¹⁴²Nd(d,2nγ) E=13.5 MeV 1976Fu07

						ŀ	History		<i></i>	
				Aut	hor		Citation	Literature Cutoff Date		
Full F	Evaluatio	on T. D. Jo	ohnson	, D. Symo	chko(a	a), M. Fadil(b), and J. K.	Tuli	NDS 112, 1949 (2011)	1-Jun-2010
Measured: γ , The level sch	$\gamma \gamma, \gamma(\theta)$	θ), ce, γ (t). that of 1976	Fu07.							
						¹⁴² F	Pm Levels			
E(level) 0.0 208.52 8 240.98 8 412.01 <i>12</i> 449.47 <i>13</i> 460.00 <i>12</i> 496.30 <i>18</i> 513.12 <i>13</i>	$\begin{array}{c} J^{\pi^{\dagger}} \\ \hline 1^{+} \\ (2)^{+} \\ (3)^{+} \\ (3)^{+} \\ (5)^{+} \\ (4)^{+} \\ (2)^{+} \\ (3)^{+} \end{array}$	T _{1/2} 1.1 ns <i>3</i> 16.5 ns <i>15</i>	E(61 67 70 86 88 98 99 102	level) 8.30 10 8.30 10 6.80 20 0.2? 4 3.17 16 0.80 15 8.01 16 4.36 16	$\frac{J^{\pi^{\dagger}}}{(2)^{+}}$ $(2)^{-}$ $(4)^{+}$ $(8)^{-}$ $(3)^{-}$ (5^{-}) $(6)^{-}$	E(level) 1076.70 18 1078.30? 10 1163.80 23 1185.20 23 1190.82 21 1237.1? 4 1335.0? 11	$ \frac{J^{\pi^{\dagger}}}{(4^{-})} \\ 6 (5) \\ (4^{-}) \\ (5^{-}) \\ (7)^{-} $			
† Adopte	d values	3.								
						<u> </u>	(¹⁴² Pm)			
${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	$I_{(\gamma+ce)}$	Com	nments
26.4 ^{<i>a</i>} 3 32.45 10	<3 25.2	1024.36 240.98	$(6)^{-}(3)^{+}$	998.01 208.52	(5^{-}) $(2)^{+}$	M1	6.31 11		B(M1)(W.u.)=0.049 α α (L)=4.97 9; α (M)=1 α (N+)=0.277 5 α (N)=0.239 4; α (O)= α (P)=0.00225 4	14 1.061 18; 90.0360 6;
(37.5)		449.47	(5)+	412.01	(3)+			≈5	Mult.: based on $\alpha \approx 5$. balance in the ms-or $I_{(\gamma+ce)}$: from observat	7 from intensity lelayed spectrum. ion of 203.5 γ in
95.9 <i>1</i>	4.2	1076.70	(4 ⁻)	980.80	(3)-				Mult.: $A_2 = -0.10 \ 8.$	ett unit.
108.5 2 160.4 3	≈2 2.4	1185.20 1237.1?	(5 ⁻)	1076.70 1076.70	(4 ⁻) (4 ⁻)	(M1,E2)	0.418 <i>13</i>		α (K)=0.32 3; α (L)=0 7; α (N+)=0.0043 α (N)=0.0038 15; α (C α (P)=1.8×10 ⁻⁵ 5	.08 3; α(M)=0.017 17 0)=0.00052 17;
166.5 2	7.8	1190.82	(7)-	1024.36	(6)-	M1,E2	0.372 8	11	Mult.: $ce(K)=0.42, a$ $A_2=-0.42.$ $ce(K)/(\gamma+ce)=0.209 H$ $ce(L)/(\gamma+ce)=0.049$ $ce(M)/(\gamma+ce)=0.01$ $ce(N+)/(\gamma+ce)=0.0024$ $ce(N)/(\gamma+ce)=0.0024$ $ce(O)/(\gamma+ce)=0.0024$	x(K)exp=0.17 9, 15; 0 17; 1 4; 027 10 9; 033 10;
171.0 2	5.3	412.01	(3)+	240.98	(3)+	M1,E2	0.342 6	7	$ce(P)/(\gamma+ce)=1.2\times$ Mult.: $ce(K)=2.0$ 6, a $A_2=+0.3$ 2. $ce(K)/(\gamma+ce)=0.197$ 4 $ce(L)/(\gamma+ce)=0.045$ $ce(M)/(\gamma+ce)=0.01$ $ce(N+)/(\gamma+ce)=0.01$	10 ⁻⁵ 3 (K)exp=0.26 9, 15; 5 15; 0 4; 025 9

