¹⁸⁶Re IT decay (2.0×10⁵ y) 1972Se06

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. C. Batchelder and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022			

Parent: ¹⁸⁶Re: E=148.2 5; J^{π} =(8⁺); $T_{1/2}$ =2.0×10⁵ y; %IT decay=100.0

¹⁸⁶Re-%IT decay: assuming no β^- or ε decay from isomeric state. β^- decay could feed only the 869 level in ¹⁸⁶Os, and 1972Se06 place a limit of $\approx 10\%$ on such a branch based on their failure to observe the E2 435 γ known to deexcite that level. Q(ε) to J ≥ 6 levels in ¹⁸⁶W is negative. Also, the observed ratio of I(γ +ce) deexciting the 2⁺ levels in the ε and β^- decay daughters is the same for both the g.s. decay and the isomer decay.

1972Se06: sources from ¹⁸⁵Re(n, γ), chemically purified and aged 0, 4 or 20 years; 4-year old source thicknesses 0.25 and \approx 0.025 mg/cm²; three Ge(Li) detector systems (8 cc, 0.5 cc with FWHM=330 eV at 14 keV, 20 cc detectors), windowless Si(Li) detector with FWHM \approx 1 keV at 130 keV; measured T_{1/2}, E γ , I γ , E(ce), I(ce), x-ray intensities for isomer, and γ and x-ray intensities for ¹⁸⁶Re (3.7185 d) decay.

The decay scheme is that of 1972Se06. A possible, unobserved E=1.93 50 E5 transition connecting the isomer to the known (3)⁻ 146 keV level, postulated in 1988Fi06 to explain a small excess in K x-ray intensity, has not been adopted; 1972Se06 concluded that the observed I(K x ray) could be explained adequately on the basis of conversion of the 99 γ alone.

¹⁸⁶Re Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	1-	3.7185 d 5	
59.010 <i>3</i>	2-		
99.361 <i>3</i>	3-	25.5 ns 25	
148.2 5	(8^{+})	2.0×10 ⁵ y	%IT=100
		-	E(level): Other: 149 keV 7 deduced from $E\gamma$ (1972Se06).
			J ^{π} : Deduced configuration $K^{\pi}=8^+$, $\pi 5/2[402] \otimes v11/2[615]$ (1972Se06).
			$T_{1/2}$: From mass spectrometry and average absolute photon intensity measurements in
			1972Se06; uncertainty not stated. Secondary datum: 1.7×10^5 y from consistency check
			that measured equilibrium β^- activity using a proportional counter, corrected for β^-
			self-absorption and photon background (1972Se06).

[†] From Adopted Levels.

 $\gamma(^{186}\text{Re})$

I γ normalization: Assuming $\Sigma(I(\gamma+ce)$ to g.s.)=100; consistent with I γ normalization=0.889 23 based on $\Sigma(I(\gamma+ce)$ from 99 level)=100.

In the table below, the quoted x-ray energies are taken from Table 2 of 1972Se06 and the intensities are taken from Table 4 of 1972Se06. The average energy is reported for unresolved contributions from Re K β_1 + W K β_2 , Re K β_2 + Os K β_1 , and Re L $_{\gamma}$ x rays.

Measured K in ¹⁸⁶ Os	and L X-ray following β^-	intensities in ^{186m} Re decay of ^{186g} Re.	e per 137-keV γ	observed
x ray		energy (keV)	I _x	
Re K α_1		61.13	0.070 6	
Re K α_2		59.71	0.030 12	
Re $K\beta_1$	+ ₩ Kβ ₂	69.20	0.063 2	
Re $K\beta_2$	+ Os $K\beta_1$	71.31	0.074 3	
Re L_{α}	1 1	8.67	1.80 1	
Re L_{β}		10.07	2.73 2	
Re L_{γ}^{ρ}		12.03	0.42 3	

Continued on next page (footnotes at end of table)

