Adopted Levels, Gammas

				Histor	у						
	-	Туре		Author	Citation	Literature Cutoff Date					
	F	Full Evaluation	K. Au	ranen and E. A. Mccutchan	NDS 168,117 (2020)	1-Aug-2020					
$Q(\beta^{-}) = -7480\ 50;\ S(n) = 9102\ 14;\ S(p) = 3348\ 16;\ Q(\alpha) = 7031.7\ 17\ 2017Wa10$ S(2n) = 16784 14; S(2p) = 5172\ 12;\ Q(\epsilon p) = 1267\ 13\ (2017Wa10). 2018Ro14: mass measurement, mass excess = -198.1 keV 248 compared with -199.0 keV 113 in AME-2016 (2017Wa10). α : Additional information 1.											
				²¹² Ra Le	vels						
The adopted $\gamma(t)$, and α supplement	l level sc r(tot) me tted by d	theme and γ -ray easurements. The lata from the early of the early o	y data is ne config urlier stud	largely that proposed and ob urations are assigned based of dies, as indicated.	served in 2018Pa04. It on semiempirical shell-n	is based on E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, nodel calculations. Some details are					
				Cross Reference (XREF) Flags						
				A 216 Th α dec B 216 Th α dec C 204 Pb(12 C,44	ay (26.0 ms) ay (133 μs) nγ)						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments						
0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
629.30 10	2+		ABC	Possible configuration $\pi h_{9/2}^6 \approx v p_{1/2}^{-1} f_{5/2}^{-1}$, but the shell model level energy is 600 keV above the experimental one, possibly indicating configuration mixing.							
1454.30 22	4+		BC	J^{π} : E2 825 γ to 2 ⁺ state.							
1895.10 24	6+		BC	Configuration $\pi h_{9/2}^6 \otimes \nu p_{1/2}^{-2}$.							
1958.4 20	8+	9.3 µs 9	BC	$\mu = 7.104 \ 72 \ (1986Ko01)$ XREF: B(1967). $J^{\pi}: \text{ from } g\text{-factor and supported by configuration assignment.}$ $configuration = (\pi h_{9/2}^6 \otimes v p_{1/2}^{-2})_{8+}.$ $T_{1/2}: \text{ weighted average of } 9.6 \ \mu s \ 13 \ \text{from } \gamma(t) \text{ in } {}^{204}\text{Pb}({}^{12}\text{C},4n\gamma) \text{ and } 9.1 \ \mu s \ 9$ $\text{from } 2006\text{He17 in } {}^{174}\text{Yb}({}^{40}\text{Ar},2n\gamma). \text{ Other: } 7.1 \ 2 \ \text{from } 2013\text{Ba29 in } {}^{9}\text{Be}({}^{238}\text{U},\text{X}).$ $\mu: \text{ from } g\text{-factor=}0.888 \ 9 \ (1986\text{Ko01}, \text{ stroboscopic observation of perturbed angular } distributions). \text{ Other: } 1933\text{Ne04}.$							
2108.4 20	8+		С	J^{π} : E3 505 γ from 11 ⁻ state	2						
2577.2 20 2613.3 20	10 ⁺ 11 ⁻	0.85 μs 13	C C	Configuration $\pi h_{9/2}^5 f_{7/2} \otimes \nu p_{1/2}^{-2}$. J^{π} : E2 γ to 8 ⁺ state. μ =12.01 25 (1986Ko01) J^{π} : E3 655 γ to 8 ⁺ state. Configuration $\pi h_{9/2}^5 i_{13/2} \otimes \nu p_{1/2}^{-2}$ supported by the measured g-factor. $T_{1/2}$: from ²⁰⁴ Pb(¹² C,4n γ). Other: 0.48 μ s 4 from 2013Ba29 in ⁹ Be(²³⁸ U,X). μ : from the measured g-factor=1.092 22 (1986Ko01, stroboscopic observation of perturbed angular distributions).							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹²Ra Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2699.7 20	12^{+}		С	J^{π} : E2 122.5 γ to 10 ⁺ state.
3121.6 20	12^{-}		С	J^{π} : M1 283 γ from 13 ⁻ state.
3404.2 20	13-		С	J^{π} : E2 791 γ to 11 ⁻ state.
3602.4 20			С	
3631.8 20	(13^{-})		С	J^{π} : M1 317 γ from (14 ⁻) state.
3949.0 20	(14^{-})		С	J^{π} : D 545 γ to 13 ⁻ state, negative parity proposed in 2018Pa04.
4107.2 20	15^{-}		С	J^{π} : E2 703 γ to 13 ⁻ state.
4197.8 20	(16 ⁻)		С	J^{π} : E2 249 γ to (14 ⁻) state.
4350.9 20	(17^{-})		С	J^{π} : M1 153 γ to (16 ⁻) state.
4552.6 20	(18^{-})		С	J^{π} : M1+E2 202 γ to (17 ⁻) state.
5043.5 20	(19+)	21.5 ns 21	С	$T_{1/2}$: from 491 γ (t) in ²⁰⁴ Pb(¹² C,4n γ).
				Configuration $\pi h_{0/2}^4 i_{12/2}^2 \otimes v p_{1/2}^{-2}$.
				J^{π} : D 491 γ to $(18^{2/2})$ state, π from configuration assignment.
5125.0 20			С	
5414.7 20			С	
5877.1 20			С	
6137.8 20			С	
6370.3 20			С	

