ADOPTED LEVELS, GAMMAS for 186Re

Authors: J. C. Batchelder and A. M. Hurst, M. S. Basunia |  Citation: Nucl. Data Sheets 183, 1 (2022) |  Cutoff date: 1-Mar-2022 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=1072.71 keV 83S(n)= 6179.591 keV 5S(p)= 5828.42 keV 66Q(α)= 2078.4 keV 16
Reference: 2021WA16

References:
  A  186Re IT decay (2.0×105 Y)  B  185Re(n,γ) E=THERMAL
  C  185Re(n,γ) E=2-110 EV  D  185Re(d,p)
  E  186W(d,2nγ)  F  187Re(p,d)
  G  187Re(n,2nγ)  H  187Re(d,t)

General Comments:

Levels: Band assignments are those suggested in 1973Gl06, 2009Wh01, and 2017Ma39. Configurations are also discussed in 1969La11 and 1972Se06.

Levels: μ for excited levels: from 2020StZV, based on 1980Za10, corrected for diamagnetic shielding and Knight shift.










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     0.0ABCDEFGH 1- 3.7185 d 5 
% ε = 7.50 10
% β- = 92.50 10
     
    59.010 3 ABCD FGH 2-       59.009 4 
  100
M1+E2
     0.0
1-
    99.361 3 ABCDEFGH 3- 25.5 ns 25      40.350 3 
    99.362 4 
  100.0 7 
   21.3 9 
M1+E2
E2
    59.010
     0.0
2-
1-
   146.275 4  BCD FGH 3-       87.266 4 
   146.273 12 
  100.0 59 
    8.4 17 
M1(+E2)

    59.010
     0.0
2-
1-
   148.2 5 AB  E G  (8+) 2.0×10+5 y
% IT = 100
    48.84 50 
  100
(E5)
    99.361
3-
   173.929 4  BC EF H 4-       74.568 3 
  100.0
M1+E2
    99.361
3-
   180.2 7  B DEFG  (6-)        
   210.699 5  BCD FGH 2- < 0.2 ns     64.42 4 
   111.337 8 
   151.686 5 
   210.685 17 
    1.67 30 
   42.0 59 
   80.3 46 
  100.0 59 

M1(+E2)
M1+E2
M1
   146.275
    99.361
    59.010
     0.0
3-
3-
2-
1-
   268.800 6  BC  FG  4-      122.525 5 
   169.431 8 
   209.82 2 
  100.0 71 
   19.8 50 
   22.5 22 

M1+E2

   146.275
    99.361
    59.010
3-
3-
2-
   273.627 5  BCD FGH 4-       99.696 4 
   127.352 4 
   174.271 9 
   27.0 63 
   68 15 
  100.0 63 

M1+E2
M1+E2
   173.929
   146.275
    99.361
4-
3-
3-
   314.009 5  BC   G  (3+) 24.1 ns 11     103.310 6 
   167.737 8 
   214.648 8 
   254.995 15 
   20.3 12 
    8.64 45 
  100 6 
   48.2 29 
[E1]
E1+M2
E1
E1
   210.699
   146.275
    99.361
    59.010
2-
3-
3-
2-
   316.459 10  BC  FG  (1-) 0.20 ns 10     257.446 15 
   316.473 20 
   55.2 32 
  100.0 28 
M1+E2
M1
    59.010
     0.0
2-
1-
   317.846 7  BC EF   5-      143.919 5 
   218.6187 5 ?
  100 13 
    5.6 28 
M1+E2

   173.929
    99.361
4-
3-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   322.378 6  BCD FGH 3-      111.674 6 
   148.37 6 
   176.112 8 
   223.035 15 
   263.33 20 
  100 21 
    5.9 14 
   27.1 57 
   35.7 21 
   16.4 36 
M1+E2

M1+E2
M1+E2

   210.699
   173.929
   146.275
    99.361
    59.010
2-
4-
3-
3-
2-
   324.2 5  B  E G  5+ 17.3 ns 6     144.0 5 
   150.3 5 
  100.0 49 
   13.2 10 
E1
E1+M2
   180.2
   173.929
(6-)
4-
   342 2 ?   D            
   351.202 16  BC   G  (4)+ < 0.2 ns    204.96 15 
   251.841 15 
    1.29 36 
  100 7 

E1
   146.275
    99.361
3-
3-
   378.387 10  BCD F H (2-)       61.928 4 
   232.100 16 
   319.44 10 
   378.42 5 
   73 11 
   36.2 39 
   24.2 15 
  100.0 59 
M1+E2
M1+E2

M1+E2
   316.459
   146.275
    59.010
     0.0
(1-)
3-
2-
1-
   414.7 7  B DEFG  (9+)      266.69 4 ?
  100

   148.2
(8+)
   417.794 8  B   F H 5-      144.152 5 ?
   148.994 5 
   271.47 10 
   13.16 70 
  100 18 
   40 12 

M1+E2

   273.627
   268.800
   146.275
4-
4-
3-
   420.560 7  B    GH (4+)      106.550 4 
   321.1896 7 
  100 12 
    5.9 32 
M1+E2

   314.009
    99.361
(3+)
3-
   425.823 7  BC  F   (4+)      111.814 4 
   326.4786 7 
  100 36 
    5.9 29 
M1+E2

   314.009
    99.361
(3+)
3-
   462.969 9  BC  FG  5-      145.131 8 
   189.313 17 
   193.95 10 
   289.06 15 
   363.45 15 
   14.2 44 
  100 26 
   29.6 17 
    9.2 27 
   49.8 35 

M1+E2



   317.846
   273.627
   268.800
   173.929
    99.361
5-
4-
4-
4-
3-
   465.4 7  B  E G  6+      141.1 5 
  100.0
M1+E2
   324.2
5+
   469.794 8  BCD FGH 4-      147.417 6 
   200.981 16 
   295.88 15 
   370.3793 7 
  100.0 29 
   18.4 39 
   13.7 11 
    8.6 43 
M1+E2

M1

   322.378
   268.800
   173.929
    99.361
3-
4-
4-
3-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   470.509 11  BCD   H (3-)       92.122 4 
   148.09 6 
   201.78 10 
   411.18 20 
  100 23 
    6.8 21 
    6.8 21 
   54.5 42 
M1+E2



   378.387
   322.378
   268.800
    59.010
(2-)
3-
4-
2-
   497.294 10  B DEF   (6-)      179.448 7 
   323.5 5 
  100
   13 1 


   317.846
   173.929
5-
4-
   500.722 16  BC  FG  (5)+      149.520 5 
   176.2941 3 
   401.3 3 
  100 50 
   11.1 56 
   12.6 13 
M1+E2

[M2]
   351.202
   324.2
    99.361
(4)+
5+
3-
   534.37 4  BCD F H (4-)      260.87 15 
   265.6131 5 
   354.1162 2 
   360.43 4 
   434.9956 9 
   76 16 
   14.6 79 
  100 15 
  100.0 63 
    6.7 33 
(M1)


M1

   273.627
   268.800
   180.2
   173.929
    99.361
4-
4-
(6-)
4-
3-
   549.330 9  B D F   (5+)      123.507 6 
   128.7442 5 
   375.4003 12 
  100
   11.7 88 
  <17.5
M1+E2


   425.823
   420.560
   173.929
(4+)
(4+)
4-
   556.0 7  B DEF H (6+)      231.8 5 
  100
M1+E2
   324.2
5+
   559.976 9  B D FGH (5+)      134.158 16 
   139.416 7 
   18.1 22 
  100 16 

M1+E2
   425.823
   420.560
(4+)
(4+)
   577.720 15  BCD F   (2-)      199.5?
   261.266 12 
   53 18 
  100 16 

(M1+E2)
   378.387
   316.459
(2-)
(1-)
   588.705 12  BC  FG  (4-)      118.196 4 
   266.3501 4 
   442.2817 11 
  100.0 61 
    7.9 30 
    6.1 52 



   470.509
   322.378
   146.275
(3-)
3-
3-
   595.059 3  B       (6-)      177.2728 2 
  100

   417.794
5-
   601.57 3  B    G  (1+)      223.1878 4 
   285.10 3 
   390.91 5 
    6.5 27 
   18.0 12 
  100.0 18 

E1+M2
E1+M2
   378.387
   316.459
   210.699
(2-)
(1-)
2-
   606.8 10      F          
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   610.1 10      F          
   623.89 6  BC   G  (1-)      301.36 15 
   350.226 1 
   413.21 6 
   524.4963 7 
   564.8843 11 
   623.8411 10 
   33 12 
   13.2 79 
  100.0 71 
   34 11 
   16.4 71 
   20.9 69 






   322.378
   273.627
   210.699
    99.361
    59.010
     0.0
3-
4-
2-
3-
2-
1-
   646.346 11  B D F H 5-      176.552 8 
   228.5199 7 ?
   328.42 20 ?
  100 24 
   12.6 72 
   21.0 63 
M1+E2


   469.794
   417.794
   317.846
4-
5-
5-
   651.6 7  B DE  H (7+)      186.1 5 
   327.5 5 
  100
    9 1 


   465.4
   324.2
6+
5+
   657.98 3  B       (2+)       56.408 3 
   335.66 20 
   341.38 15 
   447.1410 7 
   90 27 
   41 14 
  100 11 
   70 30 
M1+E2



