ADOPTED LEVELS, GAMMAS for 142Pm

Authors: T.D. Johnson, D. Symochko, M. Fadil, and J.K. Tuli |  Citation: Nucl. Data Sheets 112, 1949 (2011) |  Cutoff date: 1-Jun-2010 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=-2155 keV 24S(n)= 8.69×103 keV 3S(p)= 4238 keV 24Q(α)= -4.4×102 keV 3
Reference: 2012WA38

References:
  A  142Pm IT decay  B  142Sm ε decay
  C  142Nd(p,nγ) E=10 MeV  D  142Nd(d,2nγ) E=13.5 MeV
  E  (HI,xnγ) 

General Comments:

Ionized atom T1/2:

2009Wi09: Be(152Sm,X): Decay of 142Pm61+, 142Pm60+ and 142Pm59+ Experiment: Beryllium target of 2.513 gm/cm2 was bombarded with a 607.4 MeV/α 152Sm beam delivered by the heavy-ion accelerator (SIS) at GSI. The fully ionized 142Pm ions were separated in flight with FRS employing a two-fold magnetic rigidity analysis and 731 mg/cm2 Al energy degrader. The 142Pm ions were injected into the storage ring ESR and stored in ultra-high vacuum. Identification of cooled 142Pm59+, 142Pm60+ and 142Pm61+ ions and their decay products were achieved using the Schottky Mass Spectrometry technique. Half lives presented are correlated to the average decay with cooler currents at 50mA and 250mA. Decay constants associated with individual cooler currents can be found in the reference. T1/2=56 s 3 for 142Pm61+ (fully-stripped ions); only β+ decay mode is possible for fully-stripped ions. For 142Pm60+ (H-like ions): T1/2++ε)=39.2 s 6; T1/2+)=55.0 s 13; T1/2(ε)=135.9 s 27 and %ε/(%ε+%β+)=29.0 % 13). For 142Pm59+ (He-like ions): T1/2++ε)=39.6 s 14; T1/2+)=49.9 s 22, T1/2(ε)=193 s 5 and %ε/(%ε+%β+)=20.2 % 10.

2008Ve06: 124Sn(23Na,5n): 142Pm was produced by bombardment of a 400 μg/cm2 thick 124Sn target with 95 MeV 23Na beams (average beam intensity 100 pnA). The reaction products moved through the Berkeley Gas-filled separator, which separated the 142Pm from the beam and other products by their different magnetic rigidities. The 142Pm ions were stopped in a 25 μm thick Al foil. The emitted γ and x rays were measured with an intrinsic Ge "clover " detector. This experiment searched for oscillations (time-modulation) in the ε decay probability in 142Pm (neutral atom) isotope. Observation of a non-exponential ε decay was originally reported by 2008Li21: in the ε decay of ionized (hydrogen-like) 140Pr and 142Pm. T1/2=40.68 s 53 from 2008Ve06 using a single-exponential decay function fit to the 142Nd Kα x rays. Note that β+ half-life was measured to be T1/2=41.11 s 38. This was obtained in 2008Ve06 using a single-exponential decay fit to the 511-keV line from annihilation radiation. The electron conversion half-life was measured here to be 40.68 s 53. In the decay curves of 142Nd Kα x rays and annihilation radiation, no evidence of (statistically significant) oscillatory pattern was found by 2008Ve06. The authors conclude that any oscillation, not resolved in their experiment, must have an amplitude smaller by a factor of 31 than the one reported by 2008Li21. 2008Ve06 do, however, point out that ε decays of hydrogen-like ions (as used in 2008Li21) may in some, hitherto unknown way, differ from the ε decay of neutral atom used in 2008Ve06.

