NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = V.de la Mota

Found 26 matches.

Back to query form



2020BE11      Phys.Rev. C 101, 054608 (2020)

G.Besse, V.de la Mota, E.Bonnet, P.Eudes, P.Napolitani, Z.Basrak

Reexamining an extended-mean-field approach in heavy-ion collisions near the Fermi energy

NUCLEAR REACTIONS 58Ni(58Ni, X), 129Xe(120Sn, X), 40Ar(63Cu, X), (107Ag, X), (197Au, X), 197Au(197Au, X), E=20-120 MeV/nucleon; calculated stopping observables, energy isotropy ratio, large fluctuations, and linear momentum transfer using extended time-dependent Hartree-Fock (ETDHF) mean-field approach. Comparison with experimental data. Modeling of heavy-ion reactions at intermediate energies, and static and dynamical aspects of nuclear systems. 40Ar, 58Ni, 63Cu, 107Ag, 120Sn, 129Xe, 197Au; calculated binding energies and mean-square radii using Hartree-Fock equations, and compared with experimental data.

doi: 10.1103/PhysRevC.101.054608
Citations: PlumX Metrics


2016BA24      Phys.Rev. C 93, 054609 (2016)

Z.Basrak, P.Eudes, V.de la Mota

Aspects of the momentum dependence of the equation of state and of the residual NN cross section, and their effects on nuclear stopping

NUCLEAR REACTIONS 129Xe(120Sn, X), E=12-100 MeV/nucleon; calculated nuclear stopping, energy-based isotropy ratio as stopping observable; investigated nuclear equation of state, effects of zero-range and non-local nuclear mean field, role of nucleon-nucleon residual interaction, isospin, energy and angular dependence of nucleon-nucleon cross section, in-medium modifications of nucleon-nucleon cross section, simplified parametrization of angular dependence of neutron-proton and proton-proton cross section; deduced fixed set of model parameters for energies below Fermi energy, for energies above Fermi energy model reproduces experimental data by parameters of in-medium modification of nucleon-nucleon cross section that smoothly evolve with energy, strong reduction of free nucleon-nucleon cross section around Fermi energy, effects of reaction centrality. Through Heavy-Ion Phase-Space Event generator (HIPSE) deduced that high multiplicity events are spread over a broad impact parameter range. Semiclassical Landau-Vlasov transport model (BUU type).

doi: 10.1103/PhysRevC.93.054609
Citations: PlumX Metrics


2014EU01      Phys.Rev. C 90, 034609 (2014)