   601.57
   322.378
   316.459
   210.699
(1+)
3-
(1-)
2-
   660.722 5  B       (1-)      344.2823 9 
  100

   316.459
(1-)
   665.188 18  B    G  (6)+      164.466 8 
   313.9705 7 
  100 23 
   40 17 
M1+E2

   500.722
   351.202
(5)+
(4)+
   680.05 12  BCD F H (2-)      357.65 15 
   469.39 20 
   505.9847 10 
   580.5283 8 
   620.8425 5 
   680.0 10 
   52.9 35 
   30.2 27 
   19.2 77 
   11.5 39 
   32.7 77 
  100 23 






   322.378
   210.699
   173.929
    99.361
    59.010
     0.0
3-
2-
4-
3-
2-
1-
   686.055 16  BCD F H (3-)      108.336 5 
   215.28 15 
   307.56 6 
   25.7 57 
   14.0 34 
  100.0 71 


M1+E2
   577.720
   470.509
   378.387
(2-)
(3-)
(2-)
   689.3  CD F H (1-)        
   691.37 9  B   F H (6-)      193.95 10 ?
   228.42 10 
   273.5703 7 
   373.49 15 
   90 18 
   68.5 71 
   35 17 
  100.0 87 




   497.294
   462.969
   417.794
   317.846
(6-)
5-
5-
5-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   705.048 5  B       (6+)      155.6944 4 
  100

   549.330
(5+)
   705.2 7     EF   (10+)      290.4 5 
   557.1 5 
   59 7 
  100


   414.7
   148.2
(9+)
(8+)
   709.6 4     EF   (7-)      212.7 5 
   391.4 5 
 
 


   497.294
   317.846
(6-)
5-
   722.962 3  B   F H (5-)      188.5670 3 
   542.5661 10 
  100 38 
    9.4 50 


   534.37
   180.2
(4-)
(6-)
   728.2 15      F H        
   736.127 15  B   F   (5-)      147.417 6 ?
   266.3501 4 
   318.2979 7 
  100 11 
   11.7 44 
   26 14 
(M1+E2)


   588.705
   469.794
   417.794
(4-)
4-
5-
   744.80 5  B D     (3+)       86.84 4 
  100.0
M1
   657.98
(2+)
   753.267 4  BCD F H (2-,3-)      282.9159 7 
   606.9903 5 
   753.2663 8 
   15.6 74 
  100 19 
   93 30 



   470.509
   146.275
     0.0
(3-)
3-
1-
   761.42 19  BC  F H (1-,2-,3-)      439.01 20 
   444.9631 7 
   550.9 5 
   615.3883 16 
   702.6092 19 ?
   761.6 10 
  100 10 
   49 21 
   95 32 
   25 13 
   30 16 
  131 14 






   322.378
   316.459
   210.699
   146.275
    59.010
     0.0
3-
(1-)
2-
3-
2-
1-
   773.6 9     EF   (7+)      217.6 5 
  100

   556.0
(6+)
   774.879 18  B       (7-)      360.6248 17 
   594.5845 18 
   626.8018 20 
  100
   60 39 
   23 14 



   414.7
   180.2
   148.2
(9+)
(6-)
(8+)
   785.58 15  B       (1-,2-,3-)      406.92 20 
   468.8837 15 
   726.3659 12 
  100.0 96 
   14 11 
   68 23 



   378.387
   316.459
    59.010
(2-)
(1-)
2-
   791.225 5  BCD F H (1-,2-,3-)      468.8837 15 
   580.5283 8 
   644.9220 8 
   691.6333 13 
   732.2170 8 
   14 11 
   50 17 
   11 4 
   25 10 
  100 22 





   322.378
   210.699
   146.275
    99.361
    59.010
3-
2-
3-
3-
2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   795.9 7     E G  (10+)      381.2 5 
   647.6 5 
   50 5 
  100


   414.7
   148.2
(9+)
(8+)
   796.45 9  BCD F H (LE 3-)      218.69 10 
   418.37 20 
   473.9867 11 ?
   479.3
   584.3 7 
   737.1875 10 
   796.5 15 
   18.1 19 
   36 17 
   12 5 
  100.0 63 
   25 13 
   16 5 
   28 25 







   577.720
   378.387
   322.378
   316.459
   210.699
    59.010
     0.0
(2-)
(2-)
3-
(1-)
2-
2-
1-
   803 10    D   H        
   814.187 9  BC  F H (1-,2-)      603.4963 10 
   813.9455 15 
   71 24 
  100 42 


   210.699
     0.0
2-
1-
   819.00 19  BC  F H (2-,3-)      496.59 20 
   545.1537 13 
   607.5 8 
   645.3 8 
   672.5994 14 
   761.6 10 
  100.0 54 
    6.6 36 
   65 24 
   30 11 
    8.4 45 
   56 6 






   322.378
   273.627
   210.699
   173.929
   146.275
    59.010
3-
4-
2-
4-
3-
2-
   821.30 6  B     H (0+)      163.31 6 
   219.78 10 
   821.3334 19 
   55 21 
  100.0 75 
   51 28 



   657.98
   601.57
     0.0
(2+)
(1+)
1-
   826.150 17  BC    H (4-)      140.095 5 
   237.60 15 
   355.63 5 
  100 12 
   14 4 
   42.3 96 
M1+E2


   686.055
   588.705
   470.509
(3-)
(4-)
(3-)
   855.04 5 ? B D     (4+)      110.240 4 
   196.98 10 ?
  100 11 
   14.0 26 


   744.80
   657.98
(3+)
(2+)
   856.225 7  BCD F   (2-,3-)      539.7864 9 
   645.6312 14 
   856.2132 16 
   50 17 
   22 12 
  100 44 



   316.459
   210.699
     0.0
(1-)
2-
1-
   860.386 7  B       (6-)      213.8470 5 
   362.9614 12 ?
   397.5339 8 
   542.5661 10 
  100 50 
   63 38 
   75 38 
   45 23 




   646.346
   497.294
   462.969
   317.846
5-
(6-)
5-
5-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   864.17 15  BCD F   (2-,3-)      286.45 15 
  100

   577.720
(2-)
   869.2 7     E    (8+)      217.5 5 
   403.8 5 
  100
   22 2 


   651.6
   465.4
(7+)
6+
   871.0 10  BCD F   (2-,3-,4-)      548.6176 10 
   597.9591 8 ?
   660.1877 12 
   696.9010 11 ?
   771.7231 8 
   54 24 
   98 27 
   14 7 
   61 21 
  100 25 





   322.378
   273.627
   210.699
   173.929
    99.361
3-
4-
2-
4-
3-
   879.183 8  BCD     (2-,3-)      556.8625 12 
   610.3402 14 
   779.7021 10 ?
   50 22 
   28 14 
  100 38 



   322.378
   268.800
    99.361
3-
4-
3-
   888.777 3  BCD F   (4-)      202.6952 3 
   418.5012 9 
  100 29 
   87 33 


   686.055
   470.509
(3-)
(3-)
   889.676 4   CD F   (1-,2-,3-)      311.9945 6 
   419.8915 5 
   567.2060 11 ?
   573.2576 18 
   23 10 
  100 25 
   25 12 
   19 12 




   577.720
   469.794
   322.378
   316.459
(2-)
4-
3-
(1-)
   895.283 9  BCD F   (2-,3-,4-)      208.9310 5 
   577.4762 12 
   684.5342 13 
   721.6994 20 
   55.6 31 
  100 44 
   72 37 
   54 30 




   686.055
   317.846
   210.699
   173.929
(3-)
5-
2-
4-
   902.336 8  BCD F   (2-,3-)      324.4419 7 
   579.8404 14 ?
   691.6333 13 
   803.0772 12 ?
   29 17 
   28 16 
   16 6 
  100 35 




   577.720
   322.378
   210.699
    99.361
(2-)
3-
2-
3-
   910.478 11  B       (2+)      253.6189 6 
   308.8557 5 
   87 45 
  100 53 


   657.98
   601.57
(2+)
(1+)
   912.378 5  B       (6-)      176.2941 3 
   317.4579 8 
  100 43 
   34 18 


   736.127
   595.059
(5-)
(6-)
   913.58 3  BC  F   (2-,3-)      644.9220 8 
   767.1551 12 
   813.9455 15 
   12.7 47 
  100 33 
   80 33 



   268.800
   146.275
    99.361
4-
3-
3-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   923.629 3  BC  F   (2-,3-)      237.5479 3 
   453.1551 14 
   545.1537 13 
   601.3946 7 
   613.3660 13 ?
   755.8149 10 ?
   824.2034 18 
   21.4 64 
   18 13 
   10.0 55 
   68 18 
   15.9 82 
  100 27 
   73 32 







   686.055
   470.509
   378.387
   322.378
   316.459
   173.929
    99.361
(3-)
(3-)
(2-)
3-
(1-)
4-
3-
   929.6 15   C  F   (-)        
   935.31 20  BC  F   (2-,3-)        
   937.4 15   C  F   (1-)        
   944.238 10  BC  F   (2-,3-)      733.5210 11 
   798.042 2 
  100 36 
   64 36 


   210.699
   146.275
2-
3-
   953.2 5     EF   (8-)      243 1 ?
   455.9 5 
 
 


