Adopted Levels, Gammas

TT' /

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112,1949 (2011)	1-Jun-2010

 $O(\beta^{-}) = -2155\ 24$; $S(n) = 8.69 \times 10^{3}\ 3$; $S(p) = 4238\ 24$; $O(\alpha) = -4.4 \times 10^{2}\ 3$ 2012Wa38

Note: Current evaluation has used the following Q record -2.17E+3 3 8.71×10³ 3 4250 30 -450 30 2011AuZZ.

 $Q(\beta^{-}n) = -13290 \ 3, \ Q(\varepsilon p) = -2420 \ 3 \ 2011 AuZZ.$

Values in 2003Au03: $Q(\beta^{-}) = -2160 \ 3$, $S(n) = 8710 \ 3$, $S(p) = 4.25E3 \ 3$, $Q(\alpha) = -450 \ 3$, $Q(\beta^{-}n) = -13290 \ 3$, $Q(\varepsilon p) = -2420 \ 3$. Ionized atom $T_{1/2}$:

2009Wi09: Be(¹⁵²Sm,X): Decay of ¹⁴²Pm⁶¹⁺, ¹⁴²Pm⁶⁰⁺ and ¹⁴²Pm⁵⁹⁺ Experiment: Beryllium target of 2.513 gm/cm² was bombarded with a 607.4 MeV/A ¹⁵²Sm beam delivered by the heavy-ion accelerator (SIS) at GSI. The fully ionized ¹⁴²Pm ions were separated in flight with FRS employing a two-fold magnetic rigidity analysis and 731 mg/cm² Al energy degrader. The ¹⁴²Pm ions were injected into the storage ring ESR and stored in ultra-high vacuum. Identification of cooled ¹⁴²Pm⁵⁹⁺, ¹⁴²Pm⁶⁰⁺ and ¹⁴²Pm⁶¹⁺ ions and their decay products were achieved using the Schottky Mass Spectrometry technique. Half lives presented are correlated to the average decay with cooler currents at 50mA and 250mA. Decay constants associated with individual cooler currents can be found in the reference. $T_{1/2}=56 \text{ s } 3 \text{ for } {}^{142}\text{Pm}^{61+}$ (fully-stripped ions); only β^+ decay mode is possible for fully-stripped ions. For ¹⁴²Pm⁶⁰⁺ (H-like ions): $T_{1/2}(\beta^+ + \epsilon) = 39.2$ s 6; $T_{1/2}(\beta^+) = 55.0$ s 13; $T_{1/2}(\epsilon) = 135.9$ s 27 and $\% \varepsilon / (\% \varepsilon + \% \beta^+) = 29.0 \% 13)$. For ¹⁴²Pm⁵⁹⁺ (He-like ions): $T_{1/2}(\beta^+ + \varepsilon) = 39.6 s \ 14; \ T_{1/2}(\beta^+) = 49.9 s \ 22, \ T_{1/2}(\varepsilon) = 193 s \ 5$ and $\% \varepsilon / (\% \varepsilon + \% \beta^+) = 20.2 \% 10.$