P.Eudes, Z.Basrak, F.Sebille, V.de la Mota, G.Royer

Comprehensive analysis of fusion data well above the barrier

NUCLEAR REACTIONS 12C(14N, X)26Al*, E=3.14, 3.80, 4.29, 6.16, 7.59, 10.39, 11.29, 11.94, 12.72, 17.71 MeV/nucleon; 16O(20Ne, X)36Ar*, E=3.40, 5.74, 6.10, 6.85, 7.80 MeV/nucleon; 12C(24Mg, X)36Ar*, E=25.0, 35.0, 45.0 MeV/nucleon; 27Al(12C, X)39K*, E=5.32, 6.75, 7.14, 8.04, 8.13, 15.00 MeV/nucleon; 24Mg(16O, X)40Ca*, E=3.00, 3.25, 3.50, 3.81, 4.13, 4.50, 5.06 MeV/nucleon; 20Ne(20Ne, X)40Ca*, E=3.40, 5.85, 6.30, 7.00, 7.80 MeV/nucleon; 12C(28Si, X)40Ca*, E=3.57, 4.46, 5.36, 5.71, 6.36, 6.43, 11.04, 14.18, 16.14 MeV/nucleon; 27Al(14N, X)41Ca*, E=11.21, 18.7 MeV/nucleon; 26Mg(16O, X)42Ca*, E=3.11, 3.36, 3.67, 3.85, 4.04, 4.49, 5.06 MeV/nucleon; 24Mg(18O, X)42Ca*, E=3.05, 3.33, 3.50, 3.72, 4.00 MeV/nucleon; 27Al(16O, X)43Sc*, E=3.13, 3.75, 4.06, 4.38, 4.69, 5.00, 5.06, 6.56, 7.88, 10.50, 13.44 MeV/nucleon; 12C(32S, X)44Ti*, E=3.21, 3.40, 4.10, 4.53, 5.00, 19.50 MeV/nucleon; 26Mg(20Ne, X)46Ti*, E=3.00, 4.20, 4.65, 5.25, 6.00, 7.50, 10.10, 14.50, 19.75 MeV/nucleon; 27Al(20Ne, X)47V*, E=3.00, 4.05, 4.25, 4.65, 5.25, 6.00, 6.90, 7.50, 9.00, 10.50, 14.50, 19.75 MeV/nucleon; 12C(35Cl, X)47V*, E=3.57, 4.00, 4.40, 5.14, 5.71, 7.94 MeV/nucleon; 32S(16O, X)48Cr*, E=10.50 MeV/nucleon; 40Ca(16O, X)56Ni*, E=3.11, 3.47, 3.92, 4.65, 6.47, 8.73, 13.38 MeV/nucleon; 28Si(28Si, X)56Ni*, E=3.21, 3.57, 3.93, 4.29, 5.00, 6.21, 7.68, 8.57, 11.04, 12.04, 14.18, 16.14, 19.70, 20.00, 22.00, 26.00, 30.00, 35.00 MeV/nucleon; 24Mg(32S, X)56Ni*, E=3.95, 4.40, 5.00, 5.75, 6.06, 6.25, 7.47, 8.69 MeV/nucleon; 40Ca(19F, X)59Cu*, E=3.45, 4.13, 5.03, 5.42, 6.00, 9.00, 11.37 MeV/nucleon; 27Al(32S, X)59Cu*, E=4.43, 4.77, 5.47, 5.86, 7.09, 7.94, 10.00, 10.50, 11.44, 12.28 MeV/nucleon; 24Mg(35Cl, X)59Cu*, E=7.86, 8.07 MeV/nucleon; 48Ti(12C, X)60Ni*, E=6.75, 8.13, 15.00 MeV/nucleon; 40Ca(23Na, X)63Ga*, E=11.30, 12.48 MeV/nucleon; Ti(16O, X), E=14.19, 19.38 MeV/nucleon; 52Cr(14N, X)66Ga*, E=11.21, 18.71 MeV/nucleon; 27Al(40Ar, X)67Ga*, E=55.00 MeV/nucleon; 40Ca(28Si, X)68Se*, E=10.64, 11.04, 11.68, 14.18, 16.14 MeV/nucleon; 58Ni(12C, X)70Se*, E=5.32, 6.75, 8.04, 8.13, 15.00 MeV/nucleon; 58Ni(14N, X)72Br*, E=11.21, 18.71 MeV/nucleon; K, Cl(36Ar, X), E=31.58, 40.03, 51.78 MeV/nucleon; 63Cu(12C, X)75Br*, E=5.32, 6.75, 8.04, 8.13 MeV/nucleon; 40Ca(40Ar, X)80Sr*, E=4.02, 4.75, 5.90, 6.83, 15.00, 20.00, 30.00 MeV/nucleon; 40Ca(40Ca, X)80Zr*, E=3.55, 3.67, 3.85, 4.05, 4.25, 4.38, 4.55, 4.88, 7.50 MeV/nucleon; 27Al(58Ni, X)85Nb*, E=28.00 MeV/nucleon; 63Cu(24Mg, X)87Nb*, E=6.71, 9.38, 11.71, 14.21 MeV/nucleon; 45Sc(48Ti, X)93Tc*, E=15.98 MeV/nucleon; 58Ni(36Ar, X)94Pd*, E=31.58, 40.03, 51.78 MeV/nucleon; 92Mo(16O, X)108Sn*, E=11.70 