   709.6
   497.294
(7-)
(6-)
   954.72 23  B   F   (2-,3-,4-)      365.8498 7 ?
   484.0470 11 ?
   576.1214 16 
   743.8408 18 
   808.4161 16 
   895.9148 17 
   954.737 1 
    7.4 37 
    7.4 37 
    2.3 17 
    7.4 37 
    9.3 37 
   19 10 
  100 26 







   588.705
   470.509
   378.387
   210.699
   146.275
    59.010
     0.0
(4-)
(3-)
(2-)
2-
3-
2-
1-
   965.427 4  B       (1+)      144.0450 3 
   304.7179 6 
   307.4080 8 
  100 42 
   84 34 
   48 28 



   821.30
   660.722
   657.98
(0+)
(1-)
(2+)
   973.861 8  BC  F   (2-,3-,4-)      396.1636 7 
   503.8689 11 ?
   651.5000 8 
   704.7114 16 ?
  100 44 
   78 33 
   87 27 
   48 23 




   577.720
   469.794
   322.378
   268.800
(2-)
4-
3-
4-
   982.27 18  B   F   (2-,3-,4-)      404.7001 8 
   660.1877 12 
   771.7231 8 
   808.4161 16 
   16.7 71 
    3.8 19 
   40.5 95 
  100 43 




   577.720
   322.378
   210.699
   173.929
(2-)
3-
2-
4-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   988.973 5  BC  F   (2-,3-)      454.5360 9 
   518.5086 12 
   815.0087 23 
   842.7101 6 
   889.866 3 
    6.8 29 
    6.8 39 
   12.6 68 
  100 17 
   25 17 





   534.37
   470.509
   173.929
   146.275
    99.361
(4-)
(3-)
4-
3-
3-
   996.685 4  B       (5-)      170.5111 4 
   260.5964 5 
  100 57 
   86 36 


   826.150
   736.127
(4-)
(5-)
   997.84 6 ? B       (5+)      142.80 4 
  100

   855.04
(4+)
   999.320 6  BC      (2-,3-,4-)      410.6935 6 
   528.6262 11 
   725.5955 21 
  100 33 
   48 23 
   50 25 



   588.705
   470.509
   273.627
(4-)
(3-)
4-
  1002.678 9  B   F   (3-,4-,5-)      266.3501 4 ?
   414.0423 9 
   23.3 83 
  100 50 


   736.127
   588.705
(5-)
(4-)
  1003.526 4  B   F   (2-,3-)      317.4579 8 
   425.8998 6 ?
   533.0151 5 
   13.3 71 
   38 14 
  100 24 



   686.055
   577.720
   470.509
(3-)
(2-)
(3-)
  1004.156 6  BC  F   (2-,3-,4-)      415.5635 12 
   426.3975 7 
   61 37 
  100 43 


   588.705
   577.720
(4-)
(2-)
  1007.5 3      FG      1007.5 3 
  100

     0.0
1-
  1013.72 25  BC      (2-,3-,4-)        
  1017.60 17  BC  F   (1-,2-,3-)        
  1018.0 8     E    (11+)      312.7 5 
   603.3 5 
   26 13 
  100


   705.2
   414.7
(10+)
(9+)
  1019.7 20   C  F   (1-,2-,3-)        
  1027.2 20      F          
  1040.25 19  BC  F   (2-,3-,4-)        
  1042.9  C      (1-)        
  1046.9  C      (2-,3-,4-)        
  1050.7 15      F          
  1053.8 6  BC  F   (1-,2-,3-)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  1057.5 5  BC      (2-,3-)        
  1068.56 22  BC  F   (2-,3-)        
  1071.5 6  BC  F   (2-,3-)        
  1097.01 18  BC      (4-)        
  1101.3 3  BC  FG  (2-,3-)     1101.3 3 
  100

     0.0
1-
  1115.2 8     E    (9+)      246.0 5 
   463.7 5 
  100
   51 4 


   869.2
   651.6
(8+)
(7+)
  1119.6 7     E    (11+)      323.4 5 
   414.3 5 
   705.2 5 
 
 
 



   795.9
   705.2
   414.7
(10+)
(10+)
(9+)
  1122.50 23  BC      (2-,3-)        
  1132.07 20  B       (2-,3-,4-)        
  1138.1 8     E    (11+)      433.0 5 
   723.3 5 
 
 


   705.2
   414.7
(10+)
(9+)
  1140.9 3  BC      (2-,3-)        
  1151.14 18  BC      (4-)        
  1157.8 2  BC  F   (2-,3-,4-)        
  1163.1 5   C  F   (1-)        
  1172.19 18  BC  F   (2-,3-,4-)        
  1184.99 19  BC      (2-,3-)        
  1194.3  C      (2-,3-,4-)        
  1197.89 18  BC  F   (2-,3-)        
  1212.0 4  B   F   (2+,3+,4+)        
  1219.5 10   C  F   (1-)        
  1225.8  C      (1-,2-,3-)        
  1227.88 21  B       (2-,3-,4-)        
  1229.7 15      F          
  1231.3 3  BC      (2-,3-)        
  1240.3 3  B   F   (2-,3-,4-)        
  1242.64 21  BC      (2-,3-)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  1248.5  C      (-)        
  1261.3 BC      (1-)        
  1266.4 10  B   F          
  1271.8  C      (2-,3-,4-)        
  1275.3  C      (1-,2-,3-)        
  1285.8 9  BC      (2-,3-)        
  1290.6 9     E         494.7 5 
  100

   795.9
(10+)
  1298.1 15   C  F   (1-,2-,3-)        
  1306.4 10  BC  F   (2-,3-,4-)        
  1317.32 17  BC      (2-,3-,4-)        
  1321.64 20  BC      (2-,3-)        
  1326.5 10      F          
  1342.3 4  B   F   (2+,3+,4+)        
  1349.1 15      F          
  1351.16 19  BC      (4-)        
  1352.6 8     E    (12+)      334.5 5 
   647.5 5 
 
 


  1018.0
   705.2
(11+)
(10+)
  1355.4 3  BC  F   (2-,3-)        
  1360.3 4  BC      (2-,3-,4-)        
  1369.2 15      F          
  1375.7 7  BC  F   (1-,2-,3-)        
  1385.3  C      (2-,3-)        
  1386.4 8     E    (10+)      271.2 5 
   517.1 5 
  100
   69 6 


  1115.2
   869.2
(9+)
(8+)
  1390.5 15      F          
  1393.0 3  BC      (2-,3-)        
  1398.8  C      (1-,2-,3-)        
  1403.2  C  F   (1-)        
  1405.43 16  BC  F   (2-,3-,4-)        
  1419.0 3  BC      (2-,3-)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  1421.7 10      F          
  1424.5  C      (2-,3-)        
  1431.0  C      (4-)        
  1434.2 20      F          
  1437.71 24  B       (2-,3-,4-)        
  1449.8 4  BC  F   (1-,2-,3-)        
  1457.45 21  BC  F   (2-,3-)        
  1462.4 5  BC      (2-,3-)        
  1472.7 20      F          
  1475.9 3  BC      (2-,3-,4-)        
  1486.66 17  B   F   (2-,3-,4-)        
  1512.7 20      F          
  1520.5 20      F          
  1525.24 20  BC      (4-)        
  1529.4 20   C  F   (2-,3-)        
  1538.8  C      (1-,2-,3-)        
  1544.95 17  BC  F   (2-,3-,4-)        
  1550.65 20  BC      (1-,2-,3-)        
  1566.35 18  BC      (2-,3-,4-)        
  1571.98 20  BC      (1-,2-,3-)        
  1575.8  C      (2-,3-,4-)        
  1587.05 16  BC  F   (2-,3-)        
  1601.7 3  B   F   (2-,3-,4-)        
  1607.10 22  B       (2-,3-,4-)        
  1613.8 20      F          
  1628.18 22  BC      (2-,3-,4-)        
  1633.8 20      F          
  1637 5  B       (2-,3-,4-)        
  1643.9  C      (1-,2-,3-)        
  1646.87 23  BC  F   (2-,3-,4-)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  1659.12 15  BC  F   (2-,3-,4-)        
  1667.8 BC      (2-,3-,4-)        
  1672.3 3  BC      (1-,2-,3-)        
  1684.2  C      (2-,3-,4-)        
  1694.7 4  BC  F   (2-,3-)        
  1707.6 20      F          
  1711.1  C      (2-,3-)        
  1718.91 24  BC  F   (2-,3-,4-)        
  1742.4 20      F          
  1743.16 22  B       (2-,3-,4-)        
  1758.0 4  BC      (2-,3-)        
  1768.4 20  B   F          
  1776.4 20      F          
  1794.0 BC      (2-,3-,4-)        
  1818.1  C      (2-,3-,4-)        
  1827.54 17  BC      (2-,3-,4-)        
  1838.7 3  BC      (1-,2-,3-)        
  1846.41 22  BC      (2-,3-)        
  1881.34 22  B       (2-,3-,4-)        
  1905.8 4  B   F   (2-,3-,4-)        
  1964.77 14  B       (2-,3-,4-)        
  1985 4  B       (2-,3-,4-)        
  2004 3  B   F   (2-,3-,4-)        
  2055 4  B       (2-,3-,4-)        
  2063 4  B       (2-,3-,4-)        
  2083 3  B       (2-,3-,4-)        
  2106 3  B       (2-,3-,4-)        
  2141.2 10  B       (2-,3-,4-)        
  2203.4 3  B       (2-,3-,4-)        
  2219.19 22  B       (2-,3-,4-)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  2244.81 15  B       (2-,3-,4-)        
  2261 3  B       (2-,3-,4-)        
  2319.76 23  B   F   (2-,3-,4-)        
  2359.0 5  B   F   (2+,3+,4+)        

E(level): From least-squares fit to Eγ data, except where otherwise noted, yielding a normalized χ2=0.86. Tentative γ rays not used in fit to level energies. 2020Kr05 report high precision Eγ, almost all fit poorly and were not used during the fit; in this data set 140 out of 288 deviate by more than 3σ from their calculated values, yielding χ2=5905 cf. χ2crit= 1.3. Quoted level energies from 2020Kr05 are marked with a footnote.