- 2008Ve06: 124 Sn(23 Na,5n): 142 Pm was produced by bombardment of a 400 μ g/cm² thick 124 Sn target with 95 MeV 23 Na beams (average beam intensity 100 pnA). The reaction products moved through the Berkeley Gas-filled separator, which separated the ¹⁴²Pm from the beam and other products by their different magnetic rigidities. The ¹⁴²Pm ions were stopped in a 25 μ m thick Al foil. The emitted γ and x rays were measured with an intrinsic Ge "clover" detector. This experiment searched for oscillations (time-modulation) in the ε decay probability in ¹⁴²Pm (neutral atom) isotope. Observation of a non-exponential ε decay was originally reported by 2008Li21: in the ε decay of ionized (hydrogen-like) ¹⁴⁰Pr and ¹⁴²Pm. T_{1/2}=40.68 s 53 from 2008Ve06 using a single-exponential decay function fit to the ¹⁴²Nd K_{α} x rays. Note that β^+ half-life was measured to be T_{1/2}=41.11 s 38. This was obtained in 2008Ve06 using a single-exponential decay fit to the 511-keV line from annihilation radiation. The electron conversion half-life was measured here to be 40.68 s 53. In the decay curves of 142 Nd K_{α} x rays and annihilation radiation, no evidence of (statistically significant) oscillatory pattern was found by 2008Ve06. The authors conclude that any oscillation, not resolved in their experiment, must have an amplitude smaller by a factor of 31 than the one reported by 2008Li21. 2008Ve06 do, however, point out that ε decays of hydrogen-like ions (as used in 2008Li21) may in some, hitherto unknown way, differ from the ε decay of neutral atom used in 2008Ve06.
- 2008Li21: 9Be(152Sm,X): ion T1/2 142Pm was produced by in-flight fragmentation of relativistic heavy projectiles. The beam was ¹⁵²Sm at 500-600 MeV/A bombarding a ⁹Be target with thicknesses of 1 and 2 g/cm². Fragment mass separator (FRS) was used to identify ¹⁴²Pm residues. Measured half-life of (hydrogen-like) ¹⁴²Pm⁶⁰⁺ ions using time-resolved Schottky mass spectrometry at GSI facility. 2008Li21 report observing non-exponential decay pattern of hydrogen-like ions with a time-modulation period of \approx 7s. All half-lives given here are for (hydrogen-like) ¹⁴²Pm⁶⁰⁺ ion. T_{1/2}=40.7 s +24-20 from decay constant λ =0.0170 s⁻¹ 9 (2008Li21) using a single-exponential decay function. $T_{1/2}$ from decay constant λ =0.0240 s⁻¹ 42 or 28.9 s +61-43 using a single-exponential decay function, but only those data were fitted that were collected within 33 s after injections of the ions. $T_{1/2}$ decay constant $\lambda = 0.0224 \text{ s}^{-1} 42$ or 30.9 s +72-49 using a single-exponential decay and superimposed periodic time modulation functions fit. $Q(\varepsilon)=4830 \text{ keV}$ (2008Li21) for decay of ¹⁴²Pm⁶⁰⁺ as compared to 4798 25 (2003Au03) for decay of neutral ¹⁴²Pm.

