187 Re(n,2n γ) **2015Ma60**

History

Type Author Citation Literature Cutoff Date
Full Evaluation J. C. Batchelder and A. M. Hurst, M. S. Basunia NDS 183, 1 (2022) 1-Mar-2022

Adapted/Edited the XUNDL dataset compiled by C. Smith (ORNL/UTK) and C.D. Nesaraja (ORNL) 17 November, 2015. Experimental Setup: A beam of spallation neutrons from LANSCE with energies in the range of 100 keV to 600 MeV incident on a 987.1 mg ^{187}Re target enriched to 99.52%. The neutron fluence for the run ranged from 1.3×10^8 to 5.0×10^8 neutrons/MeV decreasing with increasing neutron energy (10 $\leq E_n \leq$ 25 MeV). The target was irradiated for 12 days at 40 Hz and an additional 5 days at 100 Hz.

Detectors: γ-rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer (GEANIE), a Compton-suppressed array of 18 HPGe detectors. The GEANIE target was located 20.34 m from the spallation source along the 60° right flight path and configured with eight planar and 10 coaxial detectors. Incident neutron energies were determined by the time-of-flight technique. Neutron flux at the target was measured with a fission chamber positioned at the terminus of the neutron beam tube, 18.48 m from the spallation target and consisted of an ionization chamber that incorporates stainless steel foils coated with ²³⁵U and ²³⁸U.

Measured: E_n using tof method, excitation functions, E_{γ} .

Analyzed: Excitation function generated with reaction codes COH 3.4 and TALYS 1.6 for the purpose of placing gamma transitions in the ¹⁸⁶Re level scheme. The authors have used the shapes of excitation functions to estimate the spins for levels above the isomer; transitions originating from low-spin states have excitation functions that rise sharply after the threshold energy of the (n,2n) reaction to peak at neutron energies near 13 MeV, while those originating from high-spin states rise more gradually and peak at neutron energies between 15 and 20 MeV.

Deduced: New excitation level, spins and new gamma transitions that led to improved excitation energy of the ¹⁸⁶Re isomer with smaller uncertainty.

¹⁸⁶Re Levels

E(level) [†]	$J^{\pi \#}$	Comments						
0	1-							
59.010 [‡] <i>3</i>	2-	Additional information 1.						
99.361 [‡] <i>3</i>	3-	Additional information 2.						
146.275 [‡] 4	3-	Additional information 3.						
148.2 [‡] 5	(8+)	Additional information 4. E(level): Based on placement of 266.7 γ as depopulating the 415-keV level.						
180.2 [‡] 7 210.75 6 268.77 6	(6 ⁻) 2 ⁻ 4 ⁻	Additional information 5.						
273.627 [‡] 5 313.98 <i>3</i> 316.45 <i>4</i>	4 ⁻ (3 ⁺) (1 ⁻)	Additional information 6.						
322.378 [‡] 6 324.3 7	3 ⁻ 5 ⁺	Additional information 7.						
351.202 [‡] <i>16</i>	$(4)^{+}$	Additional information 8.						
414.9 5	(9 ⁺)	J^{π} : From analogue state at 446 keV in ¹⁸⁴ Re and the shape of the experimental and modeled excitation functions (TALYS and COH codes) for the 266.7 γ transition.						
420.560 [‡] 7 462.42 7 465.5 7 469.98 7 500.43 9 560.18 <i>12</i> 587.90 <i>15</i> 601.84 <i>13</i> 624.28 <i>14</i>	(4 ⁺) 5 ⁻ 6 ⁺ 4 ⁻ (5) ⁺ (5 ⁺) (4 ⁻) (1 ⁺) (1 ⁻)	Additional information 9.						

187 Re(n,2n γ) **2015Ma60** (continued)

¹⁸⁶Re Levels (continued)

E(level) [†]	$J^{\pi \#}$	Comments
665.1 4	(6) ⁺	
796.1 5	(10^{+})	J^{π} : Supported by similarity with 728 level in ¹⁸⁴ Re and from the shape of the experimental and modeled
		excitation functions (TALYS and COH codes) for the 381.2 and 647.7 γ transitions.
1007.5 <i>3</i>		
1101.3 <i>3</i>	$(2^-,3^-)$	

[†] From a least-squares fit to the γ -ray energies, except otherwise noted, yielding normalized χ^2 =2.2. 111.74 γ and 151.38 γ from 210.75 keV level and 210.12 γ from 268.77 keV level fit poorly. The uncertainty was increased for 111.74 γ (tripled), 151.38 γ (doubled), and 210.12 γ (doubled) in the least squares fit.

 $\gamma(^{186}\text{Re})$

E_{γ}^{\dagger}	$E_i(level)$	J_i^π	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	$E_i(level)$	\mathtt{J}_{i}^{π}	E_f	\mathbf{J}_f^{π}
111.74 5	210.75	2^{-}	99.361	3-	214.60 <i>3</i>	313.98	(3^{+})	99.361	3-
117.92 <i>13</i>	587.90	(4^{-})	469.98	4-	^x 217.62 <i>10</i>				
122.45 6	268.77	4-	146.275	3-	255.05 6	313.98	(3^{+})	59.010	2-
139.62 <i>12</i>	560.18	(5^{+})	420.560	(4^{+})	257.45 7	316.45	(1^{-})	59.010	2-
141.23 6	465.5	6+	324.3	5 ⁺	266.69 <i>4</i>	414.9	(9^+)	148.2	(8^{+})
144.08 2	324.3	5 ⁺	180.2	(6^{-})	^x 290.51 <i>13</i>				
147.60 <i>7</i>	469.98	4-	322.378	3-	316.45 5	316.45	(1^{-})	0	1-
149.23 8	500.43	$(5)^{+}$	351.202	$(4)^{+}$	x354.28 9				
151.38 8	210.75	2-	59.010	2-	381.23 7	796.1	(10^{+})	414.9	(9^{+})
164.7 <i>3</i>	665.1	$(6)^{+}$	500.43	$(5)^{+}$	391.09 <i>11</i>	601.84	(1^{+})	210.75	2-
169.44 <i>11</i>	268.77	4-	99.361	3-	413.53 <i>12</i>	624.28	(1^{-})	210.75	2-
^x 185.99 6					647.7 2	796.1	(10^{+})	148.2	(8^{+})
188.79 <i>7</i>	462.42	5-	273.627	4-	1007.5 <i>3</i>	1007.5		0	1-
210.12 <i>10</i>	268.77	4-	59.010	2-	1101.3 <i>3</i>	1101.3	$(2^-,3^-)$	0	1-
210.74 6	210.75	2-	0	1-					

[†] Assignment to ¹⁸⁶Re is based on analysis of excitation function. Energies obtained in spectrum gated by neutron energies between 10 and 25 MeV.

[‡] From the Adopted Levels. Level energy held fixed in the least-squares fit.

[#] From the Adopted Levels, except as noted.

 $^{^{}x}$ γ ray not placed in level scheme.

¹⁸⁷Re(n,2nγ) 2015Ma60

Level Scheme