MeV/nucleon; 76Ge(32S, X)108Cd*, E=4.94, 5.56, 6.19, 6.81, 7.03 MeV/nucleon; 68Zn(40Ar, X)108Cd*, E=14.60, 19.60, 27.55, 35.00 MeV/nucleon; 56Fe(52Cr, X)108Sn*, E=5.10 MeV/nucleon; 93Nb(19F, X)112Sn*, E=3.84, 5.00 MeV/nucleon; 48Ti(64Zn, X)112Te*, E=35.00, 50.00 MeV/nucleon; 58Ni(58Ni, X)116Ba*, E=32.00, 40.50, 51.50, 63.50 MeV/nucleon; 100Mo(18O, X)118Sn*, E=5.56, 8.33, 9.39, 10.28, 12.06 MeV/nucleon; 40Ca(78Kr, X)118Ba*, E=5.50 MeV/nucleon; 40Ca(82Kr, X)122Ba*, E=5.50 MeV/nucleon; 124Sn(12C, X)136Ba*, E=30.00, 49.00, 84.00 MeV/nucleon; 124Sn(14N, X)138La*, E=10.00, 20.00, 30.00 MeV/nucleon; 124Sn(20Ne, X)144Nd*, E=20.00, 30.00 MeV/nucleon; 108Ag(40Ar, X)148Tb*, E=4.22, 4.93, 5.90, 7.20, 8.40, 8.43, 27.40 MeV/nucleon; 65Cu(84Kr, X)149Ho*, E=5.88, 7.19 MeV/nucleon; 116Sn(40Ar, X)156Er*, E=4.63, 5.50, 6.78, 8.48 MeV/nucleon; 121Sb(40Ar, X)161Tm*, E=4.97, 5.65, 7.05, 7.50 MeV/nucleon; 146Nd(16O, X)162Er*, E=10.06 MeV/nucleon; 30Si(132Xe, X)162Er*, E=5.40, 5.90, 6.60, 7.50, 8.20 MeV/nucleon; 124Sn(40Ar, X)164Er*, E=24.00, 27.00 MeV/nucleon; 154Sm(14N, X)168Tm*, E=35.00, 100.00, 130.00, 135.00 MeV/nucleon; 159Tb(14N, X)173Hf*, E=22.07, 35.00, 100.00 MeV/nucleon; 159Tb(16O, X)175Ta*, E=14.00, 25.00 MeV/nucleon; 159Tb(20Ne, X)179Re*, E=8.00, 10.00, 13.00, 16.00 MeV/nucleon; 124Sn(58Ni, X)182Pt*, E=3.96, 4.12.4.28.4.66.5.00 MeV/nucleon; 165Ho(20Ne, X)185Ir*, E=30.00 MeV/nucleon; 169Tm(20Ne, X)189Au*, E=8.00, 10.00, 13.00, 16.00 MeV/nucleon; 182W(12C, X)194Hg*, E=10.08, 13.92 MeV/nucleon; 175Lu(19F, X)194Hg*, E=7.11, 9.68 MeV/nucleon; 154Sm(40Ar, X)194Hg*, E=5.53, 6.80, 8.50 MeV/nucleon; 181Ta(14N, X)195Hg*, E=35.00 MeV/nucleon; 181Ta(16O, X)197Tl*, E=14.00, 25.00 MeV/nucleon; 164Dy(40Ar, X)204Po*, E=5.53, 6.80, 8.48 MeV/nucleon; 181Ta(24Mg, X)205At*, E=11.25, 13.96, 14.17 MeV/nucleon; 165Ho(40Ar, X)205At*, E=5.65, 7.00, 7.50, 7.88, 8.50, 9.77 MeV/nucleon; 197Au(12C, X)209At*, E=86.00 MeV/nucleon; 197Au(14N, X)211Rn*, E=35.00, 100.00, 130.00, 155.00 MeV/nucleon; 197Au(16O, X)213Fr*, E=14.00, 107.00 MeV/nucleon; 197Au(20Ne, X)217Ac*, E=7.50, 11.00, 14.50, 20.00, 30.00 MeV/nucleon; 197Au(40Ar, X)237Bk*, E=5.47, 5.68, 6.20, 6.75, 8.40, 8.48, 8.57 MeV/nucleon; 209Bi(20Ne, X)229Np*, E=30.00 MeV/nucleon; 232Th(14N, X)246Bk*, E=30.00 MeV/nucleon; 238U(40Ar, X)278Ds*, E=6.25, 7.50, 8.50, 10.40 MeV/nucleon; Analyzed 382 complete and incomplete fusion σ data relative to 81 systems, A=26-278, E ≈ 3-155 MeV/nucleon; distinguished evaporation and fusion-fission mechanisms; deduced universal homographic law of fusion from properly normalized and scaled fusion σ(E) data, threshold for incomplete fusion, energy of vanishing of complete and incomplete fusion; proposed a reaction mechanism for fusion disappearance.