Continued on next page (footnotes at end of table)

¹⁴²Nd(d,2nγ) E=13.5 MeV 1976Fu07 (continued)

γ ⁽¹⁴²Pm) (continued)</sup>

E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
192.7 <i>3</i> *193.5 <i>3</i> 203.5 <i>1</i>	3.0 6.5 36.2	1190.82 412.01	(7) ⁻ (3) ⁺	998.01 (208.52 ((5 ⁻) (2) ⁺	(M1,E2)	0.201 11	ce(N)/(γ +ce)=0.0022 8; ce(O)/(γ +ce)=0.00031 9; ce(P)/(γ +ce)=1.1×10 ⁻⁵ 3 Mult.: ce(K)=0.9 3, α (K)exp=0.17 7. Mult.: A ₂ =-0.15 9 (for 192.7 γ +193.5 γ). Mult.: a=-0.15 9 (193.5 γ +192.7 γ). α (K)=0.160 20; α (L)=0.032 8; α (M)=0.0071 18; α (N+)=0.0018 5 α (N)=0.0016 4; α (O)=0.00022 5; α (P)=9.3×10 ⁻⁶ 23 Mult: ce(K)=11 7 α (K)exp=0 3 2
204.4 3	2.5	1185.20	(5 ⁻)	980.80 ((3)-			Mult. co(1)=117, a(1)op=0.52.
208.5 % 1	265 ^{&}	208.52	(2)+	0.0	1+	M1	0.198	α(K)=0.1681 24; α(L)=0.0233 4; α(M)=0.00497 7; α(N+)=0.001301 19 α(N)=0.001121 16; α(O)=0.0001693 24; α(P)=1.076×10-5 16 Eγ,Iγ: doublet with ΔE=0.15 keV (1975KeZN) and Iγ=385. Mult.: ce(K)<59 10, α(K)exp=0.15 3, A2=-0.03 1; K/LM=5.83 16 (1972Ra42).
208.5 ^{&} 1	120 ^{&}	449.47	(5)+	240.98 ((3)+	E2	0.1759	B(E2)(W.u.)=1.62 <i>15</i> $\alpha(K)=0.1297 \ 19; \ \alpha(L)=0.0361 \ 6; \ \alpha(M)=0.00810 \ 12; \ \alpha(N+)=0.00203 \ 3$ $\alpha(N)=0.00178 \ 3; \ \alpha(O)=0.000240 \ 4; \ \alpha(P)=6.57\times10^{-6} \ 10$ E _y ,I _y : doublet with $\Delta E=0.15 \ \text{keV} \ (1975\text{KeZN})$ and I _y =385. Mult.: ce(K)<59.5, $\alpha(K)$ exp=0.15 3; K/LM=2.94 8 (1972R a42)
219.0 <i>I</i>	65.0	460.00	(4)+	240.98 ((3)+	M1	0.1729	$\alpha(K)=0.1471 \ 21; \ \alpha(L)=0.0204 \ 3; \ \alpha(M)=0.00434 \ 7; \\ \alpha(N+)=0.001137 \ 16 \\ \alpha(N)=0.000979 \ 14; \ \alpha(O)=0.0001479 \ 21; \\ \alpha(P)=9.41\times10^{-6} \ 14 \\ Mult : ce(K)=10 \ 1 \ \alpha(K)exp=0.15 \ 2 \ A_{2}=-0.16 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.15 \ 2 \ A_{2}=-0.16 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.15 \ 2 \ A_{2}=-0.16 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.15 \ 2 \ A_{2}=-0.16 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.15 \ 2 \ A_{2}=-0.16 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.15 \ 2 \ A_{2}=-0.16 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.016 \ 1 \\ \alpha(K)=0.016 \ 1 \\ \alpha(K)=0.016 \ 1 \ \alpha(K)exp=0.016 \ 1 \\ \alpha(K)=0.016 \ 1 \\ \alpha($
241.0 <i>I</i>	100	240.98	(3)+	0.0	1+	E2	0.1091	B(E2)(W.u.)=4.8 <i>I</i> 4 $\alpha(K)=0.0828 I2; \alpha(L)=0.0206 3; \alpha(M)=0.00458 7; \alpha(N=0.001152 I7 \alpha(N)=0.001010 I5; \alpha(O)=0.0001380 20; \alpha(P)=4.32\times10^{-6} 6Mult.: ce(K)=8 2, \alpha(K)exp=0.080 25, A2=+0.12 I;\kappa(I) = 0.0828 (10728 \alpha^{-2})$
246.8 <i>3</i>	5.4	706.80	$(4)^{+}$	460.00 ($(4)^{+}$			K/LM=3.29.8 (19/2Ra42). Mult.: $A_2=+0.21$ 10.
255.4 <i>3</i> 287.7 <i>3</i>	7.1 5.8	496.30 496.30	$(2)^+$ $(2)^+$	240.98 (208.52 ($(3)^+$ $(2)^+$			Mult.: A ₂ =+0.08 <i>10</i> . Mult.: A ₂ =+0.17 <i>22</i> , ce(K)=1.3 <i>3</i> , α(K)exp=0.06 <i>2</i>
^x 289.4 2	16.5							$(287.7\gamma+289.4\gamma).$ Mult.: ce(K)=1.3 3, α (K)exp=0.06 2 (for
294.8 <i>3</i>	3.5	706.80	(4)+	412.01 ((3)+	(M1,E2)	0.068 11	289.4 γ +287.7 γ); A ₂ =-0.12 10. α (K)=0.056 11; α (L)=0.0094 4; α (M)=0.00204 11; α (N+)=0.000526 20 α (N)=0.000456 20; α (O)=6.61×10 ⁻⁵ 10; α (P)=3.3×10 ⁻⁶ 9 Mult.: A ₂ =-0.29 18; α (K)exp=0.06 2 (for 204 8 α +280 4 α)
302.5 1	22.5	980.80	(3)-	678.30 ((2)-	M1,E2	0.063 10	$\alpha(K)=0.052 \ 11; \ \alpha(L)=0.00868 \ 22; \ \alpha(M)=0.00188 \ 8; \ \alpha(N+)=0.000485 \ 13 \ \alpha(N)=0.000421 \ 14; \ \alpha(O)=6.10\times10^{-5} \ 12; \ \alpha(P)=3.1\times10^{-6} \ 9 \ Mult.: \ ce(K)=1.1 \ 3, \ \alpha(K)exp=0.05 \ 2, \ A_2=-0.23 \ 5.$

Continued on next page (footnotes at end of table)

¹⁴²Nd(d,2nγ) E=13.5 MeV 1976Fu07 (continued)