Jπ(level): All firm assignments are also in agreement with statistical-model calculations using the DICEBOX computer code in the analysis of the partial (n,γ) cross-section data in 2016Ma35. Many of the tentative assignments are also supported by the statistical-model calculations; see comments.

T1/2(level): From (n,γ) E=thermal, except as noted.

Back to top

Band Transitions:

E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 1 - Kπ=2-, (π5/2[402])-(ν1/2[510]) band.
   210.699 5  2- < 0.2 ns      
   322.378 6  3-      111.674 6 
   148.37 6 
   176.112 8 
   223.035 15 
   263.33 20 
  100 21 
    5.9 14 
   27.1 57 
   35.7 21 
   16.4 36 
M1+E2

M1+E2
M1+E2

   210.699
   173.929
   146.275
    99.361
    59.010
2-
4-
3-
3-
2-
   469.794 8  4-      147.417 6 
   200.981 16 
   295.88 15 
   370.3793 7 
  100.0 29 
   18.4 39 
   13.7 11 
    8.6 43 
M1+E2

M1

   322.378
   268.800
   173.929
    99.361
3-
4-
4-
3-
   646.346 11  5-      176.552 8 
   228.5199 7 ?
   328.42 20 ?
  100 24 
   12.6 72 
   21.0 63 
M1+E2


   469.794
   417.794
   317.846
4-
5-
5-
   860.386 7  (6-)      213.8470 5 
   362.9614 12 ?
   397.5339 8 
   542.5661 10 
  100 50 
   63 38 
   75 38 
   45 23 




   646.346
   497.294
   462.969
   317.846
5-
(6-)
5-
5-
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 2 - Kπ=4-, (π5/2[402])+(ν3/2[512]) band.
   173.929 4  4-        
   317.846 7  5-      143.919 5 
   218.6187 5 ?
  100 13 
    5.6 28 
M1+E2

   173.929
    99.361
4-
3-
   497.294 10  (6-)      179.448 7 
   323.5 5 
  100
   13 1 


   317.846
   173.929
5-
4-
   709.6 4  (7-)      212.7 5 
   391.4 5 
 
 


   497.294
   317.846
(6-)
5-
   953.2 5  (8-)      243 1 ?
   455.9 5 
 
 


   709.6
   497.294
(7-)
(6-)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 3 - Kπ=3-, (π5/2[402])+(ν1/2[510]) band.
    99.361 3  3- 25.5 ns 25       
   273.627 5  4-       99.696 4 
   127.352 4 
   174.271 9 
   27.0 63 
   68 15 
  100.0 63 

M1+E2
M1+E2
   173.929
   146.275
    99.361
4-
3-
3-
   462.969 9  5-      145.131 8 
   189.313 17 
   193.95 10 
   289.06 15 
   363.45 15 
   14.2 44 
  100 26 
   29.6 17 
    9.2 27 
   49.8 35 

M1+E2



   317.846
   273.627
   268.800
   173.929
    99.361
5-
4-
4-
4-
3-
   691.37 9  (6-)      193.95 10 ?
   228.42 10 
   273.5703 7 
   373.49 15 
   90 18 
   68.5 71 
   35 17 
  100.0 87 




   497.294
   462.969
   417.794
   317.846
(6-)
5-
5-
5-
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 4 - Kπ=1-, (π5/2[402])-(ν3/2[512]) band.
     0.0 1- 3.7185 d 5 
% ε = 7.50 10
% β- = 92.50 10
     
    59.010 3  2-       59.009 4 
  100
M1+E2
     0.0
1-
   146.275 4  3-       87.266 4 
   146.273 12 
  100.0 59 
    8.4 17 
M1(+E2)

    59.010
     0.0
2-
1-
   268.800 6  4-      122.525 5 
   169.431 8 
   209.82 2 
  100.0 71 
   19.8 50 
   22.5 22 

M1+E2

   146.275
    99.361
    59.010
3-
3-
2-
   417.794 8  5-      144.152 5 ?
   148.994 5 
   271.47 10 
   13.16 70 
  100 18 
   40 12 

M1+E2

   273.627
   268.800
   146.275
4-
4-
3-
   595.059 3  (6-)      177.2728 2 
  100

   417.794
5-
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 5 - Kπ=2-, (π5/2[402])-(ν9/2[505]) band.
   577.720 15  (2-)        
   686.055 16  (3-)      108.336 5 
   215.28 15 
   307.56 6 
   25.7 57 
   14.0 34 
  100.0 71 


M1+E2
   577.720
   470.509
   378.387
(2-)
(3-)
(2-)
   826.150 17  (4-)      140.095 5 
   237.60 15 
   355.63 5 
  100 12 
   14 4 
   42.3 96 
M1+E2


   686.055
   588.705
   470.509
(3-)
(4-)
(3-)
   996.685 4  (5-)      170.5111 4 
   260.5964 5 
  100 57 
   86 36 


   826.150
   736.127
(4-)
(5-)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 6 - Kπ=3+, (π5/2[402])-(ν11/2[615]) band.
   314.009 5  (3+) 24.1 ns 11       
   420.560 7  (4+)      106.550 4 
   321.1896 7 
  100 12 
    5.9 32 
M1+E2

   314.009
    99.361
(3+)
3-
   559.976 9  (5+)      134.158 16 
   139.416 7 
   18.1 22 
  100 16 

M1+E2
   425.823
   420.560
(4+)
(4+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 7 - Kπ=(4)+, (π9/2[514])-(ν1/2[510]) band. See comments for
   351.202 16  (4)+ < 0.2 ns      
   500.722 16  (5)+      149.520 5 
   176.2941 3 
   401.3 3 
  100 50 
   11.1 56 
   12.6 13 
M1+E2

[M2]
   351.202
   324.2
    99.361
(4)+
5+
3-
   665.188 18  (6)+      164.466 8 
   313.9705 7 
  100 23 
   40 17 
M1+E2

   500.722
   351.202
(5)+
(4)+
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 8 - Kπ=(1+), (π9/2[514])-(ν7/2[503]) band.
   601.57 3  (1+)        
   657.98 3  (2+)       56.408 3 
   335.66 20 
   341.38 15 
   447.1410 7 
   90 27 
   41 14 
  100 11 
   70 30 
M1+E2



   601.57
   322.378
   316.459
   210.699
(1+)
3-
(1-)
2-
   744.80 5  (3+)       86.84 4 
  100.0
M1
   657.98
(2+)
   855.04 5  (4+)      110.240 4 
   196.98 10 ?
  100 11 
   14.0 26 


   744.80
   657.98
(3+)
(2+)
   997.84 6  (5+)      142.80 4 
  100

   855.04
(4+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 9 - Kπ=1-, (π5/2[402])-(ν7/2[503]) band.
   316.459 10  (1-) 0.20 ns 10       
   378.387 10  (2-)       61.928 4 
   232.100 16 
   319.44 10 
   378.42 5 
   73 11 
   36.2 39 
   24.2 15 
  100.0 59 
M1+E2
M1+E2

M1+E2
   316.459
   146.275
    59.010
     0.0
(1-)
3-
2-
1-
   470.509 11  (3-)       92.122 4 
   148.09 6 
   201.78 10 
   411.18 20 
  100 23 
    6.8 21 
    6.8 21 
   54.5 42 
M1+E2



   378.387
   322.378
   268.800
    59.010
(2-)
3-
4-
2-
   588.705 12  (4-)      118.196 4 
   266.3501 4 
   442.2817 11 
  100.0 61 
    7.9 30 
    6.1 52 



   470.509
   322.378
   146.275
(3-)
3-
3-
   736.127 15  (5-)      147.417 6 ?
   266.3501 4 
   318.2979 7 
  100 11 
   11.7 44 
   26 14 
(M1+E2)


   588.705
   469.794
   417.794
(4-)
4-
5-
   912.378 5  (6-)      176.2941 3 
   317.4579 8 
  100 43 
   34 18 


   736.127
   595.059
(5-)
(6-)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 10 - Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
   324.2 5  5+ 17.3 ns 6       
   465.4 7  6+      141.1 5 
  100.0
M1+E2
   324.2
5+
   651.6 7  (7+)      186.1 5 
   327.5 5 
  100
    9 1 


   465.4
   324.2
6+
5+
   869.2 7  (8+)      217.5 5 
   403.8 5 
  100
   22 2 


   651.6
   465.4
(7+)
6+
  1115.2 8  (9+)      246.0 5 
   463.7 5 
  100
   51 4 


   869.2
   651.6
(8+)
(7+)
  1386.4 8  (10+)      271.2 5 
   517.1 5 
  100
   69 6 


