ADOPTED LEVELS, GAMMAS for 212Ra

Authors: K. Auranen and E.A. Mccutchan |  Citation: Nucl. Data Sheets 168, 117 (2020) |  Cutoff date: 1-Aug-2020 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-7480 keV 50S(n)= 9102 keV 14S(p)= 3348 keV 16Q(α)= 7031.7 keV 17
Reference: 2017WA10

References:
  A  216Th α decay (26.0 MS)  B  216Th α decay (133 μs)
  C  204Pb(12C,4nγ) 

General Comments:

2018Ro14: mass measurement, mass excess = -198.1 keV 248 compared with -199.0 keV 113 in AME-2016 (2017Wa10).

Levels: The adopted level scheme and γ-ray data is largely that proposed and observed in 2018Pa04. It is based on Eγ, Iγ, γγ, γ(θ), γ(t), and α(tot) measurements. The configurations are assigned based on semiempirical shell-model calculations. Some details are supplemented by data from the earlier studies, as indicated.

Q-value: S(2n)=16784 14; S(2p)=5172 12; Q(εp)=1267 13 (2017Wa10).










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     0.0ABC 0+ 13.0 s 2 
% ε < 15
% α > 85
     
   629.30 10 ABC 2+      629.3 1 
  100
E2
     0.0
0+
  1454.30 22  BC 4+      825.0 2 
  100
E2
   629.30
2+
  1895.10 24  BC 6+      440.8 1 
  100
E2
  1454.30
4+
  1958.4 20  BC 8+ 9.3 µs 9      63.3 20 
  100
[E2]
  1895.10
6+
  2108.4 20   C 8+      150.0 2 
  100

  1958.4
8+
  2577.2 20   C 10+      618.8 1 
  100
E2
  1958.4
8+
  2613.3 20   C 11- 0.85 µs 13      36.1S
   504.9 2 
   654.9 2 
   57 7 
  100 8 
   86 8 
[E1]
E3
E3
  2577.2
  2108.4
  1958.4
10+
8+
8+
  2699.7 20   C 12+      122.5 1 
  100
E2
  2577.2
10+
  3121.6 20   C 12-      508.3 1 
  100
D+Q
  2613.3
11-
  3404.2 20   C 13-      282.5 1 
   791.0 1 
   58 8 
  100 15 
M1
E2
  3121.6
  2613.3
12-
11-
  3602.4 20   C     1025.2 2 
  100

  2577.2
10+
  3631.8 20   C (13-)       29.4S
   932.0 1 
 
 


  3602.4
  2699.7

12+
  3949.0 20   C (14-)      317.3 1 
   544.8 1 
   18 4 
  100 13 
M1
D
  3631.8
  3404.2
(13-)
13-
  4107.2 20   C 15-      475.2 2 
   703.1 1 
   63 15 
  100 24 

E2
  3631.8
  3404.2
(13-)
13-
  4197.8 20   C (16-)       90.6S
   248.8 1 
 
 

E2
  4107.2
  3949.0
15-
(14-)
  4350.9 20   C (17-)      153.1 2 
  100
M1
  4197.8
(16-)
  4552.6 20   C (18-)      201.7 1 
  100
M1+E2
  4350.9
(17-)
  5043.5 20   C (19+) 21.5 ns 21     490.9 1 
  100
(E1)
  4552.6
(18-)
  5125.0 20   C      774.1 1 
  100

  4350.9
(17-)
  5414.7 20   C      289.7 1 
   371.1 1 
  100 16 
   94 17 


  5125.0
  5043.5

(19+)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  5877.1 20   C      462.4 1 
   833.7 1 
   89 17 
  100 22 


  5414.7
  5043.5

(19+)
  6137.8 20   C      260.6 1 
  100

  5877.1

  6370.3 20   C      493.1 2 
  100

  5877.1

E(level): From a least square fit to the Eγ data.

Jπ(level): From excited levels, based on measured multipolarities of transitions. For states populated in 204Pb(12C,4nγ) reaction there is the assumption of increasing spin with increasing excitation energy.