doi: 10.1103/PhysRevC.90.034609
Citations: PlumX Metrics


2014EU02      Nucl.Phys. A930, 131 (2014)

P.Eudes, Z.Basrak, V.de la Mota, G.Royer

Is there incomplete fusion mechanism beyond 100A MeV?

doi: 10.1016/j.nuclphysa.2014.07.035
Citations: PlumX Metrics


2013EU01      Europhys.Lett. 104, 22001 (2013)

P.Eudes, Z.Basrak, F.Sebille, V.de la Mota, G.Royer

Towards a unified description of evaporation-residue fusion cross-sections above the barrier

NUCLEAR REACTIONS 124Sn(12C, X), 28Si(28Si, X), 96Zr(36Ar, X), E<20 MeV/nucleon; analyzed available data for 300 fusion evaporation σ; deduced a universal homographic law. DYWAN microscopic transport model.

doi: 10.1209/0295-5075/104/22001
Citations: PlumX Metrics


2011SE11      Phys.Rev. C 84, 055801 (2011)

F.Sebille, V.de la Mota, S.Figerou

Probing the microscopic nuclear matter self-organization processes in the neutron star crust

doi: 10.1103/PhysRevC.84.055801
Citations: PlumX Metrics


2009SE04      Nucl.Phys. A822, 51 (2009)

F.Sebille, S.Figerou, V.de la Mota

Self-consistent dynamical mean-field investigation of exotic structures in isospin-asymmetric nuclear matter

doi: 10.1016/j.nuclphysa.2009.02.013
Citations: PlumX Metrics


2007SE09      Phys.Rev. C 76, 024603 (2007)

F.Sebille, V.de la Mota, I.C.Sagrado Garcia, J.F.Lecolley, V.Blideanu

Probing the nuclear matter isospin asymmetry by nucleon-induced reactions at Fermi energies

NUCLEAR REACTIONS 208Pb(n, pX), E=96 MeV; 208Bi(n, pX), (p, pX), E=63 MeV; analyzed σ.

doi: 10.1103/PhysRevC.76.024603
Citations: PlumX Metrics


2007SE13      Nucl.Phys. A791, 313 (2007)

F.Sebille, V.de la Mota, I.C.Sagrado Garcia, J.F.Lecolley, V.Blideanu

Analysis of emission mechanisms in nucleon-induced reactions around the Fermi energy

NUCLEAR REACTIONS 208Pb(p, nX), E=62 MeV; 208Pb(n, pX), E=96 MeV; 208Pb(p, pX), E=62 MeV; 208Pb(n, nX), E=96 MeV; calculated σ and angular distributions in the framework of the microscopic DYWAN model.

doi: 10.1016/j.nuclphysa.2007.04.024
Citations: PlumX Metrics


2004DE58      Braz.J.Phys. 34, 781 (2004)

V.de la Mota, F.Sebille, C.Bonilla

Dissipative and Fluctuating Dynamical Description of Nuclear Reactions

NUCLEAR REACTIONS Ag(Ar, X), E=27, 44 MeV/nucleon; calculated heavy fragments recoil velocities vs angle. 208Pb(n, pX), E=96 MeV; calculated proton spectra, σ(E, θ). Dynamical model, comparison with data.

doi: 10.1590/s0103-97332004000500019
Citations: PlumX Metrics


2002DE69      Acta Phys.Hung.N.S. 16, 203 (2002)

V.de la Mota, F.Sebille

Nuclear Dynamics with a Wavelet Representation

NUCLEAR REACTIONS 107Ag(40Ar, X), E=27, 44 MeV/nucleon; 100Mo(100Mo, X), E=18.7 MeV/nucleon; calculated fragment energy and angular distributions. 58Ni(36Ar, X), E=95 MeV/nucleon; calculated fragment multiplicities and rapidity spectra. Pb(n, pX), E=62.7 MeV; calculated Ep, σ(E, θ). Dynamical wavelet approach.