  1115.2
   869.2
(9+)
(8+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 11 - Kπ=(8+), (π5/2[402])+(ν11/2[615]) band.
   148.2 5  (8+) 2.0×10+5 y
% IT = 100
     
   414.7 7  (9+)      266.69 4 ?
  100

   148.2
(8+)
   705.2 7  (10+)      290.4 5 
   557.1 5 
   59 7 
  100


   414.7
   148.2
(9+)
(8+)
  1018.0 8  (11+)      312.7 5 
   603.3 5 
   26 13 
  100


   705.2
   414.7
(10+)
(9+)
  1352.6 8  (12+)      334.5 5 
   647.5 5 
 
 


  1018.0
   705.2
(11+)
(10+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 12 - Kπ=(6+), (π9/2[514])+(ν3/2[512]) band.
   556.0 7  (6+)        
   773.6 9  (7+)      217.6 5 
  100

   556.0
(6+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 13 - Kπ=(10+). Band built on the Jπ=(10+) state at 796 keV; see
   795.9 7  (10+)        
  1119.6 7  (11+)      323.4 5 
   414.3 5 
   705.2 5 
 
 
 



   795.9
   705.2
   414.7
(10+)
(10+)
(9+)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 14 - Kπ=(6-), (π5/2[402])+(ν7/2[503]) band.
   180.2 7  (6-)        
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 15 - Kπ=(1-), (π9/2[514])-(ν11/2[615]) band.
   660.722 5  (1-)        
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 16 - Kπ=(4-), (π1/2[411])+(ν7/2[503]) band.
   534.37 4  (4-)        
   722.962 3  (5-)      188.5670 3 
   542.5661 10 
  100 38 
    9.4 50 


   534.37
   180.2
(4-)
(6-)
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 17 - Kπ=(7-), (π5/2[402])+(ν9/2[505]) band.
   774.879 18  (7-)        
E(level)
(keV)
Jπ(level) T1/2(level)E(γ)I(γ)M(γ)Final Levels
Band 18 - Kπ=(0+), (π9/2[514])-(ν9/2[505]) band.
   821.30 6  (0+)        
   910.478 11  (2+)      253.6189 6 
   308.8557 5 
   87 45 
  100 53 


   657.98
   601.57
(2+)
(1+)
   965.427 4  (1+)      144.0450 3 
   304.7179 6 
   307.4080 8 
  100 42 
   84 34 
   48 28 



   821.30
   660.722
   657.98
(0+)
(1-)
(2+)

