08      Phys.Rev. C 73, 024312 (2006)

V.M.Kolomietz, A.G.Magner, S.Shlomo

Splitting of the isovector giant dipole resonance in neutron-rich spherical nuclei

NUCLEAR STRUCTURE A=40-240; analyzed GDR energies, splitting mechanisms. Fermi-liquid-drop model.

doi: 10.1103/PhysRevC.73.024312
Citations: PlumX Metrics


2006MA16      Prog.Theor.Phys.(Kyoto) 115, 523 (2006)

A.G.Magner, K.Arita, S.N.Fedotkin

Semiclassical Approach for Bifurcations in a Smooth Finite-Depth Potential

doi: 10.1143/PTP.115.523
Citations: PlumX Metrics


2005MB13      Iader.Fiz.Enerh. 6 no.1, 7 (2005); Nuc.phys.atom.energ. 6, no.1, 7 (2005)

A.G.Magner, A.N.Gzhebinsky, S.N.Fedotkin

Shells, orbits and transport coefficients of the nuclear collective dynamics

doi: 10.15407/jnpae
Citations: PlumX Metrics


2003HO11      Phys.Rev. C 68, 014606 (2003)

H.Hofmann, A.G.Magner

Mean first passage time for fission potentials having structure

doi: 10.1103/PhysRevC.68.014606
Citations: PlumX Metrics


2002RA24      Yad.Fiz. 65, 856 (2002); Phys.Atomic Nuclei 65, 824 (2002)

S.V.Radionov, F.A.Ivanyuk, V.M.Kolomietz, A.G.Magner

Fission Dynamics of Excited Nuclei within the Liquid-Drop Model

NUCLEAR STRUCTURE 236U; calculated fission fragments kinetic energies, scission time, other fission dynamics features for decay of excited nucleus. Liquid-drop model.

doi: 10.1134/1.1481473
Citations: PlumX Metrics


2001RA46      Iader.Fiz.Enerh. 2 no 1, 19 (2001); Nuc.phys.atom.energ. 2, no.1, 28 (2001)

S.V.Radionov, F.A.Ivanyuk, V.M.Kolomietz, A.G.Magner

Viscosity effects at the nuclear descent from the fission barrier

NUCLEAR STRUCTURE 236U; calculated scission time, time evolution for fissioning system, other fission dynamics features for decay of excited nucleus. Liquid-drop model.

doi: 10.15407/jnpae
Citations: PlumX Metrics


2000KO59      Yad.Fiz. 63, No 10, 1820 (2000); Phys.Atomic Nuclei 63, 1732 (2000)

V.M.Kolomietz, A.G.Magner

Collective Excitations in Neutron-Rich Nuclei within the Model of a Fermi Liquid Drop

NUCLEAR STRUCTURE A=40-240; analyzed GDR energies. 40,44,48Ca, 116,120,124Sn; calculated GDR strength functions. Fermi liquid drop model.

doi: 10.1134/1.1320142
Citations: PlumX Metrics


1995IV02      Phys.Rev. C52, 678 (1995)

F.A.Ivanyuk, V.M.Kolomietz, A.G.Magner

Liquid Drop Surface Dynamics for Large Nuclear Deformations

doi: 10.1103/PhysRevC.52.678
Citations: PlumX Metrics


1995MA31      Phys.Rev. C51, 2457 (1995)

A.G.Magner, V.M.Kolomietz, H.Hofmann, S.Shlomo

Surface Response in the Fermi-Liquid Drop and Nuclear Transport Properties

NUCLEAR STRUCTURE 208Pb; calculated quadrupole excitations strength function. Fermi-liquid drop model, nuclear transport approach.

doi: 10.1103/PhysRevC.51.2457
Citations: PlumX Metrics


1994KO10      Nucl.Phys. A571, 117 (1994)

V.M.Kolomietz, A.G.Magner, V.M.Strutinsky, S.M.Vydrug-Vlasenko

Monopole Modes in a Finite Fermi System with Diffuse Reflection Boundary Conditions

doi: 10.1016/0375-9474(94)90344-1
Citations: PlumX Metrics


1993KO07      Yad.Fiz. 56, No 2, 110 (1993); Phys.Atomic Nuclei 56, 209 (1993)

V.M.Kolomiets, A.G.Magner, V.A.Plyuiko

Damping of Collective Nuclear Excitations with Retardation

NUCLEAR STRUCTURE A=40-260; calculated isoscalar octupole, quadrupole resonances, width, energy weighted-sum. Retardation, collision integral expansion in terms of multipoles expansion of Fermi surface deformation.


1993KO14      Z.Phys. A345, 131 (1993)

V.M.Kolomietz, A.G.Magner, V.A.Plyuiko

Retardation Effects in Damping of Nuclear Collective Excitations I. Relaxation Time

NUCLEAR STRUCTURE A=20-240; calculated isoscalar quadrupole, octupole resonances, Γ, other characteristics. Nuclear collective excitations damping, retardation effects role.


1993KO58      Bull.Rus.Acad.Sci.Phys. 57, 1684 (1993)

V.M.Kolomiets, A.G.Magner, F.A.Ivanyuk

A Variational Principle for Macroscopic Dynamics of Large Deformations of Nuclei


1990MA30      Yad.Fiz. 51, 85 (1990); Sov.J.Nucl.Phys. 51, 53 (1990)

A.G.Magner, V.A.Plyuyko

Radiative Decay of Giant Resonances in the Gas-Liquid-Drop Model of the Nucleus

NUCLEAR STRUCTURE A=40-240; calculated isoscalar giant resonance Γγ. Semi-classical gas liquid drop model.


1990MA78      Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 877 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, No.5, 61 (1990)

A.G.Magner, V.A.Plyuikov

Direct γ-Decay of Giant Resonances in the Gas-Liquid-Drop Model

NUCLEAR STRUCTURE A=20-260; calculated isoscalar giant resonance Γγ. Gas-liquid-drop model, semi-classical approximation.


1985ST17      Z.Phys. A322, 149 (1985)

V.M.Strutinsky, A.G.Magner, V.Yu.Denisov

Density Distributions in Nuclei

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated edge density distributions. Sharp nuclear edge approximation.

doi: 10.1007/BF01412028
Citations: PlumX Metrics


1985ST26      Yad.Fiz. 42, 1093 (1985)

V.M.Strutinsky, A.G.Magner, V.Yu.Denisov

Density Distributions in Nuclei

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated nuclear edge density distribution.


1984ST14      Yad.Fiz. 39, 1382 (1984)

V.M.Strutinsky, A.G.Magner, V.Yu.Denisov

The Landau Zero Sound and Nuclear Giant Resonances

NUCLEAR STRUCTURE A=50, 250; calculated isoscalar giant resonance frequencies; deduced shape dynamical deformation, zero sound coupling role.


Back to query form