187 Re(n,2n γ) **2015Ma60** History Type Author Citation Literature Cutoff Date Full Evaluation J. C. Batchelder and A. M. Hurst, M. S. Basunia NDS 183, 1 (2022) 1-Mar-2022 Adapted/Edited the XUNDL dataset compiled by C. Smith (ORNL/UTK) and C.D. Nesaraja (ORNL) 17 November, 2015. Experimental Setup: A beam of spallation neutrons from LANSCE with energies in the range of 100 keV to 600 MeV incident on a 987.1 mg ^{187}Re target enriched to 99.52%. The neutron fluence for the run ranged from 1.3×10^8 to 5.0×10^8 neutrons/MeV decreasing with increasing neutron energy (10 $\leq E_n \leq$ 25 MeV). The target was irradiated for 12 days at 40 Hz and an additional 5 days at 100 Hz. Detectors: γ-rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer (GEANIE), a Compton-suppressed array of 18 HPGe detectors. The GEANIE target was located 20.34 m from the spallation source along the 60° right flight path and configured with eight planar and 10 coaxial detectors. Incident neutron energies were determined by the time-of-flight technique. Neutron flux at the target was measured with a fission chamber positioned at the terminus of the neutron beam tube, 18.48 m from the spallation target and consisted of an ionization chamber that incorporates stainless steel foils coated with ²³⁵U and ²³⁸U. Measured: E_n using tof method, excitation functions, E_{γ} . Analyzed: Excitation function generated with reaction codes COH 3.4 and TALYS 1.6 for the purpose of placing gamma transitions in the ¹⁸⁶Re level scheme. The authors have used the shapes of excitation functions to estimate the spins for levels above the isomer; transitions originating from low-spin states have excitation functions that rise sharply after the threshold energy of the (n,2n) reaction to peak at neutron energies near 13 MeV, while those originating from high-spin states rise more gradually and peak at neutron energies between 15 and 20 MeV. Deduced: New excitation level, spins and new gamma transitions that led to improved excitation energy of the ¹⁸⁶Re isomer with smaller uncertainty. #### ¹⁸⁶Re Levels | E(level) [†] | $J^{\pi \#}$ | Comments | | | | | | | |---|---|---|--|--|--|--|--|--| | 0 | 1- | | | | | | | | | 59.010 [‡] <i>3</i> | 2- | Additional information 1. | | | | | | | | 99.361 [‡] <i>3</i> | 3- | Additional information 2. | | | | | | | | 146.275 [‡] 4 | 3- | Additional information 3. | | | | | | | | 148.2 [‡] 5 | (8+) | Additional information 4. E(level): Based on placement of 266.7 γ as depopulating the 415-keV level. | | | | | | | | 180.2 [‡] 7
210.75 6
268.77 6 | (6 ⁻)
2 ⁻
4 ⁻ | Additional information 5. | | | | | | | | 273.627 [‡] 5
313.98 <i>3</i>
316.45 <i>4</i> | 4 ⁻ (3 ⁺) (1 ⁻) | Additional information 6. | | | | | | | | 322.378 [‡] 6
324.3 7 | 3 ⁻
5 ⁺ | Additional information 7. | | | | | | | | 351.202 [‡] <i>16</i> | $(4)^{+}$ | Additional information 8. | | | | | | | | 414.9 5 | (9 ⁺) | J^{π} : From analogue state at 446 keV in ¹⁸⁴ Re and the shape of the experimental and modeled excitation functions (TALYS and COH codes) for the 266.7 γ transition. | | | | | | | | 420.560 [‡] 7