¹⁴²Pm Levels

Cross Reference (XREF) Flags

Α	¹⁴² Pm IT decay	D	142 Nd(d,2n γ) E=13.5 MeV
В	142 Sm ε decay	Е	$(HI,xn\gamma)$

 142 Sm ε decay 142 Nd(p,n γ) E=10 MeV C

¹⁴²Pm Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	1+	40.5 s 5	ABCDE	%ε+%β ⁺ =100 T _{1/2} : for neutral atom, from 1970Ar17; others: 40.5 s <i>10</i> (1968B114), 40 s <i>3</i> (1973Ra01). T _{1/2} : 56 s <i>3</i> for ¹⁴² Pm ⁶¹⁺ 2009Wi09. T _{1/2} : (β ⁺ +ε)=39.2 s 6 ¹⁴² Pm ⁶⁰⁺ 2009Wi09. T _{1/2} : (β ⁺)=55.0 s <i>13</i> ¹⁴² Pm ⁶⁰⁺ 2009Wi09. T _{1/2} : (ε)=135.9 s <i>27</i> ¹⁴² Pm ⁶⁰⁺ 2009Wi09. T _{1/2} : (ε)=135.9 s <i>14</i> ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : (β ⁺)=49.9 s <i>22</i> ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : (ε)=193 s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : (ε)=193 s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : (ε)=193 s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2009Wi09. T _{1/2} : $(ε)=193$ s 5 ¹⁴² Pm ⁵⁹⁺ 2008Ve06. J ^π : log ft≤5.3 to 0 ⁺ and 2 ⁺ Suggested earlier as 1 ⁺ in 1970Ha29 from strong beta
208.52 8	$(2)^{+}$		A CDE	decay.
240.98 8	$(3)^+$	1.1 ns 3	A CDE	$T_{1/2}$: from (d,2n γ).
412.01 <i>12</i> 449.47 <i>13</i> 460.00 <i>12</i> 496.30 <i>18</i> 513.12 <i>13</i> 618.30 <i>10</i> 678.30 <i>10</i> 706.80 <i>20</i> 860 22 <i>4</i>	$(3)^{+} (5)^{+} (4)^{+} (2)^{+} (2)^{+} (2)^{-} (4)^{+}$	16.5 ns 15	A CDE A CDE CDE CD CD CD CD BCD CD	T _{1/2} : from (d,2nγ).
860.2? 4 883.17 <i>16</i>	(8)-	2.0 ms 2	A CDE	%IT=100
980.80 <i>15</i> 998.01 <i>16</i> 1024.36 <i>16</i> 1076.70 <i>18</i> 1078.30? <i>16</i> 1163.80 <i>23</i> 1185.20 <i>23</i> 1190.82 <i>21</i> 1237.1? <i>4</i> 1310 1 5	$(3)^{-} (5^{-}) (6)^{-} (4^{-}) (5) (4^{-}) (5^{-}) (7)^{-} (9^{-})$		CD CDE CD CD CD CD CD CD CD CD CD E	T _{1/2} : from (d,2nγ) (1976Fu07); others: 2.20 ms (1972Ra42) (α,3nγ), 2.36 ms (1971Go21) (α,3nγ), 2.2 ms 2 (1974KeZE,1975KeZN) (α,3nγ), (p,2nγ).
1335.0? 11			D	E(level), J^{π} : From figure 3 of 2004Li49; not listed in authors' table I. T _{1/2} : From 2002Bh02, except for the g.s. which is the adopted value. E(level): From least-squares fit to $E\gamma$'s.
1765.4 <i>4</i> 1809.4 <i>5</i> 2190.1 <i>6</i> 2828.7 <i>6</i>	(9 ⁺) (10 ⁺) (11 ⁺) (13 ⁻)	67 μs 5	E E E	T _{1/2} : 2004Li49 assigned this level as the 67 μ s isomer, based upon the absence of any strong coincidence between the γ -rays below and above this level. This isomer was placed at 926.2 earlier based on (α , 3n γ) and (¹⁰ B, 4n γ) (1975KeZN)
3143.8 7 3300.3 7 3507.4 9 3738.0 8 3798.3 8	(14^{-}) (12^{+}) (13^{+}) (13^{+})	<0.69 ns	E E E E	
3820.4 7 3872.3 7 3886.6 7	(14) (15) (14 ⁻)	0.8 ns 5	E E E	

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

d)

E(level)	J^{π}	T _{1/2}	XREF	E(level)	$J^{\pi \dagger}$	XREF
4015.2 8	(16)	9 ns 4	E	4970.0 9	(16)	E
4061.9 8	(15)		E	5008.4 10	(18)	E
4073.1 9			E	5031.6 10		E
4185.9 9			E	5356.8 12		E
4236.6 8	(17)	2.8 ns 9	E	5615.2 10	(19)	E
4325.1 10			E	5618.0 <i>10</i>	(19)	E
4339.9 9	(16)		E	5672.4 15		E
4391.7 8			E	5810.3 <i>10</i>	(20)	E
4640.5 12			E	6475.6 12	(21)	E
4774.3 14			E	6815.3 <i>12</i>	(21)	E
4787.1 <i>11</i>			E	7030.3 15	(22)	E

[†] Values adopted by 1976Fu07 and based on simultaneous considerations of the γ -ray multipolarities deduced from α , $\gamma(\theta)$, branching observed in (d,2n γ), I γ in (d,2n γ) and (p,n γ), and shell model. J^{π} for levels seen only in (HI,xn γ) are from that reaction based on DCO measurements.