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
    59.010 2-       59.009 4 M1+E20.042 104.21α=4.21 7, α(L)=3.25 5, α(M)=0.744 12, α(N)=0.1804 30, α(O)=0.0302 5, α(P)=0.002171 30
    99.361 3- 25.5 ns 25      40.350 3 M1+E20.145 617.7B(E2)(W.u.)=3.42 +50-42, B(M1)(W.u.)=6.5E-4 +8-6, α=17.7 5, α(L)=13.6 4, α(M)=3.21 9, α(N)=0.773 22, α(O)=0.1233 32, α(P)=0.00653 9
3- 25.5 ns 25      99.362 4 E2 4.23B(E2)(W.u.)=0.391 +48-39, α=4.23 6, α(K)=0.848 12, α(L)=2.55 4, α(M)=0.650 9, α(N)=0.1543 22, α(O)=0.02198 31, α(P)=7.86E-5 11
   146.275 3-       87.266 4 M1(+E2)0.14 LE7.64α=7.64 11, α(K)=6.27 10, α(L)=1.06 4, α(M)=0.243 10, α(N)=0.0589 23, α(O)=0.00982 33, α(P)=0.000689 11
   148.2 (8+) 2.0×10+5 y
% IT = 100
    48.84 50 (E5) 4.8×106α=4.8×106 4, α(L)=2.48E6 19, α(M)=1.82E6 16, α(N)=4.7E5 4, α(O)=4.9E4 4, α(P)=36.8 26
   173.929 4-       74.568 3 M1+E20.12 +5-811.97α=11.97 17, α(K)=9.72 18, α(L)=1.73 12, α(M)=0.400 30, α(N)=0.097 7, α(O)=0.0160 10, α(P)=0.001084 20
   210.699 2- < 0.2 ns    111.337 8 M1(+E2)0.27 LE3.76α=3.76 6, α(K)=3.06 9, α(L)=0.540 35, α(M)=0.125 9, α(N)=0.0302 22, α(O)=0.00499 29, α(P)=0.000334 11
2- < 0.2 ns    151.686 5 M1+E21.7 +11-51.03α=1.03 11, α(K)=0.59 15, α(L)=0.332 26, α(M)=0.082 7, α(N)=0.0197 17, α(O)=0.00291 20, α(P)=5.8×10-5 17
2- < 0.2 ns    210.685 17 M1 0.628α=0.628 9, α(K)=0.520 7, α(L)=0.0829 12, α(M)=0.01893 27, α(N)=0.00459 6, α(O)=0.000772 11, α(P)=5.65×10-5 8
   268.800 4-      169.431 8 M1+E21.75 550.71α=0.71 10, α(K)=0.43 11, α(L)=0.212 13, α(M)=0.052 4, α(N)=0.0125 9, α(O)=0.00186 10, α(P)=4.2×10-5 13
   273.627 4-      127.352 4 M1+E21.7 +70-71.86α=1.86 24, α(K)=0.9 4, α(L)=0.70 12, α(M)=0.174 31, α(N)=0.041 7, α(O)=0.0061 9, α(P)=9.E-5 5
4-      174.271 9 M1+E20.71 +26-230.88α=0.88 8, α(K)=0.67 10, α(L)=0.162 10, α(M)=0.0387 29, α(N)=0.0093 7, α(O)=0.00147 7, α(P)=7.1×10-5 11
   314.009 (3+) 24.1 ns 11     103.310 6 [E1] 0.352B(E1)(W.u.)=8.1E-7 +7-6, α=0.352 5, α(K)=0.287 4, α(L)=0.0507 7, α(M)=0.01162 16, α(N)=0.00276 4, α(O)=0.000433 6, α(P)=2.206E-5 31
(3+) 24.1 ns 11     167.737 8 E1+M20.26 60.53B(E1)(W.u.)=7.5E-8 6, B(M2)(W.u.)=0.83 +39-33, α=0.53 20, α(K)=0.40 15, α(L)=0.10 4, α(M)=0.024 10, α(N)=0.0058 24, α(O)=1.0E-3 4, α(P)=6.1E-5 25
(3+) 24.1 ns 11     214.648 8 E1 0.0539B(E1)(W.u.)=4.45E-7 25, α=0.0539 8, α(K)=0.0447 6, α(L)=0.00716 10, α(M)=0.001632 23, α(N)=0.000391 5, α(O)=6.33E-5 9, α(P)=3.80E-6 5
(3+) 24.1 ns 11     254.995 15 E1 0.0351B(E1)(W.u.)=1.28E-7 10, α=0.0351 5, α(K)=0.0292 4, α(L)=0.00460 6, α(M)=0.001048 15, α(N)=0.0002516 35, α(O)=4.09E-5 6, α(P)=2.533E-6 35
   316.459 (1-) 0.20 ns 10     257.446 15 M1+E20.55 +22-230.310B(E2)(W.u.)=2.6 +30-17, B(M1)(W.u.)=0.0014 +13-5, α=0.310 31, α(K)=0.250 30, α(L)=0.0460 11, α(M)=0.01069 18, α(N)=0.00258 5, α(O)=0.000424 13, α(P)=2.67E-5 35
(1-) 0.20 ns 10     316.473 20 M1 0.2061B(M1)(W.u.)=0.0018 +15-6, α=0.2061 29, α(K)=0.1712 24, α(L)=0.0270 4, α(M)=0.00616 9, α(N)=0.001494 21, α(O)=0.0002513 35, α(P)=1.847×10-5 26
   317.846 5-      143.919 5 M1+E21.5 +9-51.27α=1.27 16, α(K)=0.74 22, α(L)=0.40 4, α(M)=0.100 12, α(N)=0.0238 29, α(O)=0.0035 4, α(P)=7.3×10-5 25
   322.378 3-      111.674 6 M1+E21.29 +51-323.08α=3.08 16, α(K)=1.60 34, α(L)=1.12 14, α(M)=0.28 4, α(N)=0.067 9, α(O)=0.0098 11, α(P)=0.00017 4
3-      176.112 8 M1+E20.93 +43-310.78α=0.78 10, α(K)=0.57 12, α(L)=0.164 11, α(M)=0.0396 34, α(N)=0.0095 8, α(O)=0.00147 8, α(P)=5.9×10-5 14
3-      223.035 15 M1+E20.97 +28-220.38α=0.38 4, α(K)=0.29 4, α(L)=0.0717 10, α(M)=0.01712 35, α(N)=0.00412 8, α(O)=0.000649 9, α(P)=3.0×10-5 5
   324.2 5+ 17.3 ns 6     144.0 5 E1 0.1495B(E1)(W.u.)=3.01E-6 13, α=0.1495 25, α(K)=0.1229 20, α(L)=0.02059 35, α(M)=0.00471 8, α(N)=0.001124 19, α(O)=0.0001790 30, α(P)=9.91E-6 16
5+ 17.3 ns 6     150.3 5 E1+M20.17 50.42B(E1)(W.u.)=3.38E-7 30, α=0.42 18, α(K)=0.32 13, α(L)=0.08 4, α(M)=0.018 9, α(N)=0.0045 22, α(O)=7.E-4 4, α(P)=4.6E-5 24
   351.202 (4)+ < 0.2 ns    251.841 15 E1 0.0362α=0.0362 5, α(K)=0.0301 4, α(L)=0.00475 7, α(M)=0.001082 15, α(N)=0.000260 4, α(O)=4.22×10-5 6, α(P)=2.61E-6 4
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   378.387 (2-)       61.928 4 M1+E20.54 810.0α=10.0 15, α(L)=7.6 11, α(M)=1.88 29, α(N)=0.45 7, α(O)=0.067 9, α(P)=0.00152 9
(2-)      232.100 16 M1+E20.57 170.410α=0.410 31, α(K)=0.329 31, α(L)=0.0630 9, α(M)=0.01469 23, α(N)=0.00355 5, α(O)=0.000578 9, α(P)=3.5×10-5 4
(2-)      378.42 5 M1+E20.4 20.116α=0.116 11, α(K)=0.096 9, α(L)=0.0157 9, α(M)=0.00361 18, α(N)=0.00087 4, α(O)=0.000146 9, α(P)=1.03×10-5 11
   417.794 5-      148.994 5 M1+E21.1 +8-41.24α=1.24 18, α(K)=0.82 24, α(L)=0.32 4, α(M)=0.079 12, α(N)=0.0188 29, α(O)=0.00285 35, α(P)=8.4×10-5 28
   420.560 (4+)      106.550 4 M1+E21.5 +16-53.54α=3.54 24, α(K)=1.6 6, α(L)=1.46 27, α(M)=0.37 7, α(N)=0.087 17, α(O)=0.0127 23, α(P)=1.7×10-4 7
   425.823 (4+)      111.814 4 M1+E21.29 +50-323.06α=3.06 16, α(K)=1.60 34, α(L)=1.11 14, α(M)=0.28 4, α(N)=0.066 9, α(O)=0.0097 11, α(P)=0.00016 4
   462.969 5-      189.313 17 M1+E20.91 +35-260.64α=0.64 7, α(K)=0.47 8, α(L)=0.126 5, α(M)=0.0303 17, α(N)=0.0073 4, α(O)=0.00114 4, α(P)=4.9×10-5 10
5-      193.95 10   α(K)=0.42 24, α(L)=0.117 13, α(M)=0.028 4, α(N)=0.0068 10, α(O)=0.00105 8, α(P)=4.3×10-5 28
   465.4 6+      141.1 5 M1+E20.7 +7-61.66α=1.66 28, α(K)=1.2 4, α(L)=0.34 9, α(M)=0.082 24, α(N)=0.020 6, α(O)=0.0031 7, α(P)=1.3×10-4 5
   469.794 4-      147.417 6 M1+E20.95 +27-221.34α=1.34 10, α(K)=0.92 13, α(L)=0.320 25, α(M)=0.078 7, α(N)=0.0187 17, α(O)=0.00285 20, α(P)=9.6×10-5 16
4-      295.88 15 M1 0.2472α=0.2472 35, α(K)=0.2053 29, α(L)=0.0324 5, α(M)=0.00740 10, α(N)=0.001796 25, α(O)=0.000302 4, α(P)=2.217×10-5 31
   470.509 (3-)       92.122 4 M1+E20.80 +44-346.24α=6.24 19, α(K)=3.7 10, α(L)=2.0 6, α(M)=0.48 16, α(N)=0.12 4, α(O)=0.017 5, α(P)=4.0×10-4 11
   500.722 (5)+      149.520 5 M1+E21.8 +14-51.06α=1.06 11, α(K)=0.59 15, α(L)=0.356 27, α(M)=0.089 8, α(N)=0.0212 18, α(O)=0.00312 21, α(P)=5.8×10-5 17
(5)+      401.3 3 [M2] 0.369α=0.369 5, α(K)=0.293 4, α(L)=0.0583 8, α(M)=0.01373 20, α(N)=0.00334 5, α(O)=0.000557 8, α(P)=3.85×10-5 5
   534.37 (4-)      260.87 15 (M1) 0.348α=0.348 5, α(K)=0.289 4, α(L)=0.0458 6, α(M)=0.01046 15, α(N)=0.00254 4, α(O)=0.000427 6, α(P)=3.13×10-5 4
(4-)      360.43 4 M1 0.1453α=0.1453 20, α(K)=0.1208 17, α(L)=0.01898 27, α(M)=0.00433 6, α(N)=0.001050 15, α(O)=0.0001766 25, α(P)=1.300×10-5 18
   549.330 (5+)      123.507 6 M1+E20.75 352.46α=2.46 23, α(K)=1.7 4, α(L)=0.58 13, α(M)=0.141 34, α(N)=0.034 8, α(O)=0.0052 10, α(P)=1.8×10-4 5
   556.0 (6+)      231.8 5 M1+E20.47 170.430α=0.430 32, α(K)=0.348 32, α(L)=0.0633 10, α(M)=0.01469 25, α(N)=0.00355 6, α(O)=0.000583 10, α(P)=3.7×10-5 4
   559.976 (5+)      139.416 7 M1+E21.8 +41-71.35α=1.35 19, α(K)=0.72 27, α(L)=0.48 6, α(M)=0.119 17, α(N)=0.028 4, α(O)=0.0042 5, α(P)=7.0×10-5 32
   577.720 (2-)      261.266 12 (M1+E2)0.4 20.318α=0.318 27, α(K)=0.260 26, α(L)=0.0447 11, α(M)=0.01031 18, α(N)=0.00249 5, α(O)=0.000413 12, α(P)=2.79×10-5 30
   601.57 (1+)      285.10 3 E1+M20.32 80.13α=0.13 5, α(K)=0.10 4, α(L)=0.021 8, α(M)=0.0049 20, α(N)=0.0012 5, α(O)=2.0×10-4 8, α(P)=1.3E-5 5
(1+)      390.91 5 E1+M20.26 80.037α=0.037 16, α(K)=0.030 12, α(L)=0.0055 25, α(M)=0.0013 6, α(N)=3.1×10-4 14, α(O)=5.2E-5 24, α(P)=3.6E-6 17
   646.346 5-      176.552 8 M1+E20.89 +41-300.79α=0.79 10, α(K)=0.58 12, α(L)=0.161 11, α(M)=0.0388 33, α(N)=0.0093 8, α(O)=0.00145 8, α(P)=6.1×10-5 14
5-      328.42 20   α(K)=0.10 5, α(L)=0.020 4, α(M)=0.0048 8, α(N)=0.00116 20, α(O)=0.00019 4, α(P)=1.1×10-5 6
   657.98 (2+)       56.408 3 M1+E20.85 2524α=24 7, α(L)=18 5, α(M)=4.5 14, α(N)=1.08 32, α(O)=0.16 4, α(P)=0.00159 33
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   665.188 (6)+      164.466 8 M1+E21.1 +9-40.91α=0.91 16, α(K)=0.62 19, α(L)=0.219 25, α(M)=0.053 7, α(N)=0.0128 17, α(O)=0.00195 19, α(P)=6.4×10-5 23
   686.055 (3-)      307.56 6 M1+E20.3 20.211α=0.211 17, α(K)=0.174 16, α(L)=0.0285 11, α(M)=0.00653 20, α(N)=0.00158 5, α(O)=0.000264 11, α(P)=1.87×10-5 18
   736.127 (5-)      147.417 6 (M1+E2)0.95 +27-221.34α=1.34 10, α(K)=0.92 13, α(L)=0.320 25, α(M)=0.078 7, α(N)=0.0187 17, α(O)=0.00285 20, α(P)=9.6×10-5 16
   744.80 (3+)       86.84 4 M1 7.75α=7.75 11, α(K)=6.41 9, α(L)=1.037 15, α(M)=0.2371 33, α(N)=0.0575 8, α(O)=0.00966 14, α(P)=0.000705 10
   826.150 (4-)      140.095 5 M1+E22.5 51.24α=1.24 6, α(K)=0.59 8, α(L)=0.495 18, α(M)=0.124 5, α(N)=0.0296 12, α(O)=0.00431 15, α(P)=5.5×10-5 9