γ ⁽¹⁴²Pm) (continued)</sup>

E_{γ} ‡	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
304.6 1	~2	513.12	(3)+	208.52 ($(2)^+$	M1,E2	0.062 10		$\begin{aligned} \alpha(\text{K}) = 0.051 \ 10; \ \alpha(\text{L}) = 0.00849 \ 20; \\ \alpha(\text{M}) = 0.00184 \ 7; \ \alpha(\text{N}+) = 0.000474 \ 12 \\ \alpha(\text{N}) = 0.000412 \ 13; \ \alpha(\text{O}) = 5.97 \times 10^{-5} \ 13; \\ \alpha(\text{P}) = 3.0 \times 10^{-6} \ 9 \\ \text{Mult.: } \text{ce}(\text{K}) = 0.9 \ 3, \ \alpha(\text{K}) \text{exp} = 0.04 \ 2, \\ \text{A}_2 = -0.13 \ 9. \end{aligned}$
377.3 3	~2 6.5	618.30	(2)+	240.98 ((3) ⁺	M1	0.0408		$\alpha(K)=0.0348\ 5;\ \alpha(L)=0.00474\ 7;$ $\alpha(M)=0.001009\ 15;\ \alpha(N+)=0.000264\ 4$ $\alpha(N)=0.000227\ 4;\ \alpha(O)=3.44\times10^{-5}\ 5;$ $\alpha(P)=2.21\times10^{-6}\ 4$ Mult.: ce(K)=0.3 1, $\alpha(K)$ exp=0.045 15, A ₂ =-0.13 10
^x 384.0 3	2.7								
$x_{389.1}^{@}$ 3	3.7								Mult : $A_{1} = 0.22.13$
x427.1 2	10.0								Mult.: $\alpha_2 = -0.22$ 13. Mult.: $ce(K)=(0.3), \alpha(K)exp=(0.03),$
433.7 1	60.0	883.17	(8)-	449.47 ((5)+	E3	0.0559		A ₂ =-0.51 20. $\alpha(K)$ =0.0407 6; $\alpha(L)$ =0.01183 17; $\alpha(M)$ =0.00267 4; $\alpha(N+)$ =0.000675 10 $\alpha(N)$ =0.000591 9; $\alpha(O)$ =8.11×10 ⁻⁵ 12; $\alpha(P)$ =2.46×10 ⁻⁶ 4
									Mult.: from I γ and ce(K)=2.5 normalized
									to α (K)(E3)=0.41; K/LM=2.82 8 (1972Ra42).
^x 445.7 3	4.4								$ce(K)=0.12$ 6, $\alpha(K)exp=0.014$ 8 (for
448.2 <i>3</i>	4.4	860.2?		412.01 ((3)+				Mult.: $ce(K)=0.12 \ 6, \ \alpha(K)exp=0.014 \ 8$
465.8 <i>3</i>	5.1	706.80	(4)+	240.98 ((3)+	M1	0.0238		(for 448.2 γ +445.7 γ). α (K)=0.0203 3; α (L)=0.00274 4; α (M)=0.000583 9; α (N+)=0.0001527
									α (N)=0.0001315 <i>19</i> ; α (O)=1.99×10 ⁻⁵ <i>3</i> ; α (P)=1.282×10 ⁻⁶ <i>18</i> Mult.: ce(K)=0.12 <i>4</i> , α (K)exp=0.023 <i>8</i> ,
185 5 2	75	1163.80	(A^{-})	678 30 ((2)-	(F 2)	0.01330	76	$\alpha = -0.17 \ 10.$
+03.3 2	7.5	1105.00	(+)	070.50	(2)	(L2)	0.01350	7.0	$ce(L)/(\gamma+ce)=0.01000 13,$ $ce(L)/(\gamma+ce)=0.00183 3;$ $ce(M)/(\gamma+ce)=0.000397 6;$ $ce(N+)/(\gamma+ce)=0.0001019 15$
									ce(N)/(γ +ce)=8.85×10 ⁻⁵ 13; ce(O)/(γ +ce)=1.277×10 ⁻⁵ 18; ce(P)/(γ +ce)=6.26×10 ⁻⁷ 9
									Mult.: ce(K)=0.07 3, α (K)exp=0.009 4,
496.3 <i>3</i>	≈6	496.30	(2)+	0.0	1+	(M1)	0.0202		$A_2 = -0.05 \ 10.$ $\alpha(K) = 0.01728 \ 25; \ \alpha(L) = 0.00233 \ 4;$
									$\alpha(M)=0.000496\ 7;\ \alpha(N+)=0.0001298$ 19 $\alpha(N)=0.0001118\ 16;\ \alpha(\Omega)=1.693\times10^{-5}$
									24; $\alpha(P) = 1.091 \times 10^{-6} 16$
538.0 <i>1</i>	23.3	998.01	(5 ⁻)	460.00 ($(4)^+$	(E1)	0.00350 5		Mult.: $ce(K)=0.14 4$, $\alpha(K)exp=0.025$. $\alpha=0.00350 5$; $\alpha(K)=0.00300 5$;
			(-)		(')	()			$\alpha(L)=0.000393 6; \alpha(M)=8.31\times10^{-5} 12; \alpha(N+)=2.16\times10^{-5} 3$ $\alpha(N)=1.87\times10^{-5} 3; \alpha(O)=2.79\times10^{-6} 4;$