462.42 7
465.5 7
469.98 7
500.43 9
560.18 <i>12</i>
587.90 <i>15</i>
601.84 <i>13</i>
624.28 <i>14</i> | (4 ⁺)
5 ⁻
6 ⁺
4 ⁻
(5) ⁺
(5 ⁺)
(4 ⁻)
(1 ⁺)
(1 ⁻) | Additional information 9. | | | | | | | ### 187 Re(n,2n γ) **2015Ma60** (continued) ## ¹⁸⁶Re Levels (continued) | E(level) [†] | $J^{\pi \#}$ | Comments | |-----------------------|------------------|--| | 665.1 4 | (6) ⁺ | | | 796.1 5 | (10^{+}) | J^{π} : Supported by similarity with 728 level in ¹⁸⁴ Re and from the shape of the experimental and modeled | | | | excitation functions (TALYS and COH codes) for the 381.2 and 647.7 γ transitions. | | 1007.5 <i>3</i> | | | | 1101.3 <i>3</i> | $(2^-,3^-)$ | | [†] From a least-squares fit to the γ -ray energies, except otherwise noted, yielding normalized χ^2 =2.2. 111.74 γ and 151.38 γ from 210.75 keV level and 210.12 γ from 268.77 keV level fit poorly. The uncertainty was increased for 111.74 γ (tripled), 151.38 γ (doubled), and 210.12 γ (doubled) in the least squares fit. $\gamma(^{186}\text{Re})$ | E_{γ}^{\dagger} | $E_i(level)$ | J_i^π | E_f | \mathbf{J}_f^{π} | E_{γ}^{\dagger} | $E_i(level)$ | \mathtt{J}_{i}^{π} | E_f | \mathbf{J}_f^{π} | |------------------------|--------------|--------------------|---------|----------------------|-------------------------------|--------------|------------------------|--------|----------------------| | 111.74 5 | 210.75 | 2^{-} | 99.361 | 3- | 214.60 <i>3</i> | 313.98 | (3^{+}) | 99.361 | 3- | | 117.92 <i>13</i> | 587.90 | (4^{-}) | 469.98 | 4- | ^x 217.62 <i>10</i> | | | | | | 122.45 6 | 268.77 | 4- | 146.275 | 3- | 255.05 6 | 313.98 | (3^{+}) | 59.010 | 2- | | 139.62 <i>12</i> | 560.18 | (5^{+}) | 420.560 | (4^{+}) | 257.45 7 | 316.45 | (1^{-}) | 59.010 | 2- | | 141.23 6 | 465.5 | 6+ | 324.3 | 5 ⁺ | 266.69 <i>4</i> | 414.9 | (9^+) | 148.2 | (8^{+}) | | 144.08 2 | 324.3 | 5 ⁺ | 180.2 | (6^{-}) | ^x 290.51 <i>13</i> | | | | | | 147.60 <i>7</i> | 469.98 | 4- | 322.378 | 3- | 316.45 5 | 316.45 | (1^{-}) | 0 | 1- | | 149.23 8 | 500.43 | $(5)^{+}$ | 351.202 | $(4)^{+}$ | x354.28 9 | | | | | | 151.38 8 | 210.75 | 2- | 59.010 | 2- | 381.23 7 | 796.1 | (10^{+}) | 414.9 | (9^{+}) | | 164.7 <i>3</i> | 665.1 | $(6)^{+}$ | 500.43 | $(5)^{+}$ | 391.09 <i>11</i> | 601.84 | (1^{+}) | 210.75 | 2- | | 169.44 <i>11</i> | 268.77 | 4- | 99.361 | 3- | 413.53 <i>12</i> | 624.28 | (1^{-}) | 210.75 | 2- | | ^x 185.99 6 | | | | | 647.7 2 | 796.1 | (10^{+}) | 148.2 | (8^{+}) | | 188.79 <i>7</i> | 462.42 | 5- | 273.627 | 4- | 1007.5 <i>3</i> | 1007.5 | | 0 | 1- | | 210.12 <i>10</i> | 268.77 | 4- | 59.010 | 2- | 1101.3 <i>3</i> | 1101.3 | $(2^-,3^-)$ | 0 | 1- | | 210.74 6 | 210.75 | 2- | 0 | 1- | | | | | | [†] Assignment to ¹⁸⁶Re is based on analysis of excitation function. Energies obtained in spectrum gated by neutron energies between 10 and 25 MeV. [‡] From the Adopted Levels. Level energy held fixed in the least-squares fit. [#] From the Adopted Levels, except as noted. $^{^{}x}$ γ ray not placed in level scheme. # ¹⁸⁷Re(n,2nγ) 2015Ma60 #### Level Scheme