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
     0.01- 3.7185 d 5 
% ε = 7.50 10
% β- = 92.50 10
μ=+1.734 3, Q=+0.618 6
%ε, %β-: from 186Re ε decay (3.7186 d).
E(level): %ε, %β-: from 186Re ε decay (3.7186 d). Kπ=1-, (π5/2[402])-(ν3/2[512]) band.
T1/2(level): Weighted average of 3.7160 d 24 (89.256 h 58) (2016Lu16), 3.7186 d 5 (2004Sc04), 3.719 d 8 (89.25 h 18) (2014Un01 supersedes 2002Un02,1991Co17,1994Co02), and 3.7183 d 11 (89.239 h 26) (1994Sc39). Other values not used in average because outliers or lower accuracy: 3.6813 d 67 (88.35 h 16) (2018Ka49), 3.765 d 32 (90.36 h 77) (2011Bo11), 3.775 d 1 (90.600 h 24) (1989Ab18), 3.777 d 4 (90.64 h 9) (1971Mi16), 3.78 d 13 (90.6 h 31) (1958Gu09), 3.704 d 8 (88.9 h 2) (1956Po28), 3.867 d 8 (92.8 h 2) (1947Go01).
    59.0102-   E(level): Kπ=1-, (π5/2[402])-(ν3/2[512]) band.
    99.3613- 25.5 ns 25  E(level): Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60). Kπ=3-, (π5/2[402])+(ν1/2[510]) band.
   146.2753-   E(level): Kπ=1-, (π5/2[402])-(ν3/2[512]) band.
   148.2(8+) 2.0×10+5 y
% IT = 100
E(level): Kπ=(8+), (π5/2[402])+(ν11/2[615]) band.
   173.9294-   XREF: H(177).
E(level): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39). Kπ=4-, (π5/2[402])+(ν3/2[512]) band.
   180.2(6-)   E(level): Kπ=(6-), (π5/2[402])+(ν7/2[503]) band. From 186W(d,2nγ) (2017Ma39).
   210.6992- < 0.2 ns E(level): Kπ=2-, (π5/2[402])-(ν1/2[510]) band.
   268.8004-   E(level): Kπ=1-, (π5/2[402])-(ν3/2[512]) band.
   273.6274-   E(level): Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60). Kπ=3-, (π5/2[402])+(ν1/2[510]) band.
   314.009(3+) 24.1 ns 11  μ=+2.18 6
E(level): Kπ=3+, (π5/2[402])-(ν11/2[615]) band.
   316.459(1-) 0.20 ns 10  XREF: F(317.4).
E(level): Kπ=1-, (π5/2[402])-(ν7/2[503]) band.
   317.8465-   XREF: F(317.4).
E(level): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39). Kπ=4-, (π5/2[402])+(ν3/2[512]) band.
   322.3783-   E(level): Kπ=2-, (π5/2[402])-(ν1/2[510]) band.
   324.25+ 17.3 ns 6  μ=+4.62 11
E(level): Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
   351.202(4)+ < 0.2 ns E(level): Kπ=(4)+, (π9/2[514])-(ν1/2[510]) band. See comments for.
   378.387(2-)   E(level): Kπ=1-, (π5/2[402])-(ν7/2[503]) band.
   414.7(9+)   E(level): Kπ=(8+), (π5/2[402])+(ν11/2[615]) band. From 187Re(p,d) (2009Wh01).
   417.7945-   E(level): Kπ=1-, (π5/2[402])-(ν3/2[512]) band.
   420.560(4+)   E(level): Kπ=3+, (π5/2[402])-(ν11/2[615]) band.
   462.9695-   E(level): Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60). Kπ=3-, (π5/2[402])+(ν1/2[510]) band.
   465.46+   E(level): Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
   469.7944-   E(level): Kπ=2-, (π5/2[402])-(ν1/2[510]) band.
   470.509(3-)   E(level): Kπ=1-, (π5/2[402])-(ν7/2[503]) band.
   497.294(6-)   E(level): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39). Kπ=4-, (π5/2[402])+(ν3/2[512]) band.
E(level)Jπ(level)T1/2(level)Comments
   500.722(5)+   E(level): Kπ=(4)+, (π9/2[514])-(ν1/2[510]) band. See comments for.
   534.37(4-)   E(level): Kπ=(4-), (π1/2[411])+(ν7/2[503]) band.
   556.0(6+)   XREF: F(563.1).
E(level): Kπ=(6+), (π9/2[514])+(ν3/2[512]) band. From 186W(d,2nγ) (2017Ma39).
   559.976(5+)   E(level): Kπ=3+, (π5/2[402])-(ν11/2[615]) band.
   577.720(2-)   E(level): Kπ=2-, (π5/2[402])-(ν9/2[505]) band.
   588.705(4-)   E(level): Kπ=1-, (π5/2[402])-(ν7/2[503]) band.
   595.059(6-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=1-, (π5/2[402])-(ν3/2[512]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   601.57(1+)   E(level): Kπ=(1+), (π9/2[514])-(ν7/2[503]) band.
   646.3465-   E(level): Kπ=2-, (π5/2[402])-(ν1/2[510]) band.
   651.6(7+)   E(level): Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
   657.98(2+)   E(level): Kπ=(1+), (π9/2[514])-(ν7/2[503]) band.
   660.722(1-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=(1-), (π9/2[514])-(ν11/2[615]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   665.188(6)+   E(level): Kπ=(4)+, (π9/2[514])-(ν1/2[510]) band. See comments for.
   686.055(3-)   E(level): Kπ=2-, (π5/2[402])-(ν9/2[505]) band.
   689.3(1-)   XREF: F(690.3).
   691.37(6-)   XREF: F(690.3).
E(level): Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60). Kπ=3-, (π5/2[402])+(ν1/2[510]) band.
   705.048(6+)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   705.2(10+)   E(level): Kπ=(8+), (π5/2[402])+(ν11/2[615]) band.
   709.6(7-)   E(level): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39). Kπ=4-, (π5/2[402])+(ν3/2[512]) band.
   722.962(5-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=(4-), (π1/2[411])+(ν7/2[503]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   736.127(5-)   E(level): Kπ=1-, (π5/2[402])-(ν7/2[503]) band.
   744.80(3+)   E(level): Kπ=(1+), (π9/2[514])-(ν7/2[503]) band.
   753.267(2-,3-)   (d,p) presumed to excite this, but not the 745-keV, level because the latter’s configuration should not be excited in (d,p); (2)- in (n,γ) E=thermal (2020Kr05).
E(level): (d,p) presumed to excite this, but not the 745-keV, level because the latter’s configuration should not be excited in (d,p); (2)- in (n,γ) E=thermal (2020Kr05). From 2020Kr05 - (n,γ) E=Thermal.
   773.6(7+)   E(level): Kπ=(6+), (π9/2[514])+(ν3/2[512]) band.
   774.879(7-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=(7-), (π5/2[402])+(ν9/2[505]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
E(level)Jπ(level)T1/2(level)Comments
   791.225(1-,2-,3-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
   795.9(10+)   E(level): Kπ=(10+). Band built on the Jπ=(10+) state at 796 keV; see.
   814.187(1-,2-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
   821.30(0+)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=(0+), (π9/2[514])-(ν9/2[505]) band.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   826.150(4-)   E(level): Kπ=2-, (π5/2[402])-(ν9/2[505]) band.
   855.04(4+)   E(level): Kπ=(1+), (π9/2[514])-(ν7/2[503]) band.
   856.225(2-,3-)   Complex level in (d,p) which presumably includes this level but not the 855 level because the latter’s configuration should not be excited in (d,p).
E(level): Complex level in (d,p) which presumably includes this level but not the 855 level because the latter’s configuration should not be excited in (d,p). From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   860.386(6-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=2-, (π5/2[402])-(ν1/2[510]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   864.17(2-,3-)   XREF: F(861.2).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   869.2(8+)   E(level): Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
   871.0(2-,3-,4-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
   879.183(2-,3-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   888.777(4-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   889.676(1-,2-,3-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   895.283(2-,3-,4-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   902.336(2-,3-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   910.478(2+)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=(0+), (π9/2[514])-(ν9/2[505]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   912.378(6-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=1-, (π5/2[402])-(ν7/2[503]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   913.58(2-,3-)   E(level): From 187Re(p,d) (2009Wh01). From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   923.629(2-,3-)   XREF: F(926.8).
E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   929.6(-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   935.31(2-,3-)   XREF: F(937.4).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   937.4(1-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   944.238(2-,3-)   XREF: C(946.4).
E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   953.2(8-)   E(level): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39). Kπ=4-, (π5/2[402])+(ν3/2[512]) band.
E(level)Jπ(level)T1/2(level)Comments
   954.72(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
   965.427(1+)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=(0+), (π9/2[514])-(ν9/2[505]) band. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   973.861(2-,3-,4-)   XREF: C(975).
E(level): 1-keV uncertainty assumed (by evaluators) during fit. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   982.27(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
   988.973(2-,3-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
   996.685(5-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. Kπ=2-, (π5/2[402])-(ν9/2[505]) band.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
   997.84(5+)   E(level): Kπ=(1+), (π9/2[514])-(ν7/2[503]) band.
   999.320(2-,3-,4-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1002.678(3-,4-,5-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
  1003.526(2-,3-)   E(level): 1-keV uncertainty assumed (by evaluators) during fit. From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From analysis of depopulation data in (n,γ) E=thermal (2020Kr05).
  1004.156(2-,3-,4-)   E(level): From 2020Kr05 - (n,γ) E=Thermal.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1013.72(2-,3-,4-)   XREF: C(1015).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1017.60(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1018.0(11+)   E(level): Kπ=(8+), (π5/2[402])+(ν11/2[615]) band.
  1019.7(1-,2-,3-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1027.2   E(level): From 187Re(p,d) (2009Wh01).
  1040.25(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1042.9(1-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1046.9(2-,3-,4-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1053.8(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1057.5(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1068.56(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1071.5(2-,3-)   XREF: C(1073.3).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1097.01(4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1101.3(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
E(level)Jπ(level)T1/2(level)Comments
  1115.2(9+)   E(level): Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
  1119.6(11+)   E(level): Kπ=(10+). Band built on the Jπ=(10+) state at 796 keV; see.
  1122.50(2-,3-)   XREF: C(1123.9).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1132.07(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1140.9(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1151.14(4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1157.8(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1163.1(1-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1172.19(2-,3-,4-)   XREF: C(1173.6).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1184.99(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1194.3(2-,3-,4-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1197.89(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1212.0(2+,3+,4+)   XREF: F(1213.9).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1219.5(1-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1225.8(1-,2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1227.88(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1229.7   E(level): From 187Re(p,d) (2009Wh01).
  1231.3(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1240.3(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1242.64(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1248.5(-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1261.3(1-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1266.4   E(level): From 187Re(p,d) (2009Wh01).
  1271.8(2-,3-,4-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1275.3(1-,2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
E(level)Jπ(level)T1/2(level)Comments
  1285.8(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1298.1(1-,2-,3-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1306.4(2-,3-,4-)   XREF: C(1307.5).
E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1317.32(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1321.64(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1326.5   E(level): From 187Re(p,d) (2009Wh01).
  1342.3(2+,3+,4+)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1349.1   E(level): From 187Re(p,d) (2009Wh01).