doi: 10.1556/APH.16.2002.1-4.23
Citations: PlumX Metrics


2001DE57      Eur.Phys.J. A 12, 479 (2001)

V.de la Mota, F.Sebille

Dissipative and Fluctuating Effects in Nuclear Dynamics with a Wavelet Representation

NUCLEAR REACTIONS 107Ag(40Ar, X), E=27, 44 MeV/nucleon; 100Mo(100Mo, X), E=18.7 MeV/nucleon; calculated fragments velocity and angular distributions; deduced fluctuation and dissipation effects. Wavelet representation, comparisons with data and other models.

doi: 10.1007/s10050-001-8670-4
Citations: PlumX Metrics


1998DE54      Nuovo Cim. 111A, 881 (1998)

V.de la Mota, B.Jouault, F.Sebille, S.Priault

The DYWAN Model and the Description of Transport Phenomena in Nuclei

NUCLEAR REACTIONS Ca(Ca, X), E=30, 50, 90 MeV/nucleon; calculated density vs time. Dynamical model.

NUCLEAR STRUCTURE Ca, Pb; calculated binding energies, radii. Dynamical model.

doi: 10.1007/BF03035973
Citations: PlumX Metrics


1998JO02      Nucl.Phys. A628, 119 (1998)

B.Jouault, F.Sebille, V.de la Mota

Wavelet Representation of the Nuclear Dynamics

NUCLEAR REACTIONS C(C, X), E=84 MeV/nucleon; Ca(Ca, X), E=30, 50, 90 MeV/nucleon; calculated particle density vs time. Dynamical-wavelet-in-nuclei model.

doi: 10.1016/S0375-9474(97)00610-6
Citations: PlumX Metrics


1997RE03      Z.Phys. A357, 79 (1997)

T.Reposeur, V.de la Mota, F.Sebille, C.O.Dorso

Signals of Fragment Structures from a Semiclassical Transport Equation in Heavy-Ion Collisions

NUCLEAR REACTIONS 58Ni(36Ar, X), E=32-95 MeV/nucleon; analyzed charged product, intermediate mass fragment multiplicity data. Semi-classical transport equation.

doi: 10.1007/s002180050217
Citations: PlumX Metrics


1996HA07      Phys.Rev. C53, 1437 (1996)

F.Haddad, J.B.Natowitz, B.Jouault, V.de la Mota, G.Royer, F.Sebille

Compressibility Probed by Linear Momentum Transfer

NUCLEAR REACTIONS 238U(16O, X), E=20-70 MeV/nucleon; 154Sm, 238U(14N, X), 232Th(α, X), 58Ni, 238U(12C, X), 68Zn, 232Th, 197Au(40Ar, X), E not given; analyzed linear momentum transfer related features, compressibility characteristics for these, other reactions. Landau-Vlasov model.

doi: 10.1103/PhysRevC.53.1437
Citations: PlumX Metrics


1996HA21      Z.Phys. A354, 321 (1996)

F.Haddad, B.Borderie, V.de la Mota, M.F.Rivet, F.Sebille, B.Jouault

Dynamical Analysis of Dissipative Collisions between Ar and Ag Nuclei in the Fermi Energy Domain

NUCLEAR REACTIONS 107Ag(40Ar, X), E=27, 44 MeV/nucleon; calculated binary collisions primary partners main characteristics; deduced temperature parameter estimates. Landau Vlasov microscopic transport model.

doi: 10.1007/s002180050052
Citations: PlumX Metrics


1996JO04      Nucl.Phys. A597, 136 (1996)

B.Jouault, V.de la Mota, F.Sebille, G.Royer, J.F.Lecolley

Dynamical Analysis of Isospin and Angular Momentum Effects in Peripheral Heavy-Ion Reactions

NUCLEAR REACTIONS 197Au(Pb, X), E=29 MeV/nucleon; analyzed data; deduced dynamical, out-of-equilibrium effects role.

doi: 10.1016/0375-9474(95)00428-9
Citations: PlumX Metrics


1995HA27      Phys.Rev. C52, 2013 (1995)