2008Li21: 9Be(152Sm,X): ion T1/2 142Pm was produced by in-flight fragmentation of relativistic heavy projectiles. The beam was 152Sm at 500-600 MeV/α bombarding a 9Be target with thicknesses of 1 and 2 g/cm2. Fragment mass separator (FRS) was used to identify 142Pm residues. Measured half-life of (hydrogen-like) 142Pm60+ ions using time-resolved Schottky mass spectrometry at GSI facility. 2008Li21 report observing non-exponential decay pattern of hydrogen-like ions with a time-modulation period of ≈7s. All half-lives given here are for (hydrogen-like) 142Pm60+ ion. T1/2=40.7 s +24-20 from decay constant |l=0.0170 s-1 9 (2008Li21) using a single-exponential decay function. T1/2 from decay constant |l=0.0240 s-1 42 or 28.9 s +61-43 using a single-exponential decay function, but only those data were fitted that were collected within 33 s after injections of the ions. T1/2 decay constant |l=0.0224 s-1 42 or 30.9 s +72-49 using a single-exponential decay and superimposed periodic time modulation functions fit. Q(ε)=4830 keV (2008Li21) for decay of 142Pm60+ as compared to 4798 25 (2003Au03) for decay of neutral 142Pm.

Q-value: Note: Current evaluation has used the following Q record -2170 30 8.71×103 3 4250 30 -450 30 2011AuZZ

Q-value: Q(β-n)=-13290 3, Q(εp)=-2420 3 2011AuZZ

Q-value: Values in 2003Au03: Q(β-)=-2160 3, S(n)=8710 3, S(p)=4.25×103 3, Q(α)=-450 3, Q(β-n)=-13290 3, Q(εp)=-2420 3










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
     0.0ABCDE 1+ 40.5 s 5 
% ε = 100
     
   208.52 8 A CDE (2)+      208.5 1 
   100
M1
     0.0
1+
   240.98 8 A CDE (3)+ 1.1 ns 3      32.45 10 
   241.0 1 
    25.2
   100
M1
E2
   208.52
     0.0
(2)+
1+
   412.01 12 A CDE (3)+      171.0 2 
   203.5 1 
    15
   100
M1,E2
(M1,E2)
   240.98
   208.52
(3)+
(2)+
   449.47 13 A CDE (5)+ 16.5 ns 15      37.5
   208.5 1 
 
   100
[E2]
[E2]
   412.01
   240.98
(3)+
(3)+
   460.00 12   CDE (4)+      219.0 1 
   100
M1
   240.98
(3)+
   496.30 18   CD  (2)+      255.4 3 
   287.7 3 
   496.3 3 
   100
    82
    85


(M1)
   240.98
   208.52
     0.0
(3)+
(2)+
1+
   513.12 13   CD  (3)+      304.6 1 
   100
M1,E2
   208.52
(2)+
   618.30 10   CD  (2)+      377.3 3 
   618.3 1 
    52
   100
M1
M1
   240.98
     0.0
(3)+
1+
   678.30 10  BCD  (2)-      678.3 1 
   100
E1
     0.0
1+
   706.80 20   CD  (4)+      246.8 3 
   294.8 3 
   465.8 3 
   100
    65
    94


M1
   460.00
   412.01
   240.98
(4)+
(3)+
(3)+
   860.2 4 ?  CD       448.2 3 
   100

   412.01
(3)+
   883.17 16 A CDE (8)- 2.0 ms 2 
% IT = 100
   433.7 1 
   100
E3
   449.47
(5)+
   980.80 15   CD  (3)-      302.5 1 
   100
M1,E2
   678.30
(2)-
   998.01 16   CDE (5-)      538.0 1 
   100
(E1)
   460.00
(4)+
  1024.36 16   CDE (6)-       26.4 3 ?
   574.9 1 
    15
   100

E1
   998.01
   449.47
(5-)
(5)+
  1076.70 18   CD  (4-)       95.9 1 
 

   980.80
(3)-
  1078.30 16 ?  CD  (5)      618.3 1 
   100

   460.00
(4)+
  1163.80 23   CD  (4-)      485.5 2 
   100
(E2)
   678.30
(2)-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  1185.20 23   CD  (5-)      108.5 2 
   204.4 3 
    80
   100


  1076.70
   980.80
(4-)
(3)-
  1190.82 21   CDE (7)-      166.5 2 
   192.7 3 
   100
    38
M1,E2

  1024.36
   998.01
(6)-
(5-)
  1237.1 4 ?  CD       160.4 3 
   100

  1076.70
(4-)
  1310.1 5     E (9-)      426.8 6 
   100.0

   883.17
(8)-
  1335.0 11 ?   D       337
   100

   998.01
(5-)
  1765.4 4     E (9+)      455.2 6 
   882.2 3 
     6.901
   100.0


  1310.1
   883.17
(9-)
(8)-
  1809.4 5     E (10+)       44.0 3 
   100.0
M1+E2
  1765.4
(9+)
  2190.1 6     E (11+)      380.8 3 
   100.0