From ENSDF

 $^{186}_{75}$ Re $_{111}$ -2

				¹⁸⁶ Re IT	ſ dec	ay (2.0×10	⁵ y) 197 2	Se06 (continued	l)	
γ ⁽¹⁸⁶ Re) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{a}	$I_{(\gamma+ce)}^{c}$	Comments
40.350 3	5.68 4	99.361	3-	59.010	2-	M1+E2	0.145 6	17.7 5		$ \begin{array}{l} \alpha(L) = 13.6 \; 4; \; \alpha(M) = 3.21 \; 9 \\ \alpha(N) = 0.773 \; 22; \\ \alpha(O) = 0.1233 \; 32; \\ \alpha(P) = 0.00653 \; 9 \\ E_{\gamma}: \; 40.29 \; from \; 1972 \\ \text{Seo6.} \\ \delta: \; \text{adopted value; weighted} \\ \text{average of } 0.146 \; 6 \; from \\ \text{intensity balance through} \\ 59 \\ \text{keV level } (1972 \\ \text{Seo60} \\ \text{and } 0.124 \; + 33 \\ - 45 \; \text{in } (n, \gamma) \\ \text{E=thermal } (1969 \\ \text{La11}). \end{array} $
48.84 ^{&} 50		148.2	(8 ⁺)	99.361	3-	(E5) [@]		4.8×10 ⁶ 4	100	$ce(L)/(\gamma+ce)=0.51 4;$ $ce(M)/(\gamma+ce)=0.38 4$ $ce(N)/(\gamma+ce)=0.098 11;$ $ce(O)/(\gamma+ce)=0.0102 12;$ $ce(P)/(\gamma+ce)=7.7\times10^{-6} 8$ $\alpha(L)=2.48\times10^{6} 19;$ $\alpha(M)=1.82\times10^{6} 16$ $\alpha(N)=4.7\times10^{5} 4;$ $\alpha(O)=4.9\times10^{4} 4;$ $\alpha(D)=26.8 26$
59.009 4	20.1 2	59.010	2-	0.0	1-	M1+E2	0.042 10	4.21 7		$\alpha(\Gamma) = 50.8 \ 20$ $\alpha(L) = 3.25 \ 5; \ \alpha(M) = 0.744$ I2 $\alpha(N) = 0.1804 \ 30;$ $\alpha(O) = 0.0302 \ 5;$ $\alpha(P) = 0.002171 \ 30$ $E_{\gamma}: 58.98 \ from 1972Se06.$ $I_{\gamma}:$ weighted average of 20.2 I and 19.8 2 (1972Se06).
99.362 4	1.21 5	99.361	3-	0.0	1-	E2		4.23 6		$\alpha(K)=0.848 \ 12; \ \alpha(L)=2.55 4; \ \alpha(M)=0.650 \ 9 \alpha(N)=0.1543 \ 22; \alpha(O)=0.02198 \ 31; \alpha(P)=7.86 \times 10^{-5} \ 11 E_{\gamma}: \ 99.33 \ from \ 1972Se06.$

 † From adopted gammas, unless noted otherwise.

[‡] From 1972Se06, relative to I(137 γ , ¹⁸⁶Os)=10.0 *I*, except as noted.

[#] From adopted gammas, except as noted.

^(a) L2/L3≈0.6, L1<<L2 from authors' analysis of Re L_{α} x ray and L_{β} x ray intensity data; L/M≈1 from I(ce) excess (cf. relative I(ce) in (n, γ)) near 40ce(M) and 59ce(L) peaks (1972Se06). E5 theory (2008Ki07) is consistent, giving L1:L2:L3:M=0.3:12.5:12.1:18.2 at 48.84 keV: L2/L3≈1, L1/L2≈0.02, and L/M≈1. M5 theory gives

L1:L2:L3:M=5.5:0.9:86.7:49.6 for same γ : L2/L3 \approx 0.01, L1/L2 \approx 6, and L/M \approx 2 ; also, no 8⁻ level is known or expected in adjacent odd-odd isotopes. Multipolarities with L<5 are eliminated because the reduced transition probability would be less than 6×10^{-6} .

 $^{\&}$ E γ deduced according to energy-level difference from precision measurement of (8⁺) isomer in 2015Ma60.

^{*a*} Additional information 1.

^b For absolute intensity per 100 decays, multiply by 0.901 15.

^c Absolute intensity per 100 decays.

