NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = W.B.Kaufmann

Found 21 matches.

Back to query form

2005HI11      Phys.Rev. C 71, 065201 (2005)

G.E.Hite, W.B.Kaufmann, R.J.Jacob

New evaluation of the πNΣ term

doi: 10.1103/PhysRevC.71.065201
Citations: PlumX Metrics

1999KA57      Phys.Rev. C60, 055204 (1999)

W.B.Kaufmann, G.E.Hite

Tests of Current Algebra and Partially Conserved Axial-Vector Current in the Subthreshold Region of the Pion-Nucleon System

doi: 10.1103/PhysRevC.60.055204
Citations: PlumX Metrics

1998GI02      Phys.Rev. C57, 784 (1998)

W.R.Gibbs, L.Ai, W.B.Kaufmann

Low-Energy Pion-Nucleon Scattering

NUCLEAR REACTIONS 1H(π+, π+), (π-, π-), E ≈ 30-90 MeV; analyzed data; deduced pion-nucleon coupling constant, scattering volumes, subthreshold Σ term, off-shell amplitudes. Several data sets used.

doi: 10.1103/PhysRevC.57.784
Citations: PlumX Metrics

1998HI03      Phys.Rev. C57, 931 (1998)

G.E.Hite, W.B.Kaufmann

ππ Scattering Amplitudes in the Subthreshold Region

doi: 10.1103/PhysRevC.57.931
Citations: PlumX Metrics

1998NU05      Phys.Rev. C58, 2292 (1998)

M.Nuseirat, M.A.K.Lodhi, M.O.El-Ghossain, W.R.Gibbs, W.B.Kaufmann

Energy Dependence of Pion Double Charge Exchange

NUCLEAR REACTIONS 14C, 42,44,48Ca(π+, π-), E < 250 MeV; calculated σ(E, θ=10°); deduced reaction mechanism possible short-range corrections. Comparison with data.

doi: 10.1103/PhysRevC.58.2292
Citations: PlumX Metrics

1997KA08      Phys.Lett. 390B, 18 (1997)

W.B.Kaufmann, G.E.Hite

ππ Scattering Amplitudes within the Sub-Threshold Triangle

doi: 10.1016/S0370-2693(96)01390-1
Citations: PlumX Metrics

1995GI08      Phys.Rev.Lett. 74, 3740 (1995)

W.R.Gibbs, A.Li, W.B.Kaufmann

Isospin Breaking in Low-Energy Pion-Nucleon Scattering

NUCLEAR REACTIONS 1H(π+, π+), (π-, π-), (π-, π0), E=30-50 MeV; analyzed amplitudes obtained from data; deduced clear iso-spin breaking indications.

doi: 10.1103/PhysRevLett.74.3740
Citations: PlumX Metrics

1992KA35      Phys.Rev. C46, 1474 (1992)

W.B.Kaufmann, P.B.Siegel, W.R.Gibbs

Deeply Bound Pionic Atoms Via the (π-, p) Reactions

NUCLEAR REACTIONS 58Ni(π-, p), E=20-50 MeV; 58Ni(π-, n), E=50 MeV; calculated σ(θ), pion capture of 1s atomic level. Distorted wave impulse approximation, direct capture into atomic level.

ATOMIC PHYSICS 58Ni(π-, p), E=20-50 MeV; 58Ni(π-, n), E=50 MeV; calculated σ(θ), pion capture of 1s atomic level. Distorted wave impulse approximation, direct capture into atomic level.

doi: 10.1103/PhysRevC.46.1474
Citations: PlumX Metrics

1989GI08      Phys.Lett. 231B, 6 (1989)

W.R.Gibbs, W.B.Kaufmann, J.-P.Dedonder

The Pion-Nucleus Resonance and Nuclear Translucence

NUCLEAR REACTIONS 12C(π, π), E=10-80 MeV; calculated pion-nucleus s-wave phase shift; deduced nuclear translucence effect.

doi: 10.1016/0370-2693(89)90102-0
Citations: PlumX Metrics

1989KA27      Phys.Rev. C40, 1729 (1989)

W.B.Kaufmann, W.R.Gibbs

K+-Nucleus Total Cross Section Analysis

NUCLEAR REACTIONS 2H, 6Li, 12C, 16O, 28Si(K+, X), E at 550-800 MeV/c; analyzed σ extraction methods; deduced corrections.

doi: 10.1103/PhysRevC.40.1729
Citations: PlumX Metrics

1989LE11      Phys.Rev. C39, 2356 (1989)

M.J.Leitch, H.W.Baer, R.L.Burman, C.L.Morris, J.N.Knudson, J.R.Comfort, D.H.Wright, R.Gilman, S.H.Rokni, E.Piasetzky, Z.Weinfeld, W.R.Gibbs, W.B.Kaufmann

14C(π+, π-)14O Reaction between 19 and 80 MeV

NUCLEAR REACTIONS 14C(π+, π-)14O, E=19-80 MeV; measured σ(θ) vs E. 14O deduced double IAS excitation. DWIA, optical model.

doi: 10.1103/PhysRevC.39.2356
Citations: PlumX Metrics

1988AU05      Phys.Rev. C38, 1277 (1988)

N.Auerbach, W.R.Gibbs, J.N.Ginocchio, W.B.Kaufmann

Pion-Nucleus Double Charge Exchange and the Nuclear Shell Model

NUCLEAR REACTIONS 42,44,46,48Ca, 46,48,50Ti, 52Cr, 54Fe(π+, π-), E=35, 45, 292 MeV; calculated ground, IAS transition σ(θ). Shell model.

doi: 10.1103/PhysRevC.38.1277
Citations: PlumX Metrics

1987KA03      Phys.Rev. C35, 838 (1987)

W.B.Kaufmann, W.R.Gibbs

Deser-Goldberger-Baumann-Thirring Formula for π-p Atoms

NUCLEAR REACTIONS 1n(π0, π0), E=3.3-6.5 MeV; calculated σ(E). 1H(π-, π-), E not given; calculated scattering lengths. Dester-Goldberger-Baumann-Thirring formula.