[†] From a least square fit to the E γ data. [‡] From excited levels, based on measured multipolarities of transitions. For states populated in ²⁰⁴Pb(¹²C,4n γ) reaction there is the assumption of increasing spin with increasing excitation energy.

 $\gamma(^{212}\text{Ra})$

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.‡	α	Comments
629.30	2+	629.3 [#] 1	100	0.0	0+	E2	0.0230	$\alpha(K)=0.01624 \ 23; \ \alpha(L)=0.00504 \ 7; \ \alpha(M)=0.001273$ 18; \ \alpha(N)=0.000336 \ 5; \ \alpha(O)=7.43 \times 10^{-5} \ 11 \alpha(P)=1.208 \times 10^{-5} \ 17; \ \alpha(Q)=5.78 \times 10^{-7} \ 8
1454.30	4+	825.0 [#] 2	100	629.30	2+	E2	0.01311	α (K)=0.00985 <i>14</i> ; α (L)=0.00245 <i>4</i> ; α (M)=0.000607 <i>9</i> ; α (N)=0.0001599 <i>23</i> ; α (O)=3.57×10 ⁻⁵ <i>5</i> α (P)=5.93×10 ⁻⁶ <i>9</i> ; α (Q)=3.40×10 ⁻⁷ <i>5</i>
1895.10	6+	440.8 [#] 1	100	1454.30	4+	E2	0.0526	α (K)=0.0323 5; α (L)=0.01508 22; α (M)=0.00391 6; α (N)=0.001032 15; α (O)=0.000226 4 α (P)=3.55×10 ⁻⁵ 5; α (Q)=1.205×10 ⁻⁶ 17
1958.4	8+	63.3 20	100	1895.10	6+	[E2]	84 <i>14</i>	α (L)=61 11; α (M)=17 3; α (N)=4.4 8; α (O)=0.93 16; α (P)=0.134 23; α (Q)=0.00032 5 B(E2)(W.u.)=0.0094 +30-20 E _{γ} : 1986Ko01 observed ce(L) and ce(M), energy uncertainty not given, ±2 keV assumed by the evaluator for further fitting.
2108.4 2577.2	8+ 10+	150.0 2 618.8 <i>1</i>	100 100	1958.4 1958.4	8+ 8+	E2	0.0238	$\alpha(K)=0.01676\ 24;\ \alpha(L)=0.00529\ 8;\ \alpha(M)=0.001337$ 19; $\alpha(N)=0.000353\ 5;\ \alpha(O)=7.80\times10^{-5}\ 11$ $\alpha(P)=1.266\times10^{-5}\ 18;\ \alpha(Q)=5.98\times10^{-7}\ 9$
2613.3	11-	(36.1 [@])	57 7	2577.2	10+	[E1]	1.67 5	$\begin{array}{l} \alpha(\text{L}) = 1.26 \ 4; \ \alpha(\text{M}) = 0.312 \ 9; \ \alpha(\text{N}) = 0.0800 \ 22; \\ \alpha(\text{O}) = 0.0166 \ 5; \ \alpha(\text{P}) = 0.00228 \ 6 \\ \alpha(\text{Q}) = 7.95 \times 10^{-5} \ 18 \\ \text{B}(\text{E1})(\text{W.u.}) = 7.6 \times 10^{-7} \ + 15 - 12 \\ \text{I}_{\gamma}: \text{ Deduced by the evaluator from the intensity} \\ \text{ balance of the } 2577 \ \text{keV} \text{ level assuming no direct} \end{array}$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{212}\text{Ra})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
									feeding and that $I(\gamma+ce)(123)=I(\gamma+ce)(932)$, i.e. $I(\gamma+ce)(36) =$ $I(\gamma+ce)(618)-I(\gamma+ce)(1025)-I(\gamma+ce)(932)$. Similar, but less precise value of $I(\gamma)(36)=56$ 14 was obtained from the intensity balance of the 2613 keV level.