 $\gamma(^{142}\text{Pm})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	J_f^{π}	Mult. [#]	α^{\dagger}	Comments
208.52	(2)+	208.5 [@] 1	100 [@]	0.0	1+	M1	0.198	$\alpha(K)=0.1681\ 24;\ \alpha(L)=0.0233\ 4;\ \alpha(M)=0.00497$ 7; $\alpha(N+)=0.001301\ 19$ $\alpha(N)=0.001121\ 16;\ \alpha(O)=0.0001693\ 24;$ $\alpha(P)=1.076\times10^{-5}\ 16$
240.98	(3)+	32.45 10	25.2	208.52	(2)+	M1	6.31 11	B(M1)(W.u.)=0.049 <i>14</i> α (L)=4.97 <i>9</i> ; α (M)=1.061 <i>18</i> ; α (N+)=0.277 <i>5</i> α (N)=0.239 <i>4</i> : α (Q)=0.0360 <i>6</i> : α (P)=0.00225 <i>4</i>
		241.0 <i>I</i>	100	0.0	1+	E2	0.1091	$\begin{array}{l} \text{B(E2)(W.u.)=4.8 I4} \\ \alpha(\text{K)=0.0828 I2; } \alpha(\text{L)=0.0206 3; } \alpha(\text{M})=0.00458 \\ 7; \; \alpha(\text{N}+)=0.001152 \; 17 \\ \alpha(\text{N})=0.001010 \; 15; \; \alpha(\text{O})=0.0001380 \; 20; \\ \alpha(\text{P})=4.32 \times 10^{-6} \; 6 \end{array}$
412.01	(3)+	171.0 2	15	240.98	(3)+	M1,E2	0.342 6	$\alpha(K)=0.27 \ 3; \ \alpha(L)=0.060 \ 21; \ \alpha(M)=0.013 \ 5; \ \alpha(N+)=0.0034 \ 12 \ \alpha(N)=0.0030 \ 11; \ \alpha(O)=0.00041 \ 12; \ \alpha(D)=1.5\times10^{-5} \ 4$
		203.5 1	100	208.52	(2)+	(M1,E2)	0.201 11	$\alpha(\mathbf{K}) = 0.160 \ 20; \ \alpha(\mathbf{L}) = 0.032 \ 8; \ \alpha(\mathbf{M}) = 0.0071 \ 18; \alpha(\mathbf{N}+) = 0.0018 \ 5 \alpha(\mathbf{N}) = 0.0016 \ 4; \ \alpha(\mathbf{O}) = 0.00022 \ 5; \alpha(\mathbf{P}) = 9 \ 3 \times 10^{-6} \ 23$
449.47	(5)+	37.5		412.01	(3)+	[E2]	113.1	B(E2)(W.u.)≈3.7 ce(L)/(γ +ce)=0.770 8; ce(M)/(γ +ce)=0.178 4; ce(N+)/(γ +ce)=0.0432 9 ce(N)/(γ +ce)=0.0385 8; ce(O)/(γ +ce)=0.00474 10; ce(P)/(γ +ce)=3.40×10 ⁻⁶ 7 If branching≈0.04.
		208.5 [@] 1	100 [@]	240.98	(3)+	[E2]	0.1759	B(E2)(W.u.)=1.61 <i>15</i> α (K)=0.1297 <i>19</i> ; α (L)=0.0361 <i>6</i> ; α (M)=0.00810 <i>12</i> ; α (N+)=0.00203 <i>3</i> α (N)=0.00178 <i>3</i> ; α (O)=0.000240 <i>4</i> ; α (P)=6 57×10 ⁻⁶ <i>10</i>
460.00	(4)+	219.0 <i>1</i>	100	240.98	(3)+	M1	0.1729	$\alpha(K)=0.1471\ 21;\ \alpha(L)=0.0204\ 3;\ \alpha(M)=0.00434$ 7; $\alpha(N+)=0.001137\ 16$

Continued on next page (footnotes at end of table)