Continued on next page (footnotes at end of table)

¹⁴²Nd(d,2nγ) E=13.5 MeV 1976Fu07 (continued)

$\gamma(^{142}\text{Pm})$ (continued)

Ε _γ ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
574.9 1	20.2	1024.36	(6)-	449.47	(5)+	E1	0.00302 5	$\alpha(P)=1.727\times10^{-7} 25$ Mult.: ce(K)=0.12 5, $\alpha(K)$ exp=0.005 2, A ₂ =-0.16 3. α =0.00302 5; $\alpha(K)$ =0.00259 4; $\alpha(L)$ =0.000338 5; $\alpha(M)$ =7.16×10 ⁻⁵ 10; $\alpha(N+)$ =1.86×10 ⁻⁵ 3 $\alpha(N)$ =1.608×10 ⁻⁵ 23; $\alpha(O)$ =2.41×10 ⁻⁶ 4;
618.3 ^{&} 1	≈10 ^{&}	618.30	(2)+	0.0	1+	(M1)	0.01168	$\alpha(P)=1.496\times10^{-7} 2I$ Mult.: ce(K)<0.1, α (K)exp<0.005, A ₂ =-0.24 3. α (K)=0.00999 14; α (L)=0.001337 19; α (M)=0.000284 4; α (N+)=7.44×10 ⁻⁵ 11 α (N)=6.41×10 ⁻⁵ 9; α (O)=9.71×10 ⁻⁶ 14; α (P)=6.28×10 ⁻⁷ 9
618.3 ^{&} 1 678.3 1	≈2 ^{&} 31.0	1078.30? 678.30	(5) (2) ⁻	460.00 0.0	$(4)^+$ 1 ⁺	E1	0.00212 <i>3</i>	E _γ ,I _γ : doublet with Iγ=12.6. Mult.: ce(K)=0.14 5, α(K)exp=0.011 5, A ₂ =-0.01 7. E _γ ,I _γ : doublet with Iγ=12.6. α=0.00212 3; α(K)=0.00182 3; α(L)=0.000236 4; α(M)=4.99×10 ⁻⁵ 7; α(N+)=1.300×10 ⁻⁵ 19 α(N)=1.121×10 ⁻⁵ 16; α(O)=1.684×10 ⁻⁶ 24;
^x 756.8 2 ^x 917.3 [@] 3 ^x 953.4 [@] 3	7.2 2.2 5.5							$\alpha(P)=1.057\times10^{-7}$ 15 Mult.: ce(K)<0.008, $\alpha(K)$ exp<0.0025, A ₂ \approx -0.1. Mult.: A ₂ =-0.4.

[†] Additional information 1.
[‡] ΔIγ=5-30%; ΔE=0.1-0.3 keV.
[#] From ce, γ(θ). α(K)exp were normalized to α(K)(E3)=0.041 for 433.7γ.
[@] Assignment to ¹⁴²Pm not certain.
[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