2613.3	11-	504.9 2	100 8	2108.4	8+	E3		0.1352	$\alpha(K)=0.0617 \ 9; \ \alpha(L)=0.0541 \ 8; \\ \alpha(M)=0.01454 \ 21; \ \alpha(N)=0.00386 \ 6; \\ \alpha(O)=0.000842 \ 12 \\ \alpha(P)=0.0001312 \ 19; \ \alpha(Q)=3.47\times10^{-6} \ 5$
		654.9 2	86 8	1958.4	8+	E3		0.0625	B(E3)(W.u.)=18 4 α (K)=0.0358 5; α (L)=0.0198 3; α (M)=0.00521 8; α (N)=0.001381 20; α (O)=0.000304 5
									$\alpha(P)=4.83\times10^{-5}$ 7; $\alpha(Q)=1.734\times10^{-6}$ 25 B(E3)(Wu)=2.5 5
2699.7	12+	122.5 <i>I</i>	100	2577.2	10+	E2		4.03	$\begin{array}{l} \alpha(\text{K})=0.309 \; 5; \; \alpha(\text{L})=2.74 \; 4; \; \alpha(\text{M})=0.745 \; 11; \\ \alpha(\text{N})=0.197 \; 3; \; \alpha(\text{O})=0.0419 \; 6; \\ \alpha(\text{P})=0.00609 \; 9 \\ \alpha(\text{O})=2 \; 87 \times 10^{-5} \; 4 \end{array}$
3121.6	12^{-}	508.3 1	100	2613.3	11^{-}	D+Q			$u(Q) = 2.07 \times 10^{-7}$
3404.2	13-	282.5 1	58 8	3121.6	12-	M1		0.837	α (K)=0.673 <i>10</i> ; α (L)=0.1237 <i>18</i> ; α (M)=0.0295 <i>5</i> ; α (N)=0.00779 <i>11</i> ; α (O)=0.001777 <i>25</i>
		791.0 <i>1</i>	100 15	2613.3	11-	E2		0.01426	$\alpha(P)=0.000310 5; \alpha(Q)=2.43\times10^{-5} 4 \\ \alpha(K)=0.01063 15; \alpha(L)=0.00273 4; \\ \alpha(M)=0.000677 10; \alpha(N)=0.0001784 25 \\ \alpha(O)=3.98\times10^{-5} 6; \alpha(P)=6.59\times10^{-6} 10; \\ \alpha(O)=3.69\times10^{-7} 6$
3602.4		1025.2 2	100	2577.2	10^{+}				$u(Q) = 5.09 \times 10^{-10}$
3631.8	(13-)	$(29.4^{\textcircled{0}})$		3602.4	12+				
3949.0	(14 ⁻)	317.3 1	18 <i>4</i>	3631.8	(13 ⁻)	M1		0.608	α (K)=0.490 7; α (L)=0.0897 13; α (M)=0.0214 3; α (N)=0.00565 8; α (O)=0.001288 18
		51101	100 12	2404.2	12-	D			α (P)=0.000225 4; α (Q)=1.760×10 ⁻⁵ 25
4107.2	15-	544.8 <i>1</i> 475 2 2	63 15	3631.8	(13^{-})	D			
1107.2	10	703.1 1	100 24	3404.2	13-	E2		0.0182	α (K)=0.01321 <i>19</i> ; α (L)=0.00371 <i>6</i> ; α (M)=0.000929 <i>13</i> ; α (N)=0.000245 <i>4</i> ; α (O)=5.45×10 ⁻⁵ <i>8</i> α (P)=8.94×10 ⁻⁶ <i>13</i> ; α (Q)=4.64×10 ⁻⁷ 7
4197.8	(16 ⁻)	(90.6 [@]) 248.8 <i>1</i>		4107.2 3949.0	15 ⁻ (14 ⁻)	E2		0.275	α (K)=0.1045 <i>15</i> ; α (L)=0.1257 <i>18</i> ; α (M)=0.0337 <i>5</i> ; α (N)=0.00889 <i>13</i> ;
4350.9	(17-)	153.1 2	100	4197.8	(16 ⁻)	M1		4.65	$\alpha(O)=0.00191 \ 3$ $\alpha(P)=0.000287 \ 4; \ \alpha(Q)=4.37\times10^{-6} \ 7$ $\alpha(K)=3.73 \ 6; \ \alpha(L)=0.694 \ 10; \ \alpha(M)=0.1658$ $24; \ \alpha(N)=0.0437 \ 7; \ \alpha(O)=0.00997 \ 15$ $\alpha(P)=0.00174 \ 3; \ \alpha(Q)=0.0001363 \ 20$