γ ⁽¹⁴²Pm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
								α (N)=0.000979 <i>14</i> ; α (O)=0.0001479 <i>21</i> ; α (P)=9.41×10 ⁻⁶ <i>14</i>
496.30	$(2)^{+}$	255.4 3	100	240.98	(3)+			
		287.7 3	82	208.52	$(2)^+$		0.0000	
		496.3 3	85	0.0	1'	(M1)	0.0202	$\alpha(K)=0.01728 25; \alpha(L)=0.00233 4; \alpha(M)=0.000496$ 7: $\alpha(N+)=0.0001208 10$
								$\alpha(N) = 0.0001118 I6: \alpha(O) = 1.693 \times 10^{-5} 24$
								$\alpha(P)=1.091\times10^{-6}$ 16
513.12	(3)+	304.6 1	100	208.52	$(2)^{+}$	M1,E2	0.062 10	$\alpha(K)=0.051 \ 10; \ \alpha(L)=0.00849 \ 20; \ \alpha(M)=0.00184$
								7; α(N+)=0.000474 <i>12</i>
								α (N)=0.000412 <i>13</i> ; α (O)=5.97×10 ⁻⁵ <i>13</i> ;
(10.20	(2)+	277.2.2	50	240.09	(2)+	N/1	0.0400	$\alpha(P) = 3.0 \times 10^{-6} 9$
618.30	$(2)^{+}$	3/1.3 3	52	240.98	(3)	MI	0.0408	$\alpha(K)=0.0348$ 3; $\alpha(L)=0.004/4$ /; $\alpha(M)=0.001009$ 15: $\alpha(N+)=0.000264$ 4
								$\alpha(N)=0.000227 4 \cdot \alpha(\Omega)=3.44 \times 10^{-5} 5$
								$\alpha(P)=2.21\times10^{-6} 4$
		618.3 [@] 1	100 [@]	0.0	1^{+}	M1	0.01168	$\alpha(K)=0.00999 \ 14; \ \alpha(L)=0.001337 \ 19;$
								$\alpha(M)=0.000284$ 4; $\alpha(N+)=7.44\times10^{-5}$ 11
								$\alpha(N)=6.41\times10^{-5}$ 9; $\alpha(O)=9.71\times10^{-6}$ 14;
(=0.00		(T O O I	100			-		$\alpha(P) = 6.28 \times 10^{-7} \ 9$
678.30	$(2)^{-}$	678.3 1	100	0.0	1-	El	0.00212 3	$\alpha(K) = 0.00182 \ 3; \ \alpha(L) = 0.000236 \ 4;$
								$\alpha(M) = 4.99 \times 10^{-5}$ /; $\alpha(N+) = 1.300 \times 10^{-5}$ /9 $\alpha(N) = 1.121 \times 10^{-5}$ /6: $\alpha(O) = 1.684 \times 10^{-6}$ 24:
								$\alpha(P) = 1.121 \times 10^{-7} 15$
706.80	$(4)^{+}$	246.8 3	100	460.00	$(4)^{+}$			
		294.8 <i>3</i>	65	412.01	(3)+			
		465.8 3	94	240.98	(3) ⁺	MI	0.0238	$\alpha(K)=0.0203 \ 3; \ \alpha(L)=0.002/4 \ 4; \ \alpha(M)=0.000583$
								$\alpha(N)=0.0001315 \ 19: \ \alpha(O)=1.99\times10^{-5} \ 3:$
								$\alpha(P) = 1.282 \times 10^{-6} \ 18$
860.2?		448.2 <i>3</i>	100	412.01	(3)+			
883.17	$(8)^{-}$	433.7 1	100	449.47	$(5)^+$	E3	0.0559	$B(E3)(W.u.) = 0.166 \ 17$
								$\alpha(\mathbf{K})=0.0407 \ 0; \ \alpha(\mathbf{L})=0.01183 \ 17; \ \alpha(\mathbf{M})=0.00207 \ 4; \ \alpha(\mathbf{N}+)=0.000675 \ 10$
								$\alpha(N)=0.000591 9; \alpha(O)=8.11\times10^{-5} 12;$
								$\alpha(P)=2.46\times10^{-6} 4$
980.80	(3)-	302.5 1	100	678.30	(2) ⁻	M1,E2	0.063 10	α (K)=0.052 <i>11</i> ; α (L)=0.00868 <i>22</i> ; α (M)=0.00188 8; α (N+)=0.000485 <i>13</i>
								$\alpha(N)=0.000421 \ 14; \ \alpha(O)=6.10\times 10^{-5} \ 12;$
								$\alpha(P)=3.1\times10^{-6}$ 9
998.01	(5 ⁻)	538.0 1	100	460.00	$(4)^+$	(E1)	0.00350 5	$\alpha(K)=0.00300 5; \alpha(L)=0.000393 6;$
								$\alpha(M) = 8.31 \times 10^{-5} I_{2}; \alpha(N+) = 2.16 \times 10^{-5} 3$
								$\alpha(\mathbf{N}) = 1.87 \times 10^{-5} 3; \ \alpha(\mathbf{O}) = 2.79 \times 10^{-5} 4; \ \alpha(\mathbf{P}) = 1.727 \times 10^{-7} 25$
1024.26	$(6)^{-}$	26 1 the 2	15	008.01	(5^{-})			$u(\mathbf{r}) = 1.727 \times 10^{-25}$
1024.30	(0)	574.9 1	100	449.47	$(5)^+$	E1	0.00302 5	$\alpha(K)=0.00259$ 4: $\alpha(L)=0.000338$ 5:
					(-)			$\alpha(M) = 7.16 \times 10^{-5} \ 10; \ \alpha(N+) = 1.86 \times 10^{-5} \ 3$
								$\alpha(N)=1.608\times10^{-5} 23; \alpha(O)=2.41\times10^{-6} 4;$
				000 51				$\alpha(P)=1.496\times 10^{-7} 21$
1076.70	(4 ⁻)	95.9 I	1000	980.80	$(3)^{-}$			
10/8.30?	(5) (4^{-})	$018.3 \ I$ 485.5.2	100	400.00 678 30	(4)' $(2)^{-}$	(F2)	0.01330	$\alpha(\mathbf{K}) = 0.01095.16$; $\alpha(\mathbf{L}) = 0.00185.3$; $\alpha(\mathbf{M}) = 0.000402$
1105.00	(7)	TUJ.J 4	100	070.50	(4)	(122)	0.01330	u(1x) = 0.01075 10, u(1) = 0.00105 5, u(1) = 0.000402

