²⁰⁴Pb(¹²C,4nγ) **1986Ko01,2018Pa04**

	History								
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	K. Auranen and E. A. Mccutchan	NDS 168, 117 (2020)	1-Aug-2020						

2018Pa04: the nuclei of interest were produced in the ²⁰⁴Pb(¹²C,4n)²¹²Ra fusion evaporation reaction at the Heavy Ion Accelerator Facility at the Australian National University, Canberra. The 5.4-mg/cm² thick ²⁰⁴Pb targets were enriched to 99.6% purity. The 81 MeV ¹²C beam was provided by the 14UD accelerator in ~1 ns long pulses separated by 1712 ns. Prompt and delayed γ rays were detected with the CAESAR HPGe array. E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(t)$, and $\alpha(tot)$ were measured.

2004He25: the nuclei of interest were produced in the 204 Pb(12 C,4n) 212 Ra fusion evaporation reaction with E(12 C)=103 MeV. Recoil products selected by the velocity filter SHIP. Measured E γ , I γ , implant- γ (t) using an HPGe detector. Deduced T_{1/2} of 1958 level.

1986Ko01: $E(^{12}C)=70-90$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\text{lin pol})$, $\gamma(t)$ using Ge(Li) detectors. Measured E_{ce} , I_{ce} using Si(Li) detector and superconducting solenoid. Observed level scheme up to a J=16 state at 3929 keV. Proposed level scheme is in good agreement with that of 2018Pa04 up to the $J^{\pi}=13^{-1}$ level at 3404 keV. Above that there are 4 levels and 4 depopulating γ rays that are alternatively placed in 2018Pa04.

The level scheme is that proposed in 2018Pa04. The configurations are assigned based on semiempirical shell-model calculations. Some details are filled from the earlier study 1986Ko01 as indicated.

 α : Additional information 1.

²¹²Ra Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		Nominal configuration $\pi h_{-\infty}^6 v r_{-2}^{-2}$
629.30 10	2+		J^{π} : from 1986Ko01.
			Possible configuration $\pi h_{9/2}^6 \otimes v p_{1/2}^{-1} f_{5/2}^{-1}$, but the shell model level energy is 600 keV above the experimental one, possibly indicating configuration mixing.
1454.30 14	4+		J^{π} : from 1986Ko01.
1895.10 17	6+		J^{π} : from 1986Ko01.
			Configuration $\pi h_{0,0}^6 \otimes v p_{1,0}^{-2}$.
1958.4 20	8+	9.6 µs 13	$\mu = 7.104\ 72$
		,	μ : from g-factor=0.888 9, stroboscopic method (1986Ko01).
			J^{π} : Configuration $(\pi h_{\sigma}^{6} \otimes \nu p_{\sigma}^{-2})_{8+}$ supported by the measured g-factor 1986Ko01.
			$T_{1/2}$: unweighted average of 10.9 μ s 4 from γ (t) (1986Ko01) and 8.3 μ s 3 (2004He25)
			obtained from a weighted average of 8.3 μ s 3 from 440 γ (t), 8.6 μ s 6 from 629 γ (t), and
			8.0 μ s 7 from 825 γ (t).
			J^{π} : from 1986Ko01.
2108.4 20	8+		Configuration $\pi h_{0,0}^5 f_{7/2} \otimes \nu p_{1,0}^{-2}$.
2577.2 20	10^{+}		$9/2^{-1} - 1/2$
2613.3 20	11-	0.85 µs 13	$\mu = 12.01 \ 25$
			μ : from the measured g-factor=1.092 22, stroboscopic method (1986Ko01).
			J^{π} : Configuration $\pi h_{0,n}^{5} i_{13/2} \otimes \nu p_{1,2}^{-2}$ supported by the measured g-factor.
			$T_{1/2}$: from 1986Ko01, which was confirmed in 2018Pa04, but no numerical value obtained
			due to maximum beam pulse separation of 1.7 μ s.
2699.7 20	12^{+}		
3121.6 20	12-		
3404.2 20	13-		
3602.4 20			
3631.8 20	(13^{-})		
3949.0 20	(14^{-})		
4107.2 20	15-		
4197.8 20	(16^{-})		
4350.9 20	(17^{-})		
4552.6 20	(18)	21.5 23	
5043.5 20	(19')	21.5 ns 21	$\Gamma_{1/2}$: from 491 γ (t) (2018Pa04).
			Configuration $\pi h_{9/2}^{-1} t_{13/2}^{-2} \otimes v p_{1/2}^{-2}$.