  1809.4
(10+)
  2828.7 6     E (13-) 67 µs 5     638.6 3 
  1019.4
   100.0
    25.08
[M2+E3]
[E3]
  2190.1
  1809.4
(11+)
(10+)
  3143.8 7     E (14-) < 0.69 ns    315.1 3 
   100.00

  2828.7
(13-)
  3300.3 7     E (12+)     1110.4 9 
  1490.6 9 
   100.0
   <22.73
M1+E2

  2190.1
  1809.4
(11+)
(10+)
  3507.4 9     E     1317.2 9 
  <100.0

  2190.1
(11+)
  3738.0 8     E (13+)      437.6 9 
  1548.0 9 
   100.0
    64.52
D
Q
  3300.3
  2190.1
(12+)
(11+)
  3798.3 8     E (13+)      498.0 9 
  1608.2 9 
   100.0
    57.89


  3300.3
  2190.1
(12+)
(11+)
  3820.4 7     E (14) 0.8 ns 5     991.6 3 
   100.0

  2828.7
(13-)
  3872.3 7     E (15)       52.0 6 
   728.5 6 
    50.50
   100.0
D

  3820.4
  3143.8
(14)
(14-)
  3886.6 7     E (14-)       88.4 9 
   148.7 9 
   742.8 6 
  1057.9 6 
     0.000
    55.17
    96.55
   100.0

D

M1+E2
  3798.3
  3738.0
  3143.8
  2828.7
(13+)
(13+)
(14-)
(13-)
  4015.2 8     E (16) 9 ns 4     142.9 3 
   100.0

  3872.3
(15)
  4061.9 8     E (15)      175.4 6 
   241.2 9 
   100.00
    28.05


  3886.6
  3820.4
(14-)
(14)
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  4073.1 9     E      565.7 9 
   772.9 9 
  <100.0
  <100.0


  3507.4
  3300.3

(12+)
  4185.9 9     E     1042.1 6 
   100.0

  3143.8
(14-)
  4236.6 8     E (17) 2.8 ns 9     221.3 3 
   100.0

  4015.2
(16)
  4325.1 10     E      251.9 9 
   526.8 9 
   100.0
    91.67


  4073.1
  3798.3

(13+)
  4339.9 9     E (16)      277.9 6 
   324.7 9 
   100.0
    32.14


  4061.9
  4015.2
(15)
(16)
  4391.7 8     E      205.8 9 
   329.8 9 
   519.3 6 
    37.14
    58.57
   100.0



  4185.9
  4061.9
  3872.3

(15)
(15)
  4640.5 12     E      248.8 9 
   100.0

  4391.7

  4774.3 14     E      449.2 9 
   100.0

  4325.1

  4787.1 11     E      447.3 9 
  <100.0

  4339.9
(16)
  4970.0 9     E (16)     1097.7 6 
   100.0

  3872.3
(15)
  5008.4 10     E (18)      221.4 9 
   771.7 9 
   <23.81
   100.0


  4787.1
  4236.6

(17)
  5031.6 10     E       61.8 9 
   691.6 9 
     0.000
   100.0


  4970.0
  4339.9
(16)
(16)
  5356.8 12     E      325.2 6 
   100.0

  5031.6

  5615.2 10     E (19)     1378.6 6 
   100.0

  4236.6
(17)
  5618.0 10     E (19)      609.6 9 
  1381.4 6 
    36.29
   100.0


  5008.4
  4236.6
(18)
(17)
  5672.4 15     E      315.6 9 
   100.0

  5356.8

  5810.3 10     E (20)      192.3 6 
   195.1 6 
   100.0
    52.48


  5618.0
  5615.2
(19)
(19)
  6475.6 12     E (21)      665.3 6 
   100.0

  5810.3
(20)
  6815.3 12     E (21)     1005.0 6 
   100.0

  5810.3
(20)
  7030.3 15     E (22)      554.7 9 
   100.0

  6475.6
(21)

Jπ(level): Values adopted by 1976Fu07 and based on simultaneous considerations of the γ-ray multipolarities deduced from α, γ(θ), branching observed in (d,2nγ), Iγ in (d,2nγ) and (p,nγ), and shell model. Jπ for levels seen only in (HI,xnγ) are from that reaction based on DCO measurements.