Continued on next page (footnotes at end of table)

γ ⁽¹⁴²Pm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$lpha^{\dagger}$	Comments
					<u> </u>			6; α (N+)=0.0001032 <i>15</i> α (N)=8.96×10 ⁻⁵ <i>13</i> ; α (O)=1.293×10 ⁻⁵ <i>19</i> ; α (P)=6.34×10 ⁻⁷ <i>9</i>
1185.20	(5 ⁻)	$108.5\ 2$ 204 4 3	80 100	1076.70	(4^{-}) $(3)^{-}$			
1190.82	(7) ⁻	166.5 2	100	1024.36	(6) ⁻	M1,E2	0.372 8	α (K)=0.29 3; α (L)=0.067 24; α (M)=0.015 6; α (N+)=0.0037 14 α (N)=0.0033 12; α (O)=0.00045 14; α (P)=1.6×10 ⁻⁵ 4
		192.7 3	38	998.01	(5 ⁻)			
1237.1?	(0^{-})	160.4 3	100	10/6./0	(4^{-})			
1310.1	(9)	420.80	100.0	005.17 998.01	(8) (5^{-})			
1765.4	(9^{+})	455.2 6	6.901	1310.1	(9^{-})			
		882.2 <i>3</i>	100.0	883.17	(8)-			
1809.4	(10 ⁺)	44.0 <i>3</i>	100.0	1765.4	(9+)	M1+E2	27 25	α (L)=21 <i>19</i> ; α (M)=5 <i>5</i> ; α (N+)=1.2 <i>11</i> α (N)=1.1 <i>10</i> ; α (O)=0.13 <i>12</i> ; α (P)=0.0006 <i>3</i>
2190.1	(11^{+})	380.8 <i>3</i>	100.0	1809.4	(10^{+})			
2828.7	(13 ⁻)	638.6 <i>3</i>	100.0	2190.1	(11+)	[M2+E3]	0.024 8	$\begin{array}{l} \alpha(\mathrm{K}) = 0.020 \ 7; \ \alpha(\mathrm{L}) = 0.0033 \ 6; \\ \alpha(\mathrm{M}) = 0.00072 \ 12; \ \alpha(\mathrm{N} +) = 0.00019 \ 4 \\ \alpha(\mathrm{N}) = 0.00016 \ 3; \ \alpha(\mathrm{O}) = 2.4 \times 10^{-5} \ 5; \end{array}$
		1010 4	25.00	1000 4	(10+)	(5.2)	0.00401.7	$\alpha(P)=1.3\times10^{-6}$ 5
		1019.4	25.08	1809.4	(10')	[E3]	0.00481 /	$\alpha(K)=0.00399\ 6;\ \alpha(L)=0.000640\ 9;\alpha(M)=0.0001385\ 20;\alpha(N+)=3.59\times10^{-5}\ 5\alpha(N)=3.10\times10^{-5}\ 5;\ \alpha(O)=4.57\times10^{-6}\ 7;\alpha(P)=2\ 50\times10^{-7}\ 4$
3143.8	(14 ⁻)	315.1 <i>3</i>	100.00	2828.7	(13-)			
3300.3	(12 ⁺)	1110.4 9	100.0	2190.1	(11 ⁺)	M1+E2	0.0024 5	$\alpha(K)=0.0020 5; \alpha(L)=0.00027 5;$ $\alpha(M)=5.8\times10^{-5} 11; \alpha(N+)=1.6\times10^{-5}$
								α (N)=1.30×10 ⁻⁵ 24; α (O)=2.0×10 ⁻⁶ 4; α (P)=1.2×10 ⁻⁷ 3; α (IPF)=5.00×10 ⁻⁷ 22
		1490.6 9	<22.73	1809.4	(10^+)			
3507.4	(12^{+})	1317.2 9	<100.0	2190.1	(11^{+})	D		
3738.0	(13^{+})	437.69	100.0 64.52	3300.3 2190-1	(12^{+}) (11^{+})	0		
3798.3	(13^{+})	498.0 9	100.0	3300.3	(11^{+}) (12^{+})	Q		
017010	(10)	1608.2 9	57.89	2190.1	(11^+)			
3820.4	(14)	991.6 <i>3</i>	100.0	2828.7	(13-)			
3872.3	(15)	52.0 6	50.50	3820.4	(14)	D		
2006.6	(1.4-)	728.5 6	100.0	3143.8	(14^{-})			
3886.6	(14)	88.4 9	0.000	3798.3	(13^{+})	D		
		742.8.6	96 55	3143.8	(13^{-})	D		
		1057.9 6	100.0	2828.7	(13 ⁻)	M1+E2	0.0026 6	$\alpha(K)=0.0023 5; \alpha(L)=0.00030 6;$ $\alpha(M)=6.4\times10^{-5} 12; \alpha(N+)=1.7\times10^{-5}$
								⁴ $\alpha(N)=1.5\times10^{-5} 3; \alpha(O)=2.2\times10^{-6} 5;$ $\alpha(P)=1.4\times10^{-7} 4$
4015.2	(16)	142.9 <i>3</i>	100.0	3872.3	(15)			· ·
4061.9	(15)	175.4 6 241.2 9	100.00 28.05	3886.6 3820.4	(14 ⁻) (14)			