F.Haddad, F.Sebille, M.Farine, V.de la Mota, P.Schuck, B.Jouault

Effects of Gogny-Type Interactions on the Nuclear Flow

NUCLEAR REACTIONS 93Nb(93Nb, X), E ≤ 400 MeV/nucleon; calculated flow parameter vs E, mean density vs time. 197Au(197Au, X), Pb(Ar, X), E=400 MeV/nucleon; calculated flow parameter vs impact parameter; deduced incompressibility modulus. Semi-classical Landau-Vlasov approach.

doi: 10.1103/PhysRevC.52.2013
Citations: PlumX Metrics


1995JO19      Nucl.Phys. A591, 497 (1995)

B.Jouault, F.Sebille, G.Royer, V.de la Mota

Fragmentation in Central Pb + Au Collisions within a Microscopic Dynamic Approach

NUCLEAR REACTIONS 197Au(208Pb, X), E=29 MeV/nucleon; analyzed mean density, surface, Coulomb, collective energies time evolution. Microscopic dynamic approach.

doi: 10.1016/0375-9474(95)00174-Y
Citations: PlumX Metrics


1994AB01      Phys.Rev. C49, 1040 (1994)

P.Abgrall, F.Haddad, V.de la Mota, F.Sebille

Study of Energy Deposition in Heavy-Ion Reactions

NUCLEAR REACTIONS Ca(Ca, X), E=40, 60 MeV/nucleon; calculated energy distribution, residue excitation vs time. Ca(Ca, X), Pb(Pb, X), E ≈ 25-100 MeV/nucleon; calculated relaxation time vs E. Semi-classical Landau-Vlasov model.

doi: 10.1103/PhysRevC.49.1040
Citations: PlumX Metrics


1992DE25      Z.Phys. A343, 417 (1992)

V.de la Mota, F.Sebille, B.Remaud, P.Schuck

On the Competing Role of Mean-Field and Residual Interactions in Flow Observables

NUCLEAR REACTIONS 93Nb(93Nb, X), E=150 MeV/nucleon; calculated flow observables; deduced mean field, residual interactions role. Semi-classical Landau-Vlasov approach.

doi: 10.1007/BF01289818
Citations: PlumX Metrics


1992DE34      Phys.Rev. C46, 677 (1992)

V.de la Mota, F.Sebille, M.Farine, B.Remaud, P.Schuck

Analysis of the Transverse Momentum Collective Motion in Heavy-Ion Collisions below 100 MeV/Nucleon

NUCLEAR REACTIONS 93Nb(93Nb, X), Ca(Ca, X), C(C, X), E=50-100 MeV/nucleon; calculated collective sideward flow vs E. 27Al(Ar, X), E=45, 65 MeV/nucleon; calculated mean transverse momentum vs longitudinal rapidity. Gogny type forces.

doi: 10.1103/PhysRevC.46.677
Citations: PlumX Metrics


1991GA04      Phys.Lett. 255B, 311 (1991)

F.Garcias, V.De La Mota, B.Remaud, G.Royer, F.Sebille

Dynamics of Hot Rotating Nuclei

NUCLEAR STRUCTURE 40Ca; calculated binding energy per nucleon, rms radius, deexcitation channels phase diagram; deduced fission disappearance at high excitation. Hot rotating nuclei, microscopic semi-classical transport formalism.

doi: 10.1016/0370-2693(91)90771-H
Citations: PlumX Metrics


1991RO06      Phys.Rev. C44, 2226 (1991)

G.Royer, B.Remaud, F.Sebille, V.de la Mota

Semiclassical Simulation of Sudden Nucleus Scission with Two-Body Collisions

NUCLEAR STRUCTURE 40Ca; calculated fission barrier heights. Semi-classical simulation, two-body collision effects.

doi: 10.1103/PhysRevC.44.2226
Citations: PlumX Metrics


1984DE29      Phys.Lett. 143B, 279 (1984)

V.de la Mota, C.O.Dorso, E.S.Hernandez

Damping of Quantal Collective Motion in Spherical Nuclei: Dissipation versus diffusion

NUCLEAR STRUCTURE 208Pb; calculated diffusive, dissipative isovector GDR evolution relative weight. Quantal collective vibration model.

doi: 10.1016/0370-2693(84)91465-5
Citations: PlumX Metrics


Back to query form