M(γ): From ce, γ(θ) in (d,2nγ) or IT decay (1976Fu07)

Back to top

Back to top

Additional Gamma Data:













E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityConversion
Coefficient
Additional Data
   208.52 (2)+      208.5 1 M10.198α=0.198, α(K)=0.1681 24, α(L)=0.0233 4, α(M)=0.00497 7, α(N)=0.001121 16, α(O)=0.0001693 24, α(P)=1.076×10-5 16, α(N+)=0.001301 19
   240.98 (3)+ 1.1 ns 3      32.45 10 M16.31B(M1)(W.u.)=0.049 14, α=6.31 11, α(L)=4.97 9, α(M)=1.061 18, α(N)=0.239 4, α(O)=0.0360 6, α(P)=0.00225 4, α(N+)=0.277 5
(3)+ 1.1 ns 3     241.0 1 E20.1091B(E2)(W.u.)=4.8 14, α=0.1091, α(K)=0.0828 12, α(L)=0.0206 3, α(M)=0.00458 7, α(N)=0.001010 15, α(O)=0.0001380 20, α(P)=4.32E-6 6, α(N+)=0.001152 17
   412.01 (3)+      171.0 2 M1,E20.342α=0.342 6, α(K)=0.27 3, α(L)=0.060 21, α(M)=0.013 5, α(N)=0.0030 11, α(O)=0.00041 12, α(P)=1.5×10-5 4, α(N+)=0.0034 12
(3)+      203.5 1 (M1,E2)0.201α=0.201 11, α(K)=0.160 20, α(L)=0.032 8, α(M)=0.0071 18, α(N)=0.0016 4, α(O)=0.00022 5, α(P)=9.3×10-6 23, α(N+)=0.0018 5
   449.47 (5)+ 16.5 ns 15      37.5[E2]113.1B(E2)(W.u.)≈3.7, α=113.1
(5)+ 16.5 ns 15     208.5 1 [E2]0.1759B(E2)(W.u.)=1.61 15, α=0.1759, α(K)=0.1297 19, α(L)=0.0361 6, α(M)=0.00810 12, α(N)=0.00178 3, α(O)=0.000240 4, α(P)=6.57E-6 10, α(N+)=0.00203 3
   460.00 (4)+      219.0 1 M10.1729α=0.1729, α(K)=0.1471 21, α(L)=0.0204 3, α(M)=0.00434 7, α(N)=0.000979 14, α(O)=0.0001479 21, α(P)=9.41×10-6 14, α(N+)=0.001137 16
   496.30 (2)+      496.3 3 (M1)0.0202α=0.0202, α(K)=0.01728 25, α(L)=0.00233 4, α(M)=0.000496 7, α(N)=0.0001118 16, α(O)=1.693×10-5 24, α(P)=1.091E-6 16, α(N+)=0.0001298 19
   513.12 (3)+      304.6 1 M1,E20.062α=0.062 10, α(K)=0.051 10, α(L)=0.00849 20, α(M)=0.00184 7, α(N)=0.000412 13, α(O)=5.97×10-5 13, α(P)=3.0E-6 9, α(N+)=0.000474 12
   618.30 (2)+      377.3 3 M10.0408α=0.0408, α(K)=0.0348 5, α(L)=0.00474 7, α(M)=0.001009 15, α(N)=0.000227 4, α(O)=3.44×10-5 5, α(P)=2.21E-6 4, α(N+)=0.000264 4
(2)+      618.3 1 M10.01168α=0.01168, α(K)=0.00999 14, α(L)=0.001337 19, α(M)=0.000284 4, α(N)=6.41×10-5 9, α(O)=9.71E-6 14, α(P)=6.28E-7 9, α(N+)=7.44E-5 11
   678.30 (2)-      678.3 1 E10.00212α=0.00212 3, α(K)=0.00182 3, α(L)=0.000236 4, α(M)=4.99×10-5 7, α(N)=1.121E-5 16, α(O)=1.684E-6 24, α(P)=1.057E-7 15, α(N+)=1.300E-5 19
   706.80 (4)+      465.8 3 M10.0238α=0.0238, α(K)=0.0203 3, α(L)=0.00274 4, α(M)=0.000583 9, α(N)=0.0001315 19, α(O)=1.99×10-5 3, α(P)=1.282E-6 18, α(N+)=0.0001527 22