Continued on next page (footnotes at end of table)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	$E_f = J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
4073.1		565.7 9	<100.0	3507.4	5008.4	(18)	221.4 9	<23.81	4787.1
		772.9 9	<100.0	3300.3 (12+)		771.7 9	100.0	4236.6 (17)
4185.9		1042.1 6	100.0	3143.8 (14-) 5031.6		61.8 9	0.000	4970.0 (16)
4236.6	(17)	221.3 <i>3</i>	100.0	4015.2 (16)			691.6 9	100.0	4339.9 (16)
4325.1		251.9 9	100.0	4073.1	5356.8		325.2 6	100.0	5031.6
		526.8 9	91.67	3798.3 (13+) 5615.2	(19)	1378.6 6	100.0	4236.6 (17)
4339.9	(16)	277.96	100.0	4061.9 (15)	5618.0	(19)	609.6 9	36.29	5008.4 (18)
		324.7 9	32.14	4015.2 (16)			1381.4 <i>6</i>	100.0	4236.6 (17)
4391.7		205.8 9	37.14	4185.9	5672.4		315.6 9	100.0	5356.8
		329.8 9	58.57	4061.9 (15)	5810.3	(20)	192.3 6	100.0	5618.0 (19)
		519.3 6	100.0	3872.3 (15)			195.1 6	52.48	5615.2 (19)
4640.5		248.8 9	100.0	4391.7	6475.6	(21)	665.3 <i>6</i>	100.0	5810.3 (20)
4774.3		449.2 9	100.0	4325.1	6815.3	(21)	1005.0 6	100.0	5810.3 (20)
4787.1		447.3 9	<100.0	4339.9 (16)	7030.3	(22)	554.7 9	100.0	6475.6 (21)
4970.0	(16)	1097.7 6	100.0	3872.3 (15)					

$\gamma(^{142}\text{Pm})$ (continued)

[†] Additional information 1.
[‡] (d,2nγ) (1976Fu07), ΔE=0.1-0.3 keV, ΔIγ=5-30%.
[#] From ce, γ(θ) in (d,2nγ) or IT decay (1976Fu07).
[@] Multiply placed with intensity suitably divided.
[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{142}_{61} Pm_{81}$

Legend

Adopted Levels, Gammas

Level Scheme (continued)

¹⁴²₆₁Pm₈₁