ATOMIC PHYSICS, Mesic-Atoms 1H; calculated pionic level shifts, widths. Deser-Goldberger-Baumann-Thirring formula.

doi: 10.1103/PhysRevC.35.838
Citations: PlumX Metrics

1986KA02      Phys.Lett. 166B, 279 (1986)

W.B.Kaufmann, H.Pilkuhn

Line Widths of Antiprotonic Atoms

ATOMIC PHYSICS 4He, 6,7Li, 12C, 14N, 16,17,18O, 19F, 23Na, 31P, 32S, 35Cl, 39K, 56Fe, 89Y, Zr, 120Sn, 127I, 138Ba, Pr, 174Yb; calculated antiprotonic atom level widths. Annihilation probabilities on nucleons.

doi: 10.1016/0370-2693(86)90798-7
Citations: PlumX Metrics

1985SI09      Phys.Rev. C31, 2184 (1985)

P.B.Siegel, W.B.Kaufmann, W.R.Gibbs

K+ as a Probe of Partial Deconfinement in Nuclei

NUCLEAR REACTIONS 12C, 40Ca(K+, K+), E at 300-800 MeV/c; calculated σ(θ), σ(E), σ(12C)/σ(2H); deduced K+-nucleon interaction, phase shift nucleon size dependence.

doi: 10.1103/PhysRevC.31.2184
Citations: PlumX Metrics

1984GI11      Phys.Lett. 145B, 1 (1984)

W.R.Gibbs, W.B.Kaufmann

Antiprotonic Atomic Energy Levels via the (p(bar), p) Reaction

NUCLEAR REACTIONS 31P(p-bar, p), E=150 MeV; calculated σ(θ). 31P, 19F, 23Na(p-bar, p), E=100 MeV; calculated σ(θ=0°); deduced possible antiprotonic atom level detection. DWIA.

doi: 10.1016/0370-2693(84)90934-1
Citations: PlumX Metrics

1984SI13      Phys.Rev. C30, 1256 (1984)

P.B.Siegel, W.B.Kaufmann, W.R.Gibbs

K+-Nucleus Elastic Scattering and Charge Exchange

NUCLEAR REACTIONS 12C, 40Ca(K+, K+), E=446.4, 425, 433, 440 MeV; 13C(K+, K0), E=100-400 MeV; calculated σ(θ), σ(θ) vs E; deduced medium effects. DWIA analysis, multiple scattering theory.

doi: 10.1103/PhysRevC.30.1256
Citations: PlumX Metrics

1983KA19      Phys.Rev. C28, 1286 (1983)

W.B.Kaufmann, W.R.Gibbs

Nuclear Medium Effects in Pion Elastic Scattering and Charge Exchange

NUCLEAR REACTIONS 12C(π+, π+), E=165 MeV; calculated σ(θ). 7Li, 15N, 13C(π+, π0), E=40-240 MeV; calculated σ(0°), σ vs E, σ(θ); deduced binding, Pauli blocking correction effects. Pion-nucleus optical model, three-body approximation.

doi: 10.1103/PhysRevC.28.1286
Citations: PlumX Metrics

1976GI01      Phys.Rev.Lett. 36, 85 (1976)

W.R.Gibbs, B.F.Gibson, A.T.Hess, G.J.Stephenson, Jr., W.B.Kaufmann

Pion Charge-Exchange Scattering from Light Nuclei

NUCLEAR REACTIONS 7Li, 10B, 13C(π+, π0); calculated σ(E).

doi: 10.1103/PhysRevLett.36.85
Citations: PlumX Metrics

1976GI06      Phys.Rev. C13, 2433 (1976)

W.R.Gibbs, B.F.Gibson, A.T.Hess, G.J.Stephenson, Jr., W.B.Kaufmann

Elastic Pion-4He Scattering

NUCLEAR REACTIONS 4He(π+, π+), (π-, π-), E=24-110 MeV; calculated σ(θ).

doi: 10.1103/PhysRevC.13.2433
Citations: PlumX Metrics

1974KA07      Phys.Rev. C9, 1340 (1974)

W.B.Kaufmann, J.C.Jackson, W.R.Gibbs

Charge-Exchange Reactions on Light Nuclei in a Multiple-Scattering Formalism

NUCLEAR REACTIONS 18O(π+, π0), E=180 MeV; calculated σ(E); 18O(π+, π-), E=180 MeV; calculated σ(E); 13C(π+, π0), E=30-200 MeV; calculated σ(E); 13C(π+, π0), E=180 MeV; calculated σ(θ); 9Be(π+, π0), E=30-250 MeV; calculated σ(E); 9Be(π+, π-), E=30-250 MeV; calculated σ(E) to T=3/2 final states; 9Be(π+, π0), E=175 MeV; calculated σ(θ) to ground, sum of final states; 9Be(π+, π-), E=175 MeV; calculated σ(θ) to T=3/2 final states; 11B(π+, π0), E=20-250 MeV; calculated σ(E) to ground, sum of final states.

doi: 10.1103/PhysRevC.9.1340
Citations: PlumX Metrics

Back to query form