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   629.30 2+      629.3 1 E2 0.023α=0.023 0, α(K)=0.01624 23, α(L)=0.00504 7, α(M)=0.001273 18, α(N)=0.000336 5, α(O)=7.43×10-5 11, α(P)=1.208E-5 17, α(Q)=5.78E-7 8
  1454.30 4+      825.0 2 E2 0.01311α=0.01311, α(K)=0.00985 14, α(L)=0.00245 4, α(M)=0.000607 9, α(N)=0.0001599 23, α(O)=3.57×10-5 5, α(P)=5.93E-6 9, α(Q)=3.40E-7 5
  1895.10 6+      440.8 1 E2 0.0526α=0.0526, α(K)=0.0323 5, α(L)=0.01508 22, α(M)=0.00391 6, α(N)=0.001032 15, α(O)=0.000226 4, α(P)=3.55×10-5 5, α(Q)=1.205E-6 17
  1958.4 8+ 9.3 µs 9      63.3 20 [E2] 84B(E2)(W.u.)=0.0094 +30-20, α=84 14, α(L)=61 11, α(M)=17 3, α(N)=4.4 8, α(O)=0.93 16, α(P)=0.134 23, α(Q)=0.00032 5
  2577.2 10+      618.8 1 E2 0.0238α=0.0238, α(K)=0.01676 24, α(L)=0.00529 8, α(M)=0.001337 19, α(N)=0.000353 5, α(O)=7.80×10-5 11, α(P)=1.266E-5 18, α(Q)=5.98E-7 9
  2613.3 11- 0.85 µs 13      36.1[E1] 1.67B(E1)(W.u.)=7.6E-7 +15-12, α=1.67 5, α(L)=1.26 4, α(M)=0.312 9, α(N)=0.0800 22, α(O)=0.0166 5, α(P)=0.00228 6, α(Q)=7.95E-5 18
11- 0.85 µs 13     504.9 2 E3 0.1352B(E3)(W.u.)=18 4, α=0.1352, α(K)=0.0617 9, α(L)=0.0541 8, α(M)=0.01454 21, α(N)=0.00386 6, α(O)=0.000842 12, α(P)=0.0001312 19, α(Q)=3.47E-6 5
11- 0.85 µs 13     654.9 2 E3 0.0625B(E3)(W.u.)=2.5 5, α=0.0625, α(K)=0.0358 5, α(L)=0.0198 3, α(M)=0.00521 8, α(N)=0.001381 20, α(O)=0.000304 5, α(P)=4.83E-5 7, α(Q)=1.734E-6 25
  2699.7 12+      122.5 1 E2 4.03α=4.03, α(K)=0.309 5, α(L)=2.74 4, α(M)=0.745 11, α(N)=0.197 3, α(O)=0.0419 6, α(P)=0.00609 9, α(Q)=2.87×10-5 4
  3404.2 13-      282.5 1 M1 0.837α=0.837, α(K)=0.673 10, α(L)=0.1237 18, α(M)=0.0295 5, α(N)=0.00779 11, α(O)=0.001777 25, α(P)=0.000310 5, α(Q)=2.43×10-5 4
13-      791.0 1 E2 0.01426α=0.01426, α(K)=0.01063 15, α(L)=0.00273 4, α(M)=0.000677 10, α(N)=0.0001784 25, α(O)=3.98×10-5 6, α(P)=6.59E-6 10, α(Q)=3.69E-7 6
  3949.0 (14-)      317.3 1 M1 0.608α=0.608, α(K)=0.490 7, α(L)=0.0897 13, α(M)=0.0214 3, α(N)=0.00565 8, α(O)=0.001288 18, α(P)=0.000225 4, α(Q)=1.760×10-5 25
  4107.2 15-      703.1 1 E2 0.0182α=0.0182, α(K)=0.01321 19, α(L)=0.00371 6, α(M)=0.000929 13, α(N)=0.000245 4, α(O)=5.45×10-5 8, α(P)=8.94E-6 13, α(Q)=4.64E-7 7
  4197.8 (16-)      248.8 1 E2 0.275α=0.275, α(K)=0.1045 15, α(L)=0.1257 18, α(M)=0.0337 5, α(N)=0.00889 13, α(O)=0.00191 3, α(P)=0.000287 4, α(Q)=4.37×10-6 7
  4350.9 (17-)      153.1 2 M1 4.65α=4.65, α(K)=3.73 6, α(L)=0.694 10, α(M)=0.1658 24, α(N)=0.0437 7, α(O)=0.00997 15, α(P)=0.00174 3, α(Q)=0.0001363 20
  4552.6 (18-)      201.7 1 M1+E20.43 +12-13 
  5043.5 (19+) 21.5 ns 21     490.9 1 (E1) 0.01224B(E1)(W.u.)=7.4E-8 8, α=0.01224, α(K)=0.00998 14, α(L)=0.001719 24, α(M)=0.000407 6, α(N)=0.0001066 15, α(O)=2.40E-5 4, α(P)=4.08E-6 6, α(Q)=2.87E-7 4

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     0.00+ 13.0 s 2 
% ε < 15
% α > 85
RMS charge radius <r2>1/2=5.599 fm 18 (2013An02).
   629.302+   Possible configuration πh9/26~#νp1/2-1f5/2-1, but the shell model level energy is 600 keV above the experimental one, possibly indicating configuration mixing.
E(level): Possible configuration πh9/26~#νp1/2-1f5/2-1, but the shell model level energy is 600 keV above the experimental one, possibly indicating configuration mixing.
  1895.106+   Configuration πh9/26~#νp1/2-2.
  1958.48+ 9.3 µs 9  μ=7.104 72 (1986Ko01)
XREF: B(1967).
  2108.48+   Configuration πh9/25f7/2~#νp1/2-2.
  5043.5(19+) 21.5 ns 21  Configuration πh9/24i13/22~#νp1/2-2.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   629.30   629.3E(γ): From 216Th α decay (133 μs)
  1454.30   825.0E(γ): From 216Th α decay (133 μs)
  1895.10   440.8E(γ): From 216Th α decay (133 μs)
  1958.4    63.3E(γ): 1986Ko01 observed ce(L) and ce(M), energy uncertainty not given, |+2 keV assumed by the evaluator for further fitting.
  2613.3    36.1E(γ): Transition not observed, but suggested by the γγ-coincidence analysis of 2018Pa01. Eγ deduced by the evaluators from level energy differences.
I(γ): Deduced by the evaluator from the intensity balance of the 2577 keV level assuming no direct feeding and that I(γ+ce)(123)=I(γ+ce)(932), i.e. I(γ+ce)(36) = I(γ+ce)(618)-I(γ+ce)(1025)-I(γ+ce)(932). Similar, but less precise value of I(γ)(36)=56 14 was obtained from the intensity balance of the 2613 keV level.
  3631.8    29.4E(γ): Transition not observed, but suggested by the γγ-coincidence analysis of 2018Pa01. Eγ deduced by the evaluators from level energy differences.
  4197.8    90.6E(γ): Transition not observed, but suggested by the γγ-coincidence analysis of 2018Pa01. Eγ deduced by the evaluators from level energy differences.

Back to top