   883.17 (8)- 2.0 ms 2 
% IT = 100
   433.7 1 E30.0559B(E3)(W.u.)=0.166 17, α=0.0559, α(K)=0.0407 6, α(L)=0.01183 17, α(M)=0.00267 4, α(N)=0.000591 9, α(O)=8.11E-5 12, α(P)=2.46E-6 4, α(N+)=0.000675 10
   980.80 (3)-      302.5 1 M1,E20.063α=0.063 10, α(K)=0.052 11, α(L)=0.00868 22, α(M)=0.00188 8, α(N)=0.000421 14, α(O)=6.10×10-5 12, α(P)=3.1E-6 9, α(N+)=0.000485 13
   998.01 (5-)      538.0 1 (E1)0.00350α=0.00350 5, α(K)=0.00300 5, α(L)=0.000393 6, α(M)=8.31×10-5 12, α(N)=1.87E-5 3, α(O)=2.79E-6 4, α(P)=1.727E-7 25, α(N+)=2.16E-5 3
  1024.36 (6)-      574.9 1 E10.00302α=0.00302 5, α(K)=0.00259 4, α(L)=0.000338 5, α(M)=7.16×10-5 10, α(N)=1.608E-5 23, α(O)=2.41E-6 4, α(P)=1.496E-7 21, α(N+)=1.86E-5 3
  1163.80 (4-)      485.5 2 (E2)0.01330α=0.01330, α(K)=0.01095 16, α(L)=0.00185 3, α(M)=0.000402 6, α(N)=8.96×10-5 13, α(O)=1.293E-5 19, α(P)=6.34E-7 9, α(N+)=0.0001032 15
  1190.82 (7)-      166.5 2 M1,E20.372α=0.372 8, α(K)=0.29 3, α(L)=0.067 24, α(M)=0.015 6, α(N)=0.0033 12, α(O)=0.00045 14, α(P)=1.6×10-5 4, α(N+)=0.0037 14
  1809.4 (10+)       44.0 3 M1+E227α=27 25, α(L)=21 19, α(M)=5 5, α(N)=1.1 10, α(O)=0.13 12, α(P)=0.0006 3, α(N+)=1.2 11
  2828.7 (13-) 67 µs 5     638.6 3 [M2+E3]0.024α=0.024 8, α(K)=0.020 7, α(L)=0.0033 6, α(M)=0.00072 12, α(N)=0.00016 3, α(O)=2.4×10-5 5, α(P)=1.3E-6 5, α(N+)=0.00019 4
(13-) 67 µs 5    1019.4[E3]0.00481α=0.00481 7, α(K)=0.00399 6, α(L)=0.000640 9, α(M)=0.0001385 20, α(N)=3.10×10-5 5, α(O)=4.57E-6 7, α(P)=2.50E-7 4, α(N+)=3.59E-5 5
  3300.3 (12+)     1110.4 9 M1+E20.0024α=0.0024 5, α(K)=0.0020 5, α(L)=0.00027 5, α(M)=5.8×10-5 11, α(N)=1.30E-5 24, α(O)=2.0E-6 4, α(P)=1.2E-7 3, α(N+)=1.6E-5 3
  3886.6 (14-)     1057.9 6 M1+E20.0026α=0.0026 6, α(K)=0.0023 5, α(L)=0.00030 6, α(M)=6.4×10-5 12, α(N)=1.5E-5 3, α(O)=2.2E-6 5, α(P)=1.4E-7 4, α(N+)=1.7E-5 4
E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityConversion
Coefficient
Additional Data

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   208.52   208.5E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   449.47   208.5E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
   618.30   618.3E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided
  1078.30   618.3E(γ): Multiply placed with intensity suitably divided
I(γ): Multiply placed with intensity suitably divided

Back to top