Continued on next page (footnotes at end of table)

²⁰⁴Pb(¹²C,4nγ) **1986Ko01,2018Pa04** (continued)

²¹²Ra Levels (continued)

 $\frac{\text{E(level)}^{\dagger}}{5125.0\ 20}$

5414.7 20 5877.2 20 6137.8 20 6370.3 20

 † From a least-squares fit to Ey, by evaluators.

[‡] The assignments are those proposed by 2018Pa04, unless specified otherwise.

$\gamma(^{212}\text{Ra})$

All γ -ray data are from 2018Pa04, unless indicated otherwise.

Internal conversion coefficients are deduced from an intensity balance across the levels in 2018Pa04.

 A_2 value obtained with A_4 set to zero in fitting the angular distributions. Data were collected in $\gamma\gamma$ coincidence mode, with

coincident gates set of known $\Delta J=2$ E2 transitions. Expected values, taking alignment $\sigma/J=0.3$ were -0.2 for $\Delta J=1$ dipole, +0.28 for $\Delta J=2$ quadrupole and +0.46 for $\Delta J=3$ octupole.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ	α	Comments
(29.4^{a})		3631.8	(13^{-})	3602.4					
(36.1 ^{<i>a</i>})	15.5 20	2613.3	11-	2577.2	10+	[E1]		1.668	$ \begin{aligned} &\alpha(L) = 1.257 \ 18; \ \alpha(M) = 0.312 \ 5; \ \alpha(N) = 0.0800 \\ &12; \ \alpha(O) = 0.01661 \ 24; \ \alpha(P) = 0.00228 \ 4 \\ &\alpha(Q) = 7.95 \times 10^{-5} \ 12 \end{aligned} $
									I_{γ} : deduced by the evaluator from the intensity balance of the 2577 keV level assuming no direct population and that $I(\gamma+ce)(123)=I(\gamma+ce)(932)$, i.e. $I(\gamma+ce)(36)$
									= $I(\gamma+ce)(618)$ - $I(\gamma+ce)(1025)$ - $I(\gamma+ce)(932)$. Similar, but less precise value of $I\gamma(36)=15.3$ 38 was obtained from the intensity balance of the 2613 keV level.
63.3 20		1958.4	8+	1895.10	6+	[E2]		84 <i>14</i>	$\begin{array}{l} \alpha(L) = 61 \ 11; \ \alpha(M) = 17 \ 3; \ \alpha(N) = 4.4 \ 8; \\ \alpha(O) = 0.93 \ 16; \ \alpha(P) = 0.134 \ 23; \ \alpha(Q) = 0.00032 \\ 5 \end{array}$
									E_{γ} : observed ce(L) and ce(M) in 1986Ko01 experiment, energy uncertainty not given, ± 2 keV assumed by the evaluator for further fitting.
(90.6 ^{<i>a</i>})		4197.8	(16 ⁻)	4107.2	15^{-}				
122.5 1		2699.7	12+	2577.2	10+	E2		4.03	$\begin{array}{l} \alpha(\exp)=4.7 \ 10 \\ \alpha(K)=0.309 \ 5; \ \alpha(L)=2.74 \ 4; \ \alpha(M)=0.745 \ 11; \\ \alpha(N)=0.197 \ 3; \ \alpha(O)=0.0419 \ 6; \ \alpha(P)=0.00609 \\ 9 \end{array}$
	10.6		a +	1050 1	a +				$\alpha(Q)=2.87\times10^{-5} 4$
150.0 2 153.1 2	4.9 6 5.9 <i>14</i>	2108.4 4350.9	8 ⁺ (17 ⁻)	1958.4 4197.8	8 ⁺ (16 ⁻)	M1		4.65	$\alpha(\exp)=5.0 \ 3$ $\alpha(K)=3.73 \ 6; \ \alpha(L)=0.694 \ 10; \ \alpha(M)=0.1658 \ 24;$ $\alpha(N)=0.0437 \ 7; \ \alpha(O)=0.00997 \ 15$ $\alpha(P)=0.00174 \ 3; \ \alpha(O)=0.0001363 \ 20$
									$A_2 = +1.0 4.$

Continued on next page (footnotes at end of table)