  1351.16(4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1352.6(12+)   E(level): Kπ=(8+), (π5/2[402])+(ν11/2[615]) band.
  1355.4(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1360.3(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1375.7(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1385.3(2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1386.4(10+)   E(level): Kπ=5+, (π9/2[514])+(ν1/2[510]) band.
  1390.5   E(level): From 187Re(p,d) (2009Wh01).
  1393.0(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1398.8(1-,2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1403.2(1-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1405.43(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1419.0(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1421.7   E(level): From 187Re(p,d) (2009Wh01).
  1424.5(2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1431.0(4-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1434.2   E(level): From 187Re(p,d) (2009Wh01).
E(level)Jπ(level)T1/2(level)Comments
  1437.71(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1449.8(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1457.45(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1462.4(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1472.7   E(level): From 187Re(p,d) (2009Wh01).
  1475.9(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1486.66(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1512.7   E(level): From 187Re(p,d) (2009Wh01).
  1520.5   E(level): From 187Re(p,d) (2009Wh01).
  1525.24(4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1529.4(2-,3-)   E(level): From 187Re(p,d) (2009Wh01).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1538.8(1-,2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1544.95(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1550.65(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1566.35(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1571.98(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1575.8(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1587.05(2-,3-)   XREF: C(1591.6).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1601.7(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1607.10(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1613.8   E(level): From 187Re(p,d) (2009Wh01).
  1628.18(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1633.8   E(level): From 187Re(p,d) (2009Wh01).
  1637(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1643.9(1-,2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
E(level)Jπ(level)T1/2(level)Comments
  1646.87(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1659.12(2-,3-,4-)   XREF: C(1662.1).
E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1667.8(2-,3-,4-)   XREF: B(1665).
E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1672.3(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1684.2(2-,3-,4-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1694.7(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1707.6   E(level): From 187Re(p,d) (2009Wh01).
  1711.1(2-,3-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1718.91(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1742.4   E(level): From 187Re(p,d) (2009Wh01).
  1743.16(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1758.0(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1768.4   E(level): From 187Re(p,d) (2009Wh01).
  1776.4   E(level): From 187Re(p,d) (2009Wh01).
  1794.0(2-,3-,4-)   XREF: B(1791).
E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1818.1(2-,3-,4-)   E(level): From 185Re(n,γ) E=2-110 eV (1983Be27,1980BeYB).
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1827.54(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1838.7(1-,2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1846.41(2-,3-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=2-110 eV (1983Be27,1980BeYB). Based on analysis of primary Iγ to final level from each of 26 Jπ=2+ or 3+ neutron resonances populated in s-wave capture, and on average primary Iγ intensity from all resonances with a given Jπ.
  1881.34(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1905.8(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1964.77(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  1985(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2004(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2055(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
E(level)Jπ(level)T1/2(level)Comments
  2063(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2083(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2106(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2141.2(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2203.4(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2219.19(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2244.81(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2261(2-,3-,4-)   E(level): From 185Re(n,γ) E=thermal (1969La11).
Jπ(level): From (n,γ) E=thermal (1969La11). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2319.76(2-,3-,4-)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.
  2359.0(2+,3+,4+)   E(level): From least-squares fit to (n,γ) E=thermal primary γ-ray data measured in 2016Ma35 together with secondary γ rays from 2016Ma35 and 1969La11, yielding normalized χ2=0.86.
Jπ(level): From (n,γ) E=thermal (2016Ma35). Spin window deduced from primary γ rays deexciting the capture state (+185Re target g.s. Jπ=5/2+). This assumes the most likely E1 γ via the dominant 3+ component (98.8% 2016Ma35). The spin window extends to J=1,2,3,4 if taking into account the 2+ component. Lower-probability M1 primary γ rays also allow for π=+ states.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
    59.010    59.009E(γ): From 2020Kr05 - (n,γ) E=Thermal
I(γ): From 186Re IT decay (2.0×105 y).
    99.361    40.350E(γ): From 2020Kr05 - (n,γ) E=Thermal
I(γ): From 186Re IT decay (2.0×105 y).
    99.362E(γ): From 2020Kr05 - (n,γ) E=Thermal
I(γ): From 186Re IT decay (2.0×105 y).
   148.2    48.84E(γ): Deduced according to energy-level difference from precision measurement of (8+) isomer in 2015Ma60.. From 2020Kr05 - (n,γ) E=Thermal
I(γ): From 186Re IT decay (2.0×105 y).
M(γ): From 186Re IT decay (1972Se06).
   322.378   263.33I(γ): Other value also in (n,γ): 3.7 15 in 2020Kr05.
   324.2   144.0E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   150.3E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   378.387   232.100I(γ): Resolved from doublet with 231.8γ.
   414.7   266.69E(γ): Other: 266.1373 6 (n’γ) E=Thermal. Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60).
   462.969   193.95I(γ): Other value also in (n,γ): 11.5 23 in 1969La11 (undivided Iγ); <5.7 in 2020Kr05.
   465.4   141.1E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   469.794   147.417E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   497.294   323.5E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   500.722   176.2941E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   401.3M(γ): [E1] if Jπ=4+
   534.37   260.87I(γ): Other value also in (n,γ): 31 in 1969La11.
   556.0   231.8E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
I(γ): Resolved from doublet with 232.1γ.
   559.976   134.158I(γ): Other value also in (n,γ): 41 6 in 1969La11.
   588.705   266.3501E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   651.6   186.1E(γ): Other: 186.0535 5 (2020Kr05 - (n,γ) E=Thermal). Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   327.5E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   680.05   357.65I(γ): Other value also in (n,γ): 81 15 in 1969La11.
   469.39I(γ): Other value also in (n,γ) (undivided Iγ): 81 22 in 1969La11.
   580.5283E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   691.37   228.42I(γ): Other value also in (n,γ): 15.6 89 in 2020Kr05.
E(level)E(gamma)Comments
   705.2   290.4E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   557.1E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   709.6   212.7E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   391.4E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   722.962   542.5661E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   736.127   147.417E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   266.3501E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   761.42   761.6E(γ): Multiply placed with undivided intensity
I(γ): Multiply placed with undivided intensity
   773.6   217.6E(γ): Other: 217.8928 5 (2020Kr05 - (n,γ) E=Thermal). Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   785.58   468.8837E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   791.225   468.8837E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   580.5283E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   644.9220E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   691.6333E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   795.9   381.2E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   647.6E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   796.45   218.69I(γ): Other value also in (n,γ): 8.6 17 in 1969La11.
   479.3E(γ): 479.3 3 for complex γ (1969La11); 479.68 6 (2016Ma35).. 1-keV uncertainty assumed (by evaluators) during fit.
   814.187   813.9455E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   819.00   545.1537E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   607.5I(γ): Other value also in (n,γ): 27 11 in 2020Kr05.
   645.3I(γ): Other value also in (n,γ): 16 6 in 2020Kr05.
   761.6E(γ): Multiply placed with undivided intensity
I(γ): Other value also in (n,γ) (undivided Iγ) 83 26 in 1969La11.. Multiply placed with undivided intensity
   860.386   542.5661E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   869.2   217.5E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   403.8E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
E(level)E(gamma)Comments
   871.0   660.1877E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   771.7231E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   902.336   691.6333E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   912.378   176.2941E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   317.4579E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   913.58   644.9220E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   813.9455E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   923.629   545.1537E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   953.2   243E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   455.9E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   954.72   808.4161E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   982.27   660.1877E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   771.7231E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   808.4161E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
  1002.678   266.3501E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
  1003.526   317.4579E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
  1007.5  1007.5E(γ): Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60).
  1018.0   312.7E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   603.3E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
  1101.3  1101.3E(γ): γ decay only observed in 187Re(n,2nγ) (2015Ma60). Energy and corresponding branching ratio (if given) from 187Re(n,2nγ) (2015Ma60).
  1115.2   246.0E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   463.7E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
  1119.6   323.4E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   414.3E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   705.2E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
E(level)E(gamma)Comments
  1138.1   433.0E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   723.3E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
  1290.6   494.7E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
  1352.6   334.5E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   647.5E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
  1386.4   271.2E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).
   517.1E(γ): Energy and corresponding branching ratio (if given) from 186W(d,2nγ) (2017Ma39).

Back to top