Adopted Levels, Gammas (continued)

$\gamma(^{212}\text{Ra})$ (continued)

E_i (level)	$\frac{\mathbf{J}_i^{\pi}}{(18^-)}$	$\frac{E_{\gamma}^{\dagger}}{201.7.1}$	$\frac{I_{\gamma}^{\dagger}}{100}$	$\frac{E_f}{4350.9} \frac{J_f^{\pi}}{(17^{-})}$	$Mult.^{\ddagger}$	δ^{\ddagger}	α	Comments
5043.5	(18) (19 ⁺)	490.9 1	100	4552.6 (17)	(E1)	0.45 +12-15	0.01224	α(K)=0.00998 14; α(L)=0.001719 24; α(M)=0.000407 6; α(N)=0.0001066 15 $α(O)=2.40\times10^{-5} 4;$ α(P)=4.08×10 ⁻⁶ 6; α(Q)=2.87×10 ⁻⁷ 4 B(E1)(W.u.)=7.4×10 ⁻⁸ 8 D from γ(θ), Δπ from level scheme.
5125.0		774.1 <i>1</i>	100	4350.9 (17 ⁻)				
5414.7		289.7 <i>1</i> 371.1 <i>1</i>	100 <i>16</i> 94 <i>17</i>	5125.0 5043.5 (19 ⁺)				
5877.1		462.4 <i>1</i> 833.7 <i>1</i>	89 <i>17</i> 100 <i>22</i>	5414.7 5043.5 (19 ⁺)				
6137.8 6370.3		260.6 <i>1</i> 493.1 2	100 100	5877.1 5877.1				

[†] From ²⁰⁴Pb(¹²C,4n γ), except where noted. [‡] From $\gamma(\theta)$ and $\alpha(\exp)$ in ²⁰⁴Pb(¹²C,4n γ), except where noted. [#] From ²¹⁶Th α decay (133 μ s).

[@] Transition not observed, but suggested by the $\gamma\gamma$ -coincidence analysis of 2018Pa01. E γ deduced by the evaluators from level energy differences.

 $^{212}_{88}{
m Ra}_{124}$

5