From ENSDF

 $^{212}_{88}$ Ra $_{124}$ -3

				²⁰⁴ Pb (¹² C,4n γ	y) 1986	Ko01,2018Pa04 (continued)	
						$\gamma(^{212}\text{Ra})$ (continued)			
Eγ	I_{γ}^{\dagger}	E _i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α	Comments
201.7 1	7.9 16	4552.6	(18 ⁻)	4350.9	(17 ⁻)	M1+E2	0.43 +12-13	1.89 13	$ \frac{\alpha(\exp)=1.89 \ 11}{\alpha(K)=1.47 \ 12; \ \alpha(L)=0.315 \ 5; } \\ \alpha(M)=0.0766 \ 12; \ \alpha(N)=0.0202 \ 3; \\ \alpha(O)=0.00457 \ 7 \\ \alpha(P)=0.000778 \ 14; \ \alpha(Q)=5.4\times10^{-5} $
248.8 1	35.8 40	4197.8	(16 ⁻)	3949.0	(14-)	E2		0.275	A_2 =+0.3 2. δ: from γ(θ). α(exp)=0.31 4 α(K)=0.1045 15; α(L)=0.1257 18; α(M)=0.0337 5; α(N)=0.00889 13; α(O)=0.00191 3 α(P)=0.000287 4; α(Q)=4.37×10 ⁻⁶
260.6 <i>1</i> 282.5 <i>1</i>	24.9 <i>30</i> 23.1 <i>31</i>	6137.8 3404.2	13-	5877.2 3121.6	12-	M1		0.837	$\begin{array}{l} & A_{2} = +0.24 \ 14. \\ A_{2} = +0.45 \ 23. \\ \alpha(\exp) = 0.98 \ 5 \\ \alpha(K) = 0.673 \ 10; \ \alpha(L) = 0.1237 \ 18; \\ \alpha(M) = 0.0295 \ 5; \ \alpha(N) = 0.00779 \\ 11; \ \alpha(O) = 0.001777 \ 25 \\ \alpha(P) = 0.000310 \ 5; \ \alpha(Q) = 2.43 \times 10^{-5} \end{array}$
289.7 <i>I</i> 317.3 <i>I</i>	14.0 2 <i>3</i> 7.5 <i>1</i> 8	5414.7 3949.0	(14 ⁻)	5125.0 3631.8	(13 ⁻)	M1		0.608	4 $A_2 = -0.66 \ 17.$ $A_2 = -0.6 \ 3.$ $\alpha(\exp) = 0.65 \ 13$ $\alpha(K) = 0.490 \ 7; \ \alpha(L) = 0.0897 \ 13;$ $\alpha(M) = 0.0214 \ 3; \ \alpha(N) = 0.00565 \ 8;$ $\alpha(O) = 0.001288 \ 18$ $\alpha(P) = 0.000225 \ 4;$
371.1 <i>I</i> 440.8 ^b	13.2 24	5414.7 1895.10	6+	5043.5 1454.30	(19 ⁺) 4 ⁺	E2 ^{&}		0.0526	$\alpha(Q)=1.760\times10^{-3} 25$ $\alpha(K)=0.0323 5; \alpha(L)=0.01508 22; \alpha(M)=0.00391 6; \alpha(N)=0.001032 15; \alpha(O)=0.000226 4 \alpha(P)=3.55\times10^{-5} 5; \alpha(Q)=1.205\times10^{-6} 17$
462.4 <i>1</i> 475.2 <i>2</i> 490.9 <i>1</i> 493.1 <i>2</i>	17.6 <i>33</i> 10.4 <i>24</i> 30.3 <i>45</i> 9.1 <i>22</i>	5877.2 4107.2 5043.5 6370.3	15 ⁻ (19 ⁺)	5414.7 3631.8 4552.6 5877.2	(13 ⁻) (18 ⁻)	D			E_{γ} : other: 440.2 6 (2004He25). A ₂ =-0.3 4. A ₂ =-0.23 18.
504.9 2	27.4 22	2613.3	11-	2108.4	8+	E3 [#]		0.1352	$\begin{aligned} &\alpha(K) = 0.0617 \ 9; \ \alpha(L) = 0.0541 \ 8; \\ &\alpha(M) = 0.01454 \ 21; \ \alpha(N) = 0.00386 \\ &6; \ \alpha(O) = 0.000842 \ 12 \\ &\alpha(P) = 0.0001312 \ 19; \\ &\alpha(O) = 3.47 \times 10^{-6} \ 5 \end{aligned}$
508.3 <i>1</i>	51.1 58	3121.6	12^{-}	2613.3	11 ⁻	D+Q			$A_2 = -0.85 \ 10.$
618.8 <i>I</i>	48.9 35	2577.2	10 ⁺	1958.4	8 ⁺	E2 [@]		0.0238	$\begin{aligned} \alpha(K) = 0.01676\ 24;\ \alpha(L) = 0.00529\ 8;\\ \alpha(M) = 0.001337\ 19;\\ \alpha(N) = 0.000353\ 5;\\ \alpha(O) = 7.80 \times 10^{-5}\ 11\\ \alpha(P) = 1.266 \times 10^{-5}\ 18;\\ \alpha(O) = 5.98 \times 10^{-7}\ 9 \end{aligned}$
629.3 ^b		629.30	2+	0.0	0^+	E2 ^{&}		0.0230	$\alpha(K)=0.01624\ 23;\ \alpha(L)=0.00504\ 7;$

Continued on next page (footnotes at end of table)

				²⁰⁴ Pb (¹	2 C,4n γ) 1986K	Ko01,2018Pa	a04 (continued)
						$\gamma(^{212}\text{Ra})$	(continued)	
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α	Comments
								$\alpha(M)=0.001273 \ I8; \ \alpha(N)=0.000336 \ 5; \ \alpha(O)=7.43\times10^{-5} \ I1 \ \alpha(P)=1.208\times10^{-5} \ I7; \ \alpha(Q)=5.78\times10^{-7} \ 8 \ E_{\gamma}: \ other; \ 628.6 \ 6 \ (2004He25).$
654.9 2	23.7 23	2613.3	11-	1958.4	8+	E3 [#]	0.0625	$\alpha(\mathbf{K})=0.03585; \alpha(\mathbf{L})=0.01983; \alpha(\mathbf{M})=0.005218; \alpha(\mathbf{N})=0.00138120; \alpha(\mathbf{O})=0.0003045$ $\alpha(\mathbf{P})=4.83\times10^{-5}7; \alpha(\mathbf{O})=1.734\times10^{-6}25$
703.1 1	16.5 <i>39</i>	4107.2	15-	3404.2	13-	E2	0.0182	$\begin{aligned} \alpha(K) &= 0.01321 \ I^9; \ \alpha(L) &= 0.00371 \ 6; \\ \alpha(M) &= 0.000929 \ I^3; \ \alpha(N) &= 0.000245 \ 4; \\ \alpha(O) &= 5.45 \times 10^{-5} \ 8 \\ \alpha(P) &= 8.94 \times 10^{-6} \ I^3; \ \alpha(Q) &= 4.64 \times 10^{-7} \ 7 \\ A_2 &= +0.7 \ 2. \end{aligned}$
774.1 <i>1</i>	8.9 26	5125.0		4350.9	(17^{-})			2
791.0 <i>I</i>	40.1 59	3404.2	13-	2613.3	11-	E2	0.01426	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01063 \ 15; \ \alpha(\mathbf{L}) = 0.00273 \ 4; \\ &\alpha(\mathbf{M}) = 0.000677 \ 10; \ \alpha(\mathbf{N}) = 0.0001784 \ 25 \\ &\alpha(\mathbf{O}) = 3.98 \times 10^{-5} \ 6; \ \alpha(\mathbf{P}) = 6.59 \times 10^{-6} \ 10; \\ &\alpha(\mathbf{Q}) = 3.69 \times 10^{-7} \ 6 \\ &\mathbf{A}_2 = + 0.48 \ 14. \end{aligned}$
825.0 ^b		1454.30	4+	629.30	2+	E2 ^{&}	0.01311	$\alpha(K)=0.00985 \ 14; \ \alpha(L)=0.00245 \ 4; \ \alpha(M)=0.000607 \ 9; \ \alpha(N)=0.0001599 \ 23; \ \alpha(O)=3.57\times10^{-5} \ 5 \ \alpha(P)=5.93\times10^{-6} \ 9; \ \alpha(Q)=3.40\times10^{-7} \ 5 \ E_{\gamma}: \ other; \ 824.3 \ 6 \ (2004He25).$
833.7 1	19.8 44	5877.2		5043.5	(19 ⁺)			1
932.0 1	5.1 23	3631.8	(13 ⁻)	2699.7	12+			
1025.2 2	3.6 30	3602.4		2577.2	10^{+}			

[†] As given in 2018Pa04, normalized to the I γ (619).

[‡] From $\gamma(\theta)$ and $\alpha(\exp)$ in 2018Pa04 , except where noted.

[#] Positive A₂ for $\gamma(\theta)$, T_{1/2}(2613.4 level), and measured conversion coefficient suggest E3 (1986Ko01), details not provided by authors. ^(a) Measured α suggests E2 (1986Ko01), details not provided by authors.

& From $\gamma(\theta)$ and $\gamma(\text{pol})$ (1986Ko01), details not provided by authors.

^{*a*} Transition not observed in 2018Pa04, but $\gamma\gamma$ coincidence relations suggest its presence. Energy from level energy difference.

^b From 1986Ko01. Values are identical in 2018Pa04 and were likely taken from the literature. 0.1 keV uncertainty assumed for least-squares fitting.

