NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = S.W.MacDonald

Found 5 matches.

Back to query form



2020PH01      Phys.Rev. C 102, 035503 (2020)

N.S.Phan, V.Cianciolo, S.M.Clayton, S.A.Currie, R.Dipert, T.M.Ito, S.W.T.MacDonald, C.M.O'Shaughnessy, J.C.Ramsey, G.M.Seidel, E.Smith, E.Tang, Z.Tang, W.Yao

Effect of an electric field on liquid helium scintillation produced by fast electrons

ATOMIC PHYSICS He(e-, γ), E=364-391 keV, [conversion electrons from 113Sn ϵ decay]; He(α, γ), E=5388-5544 keV, [from 241Am α decay]; measured scintillation light yields and spectra produced by fast electrons and α particles stopped in liquid helium (LHe) in the temperature range of 0.44 K to 3.12 K using Medium-Scale High Voltage (MSHV) Test Apparatus, and Hamamatsu R7725 photomuliplier tube (PMT); deduced temperature and electric field dependence of electron and α prompt scintillations, recombination survival probability as a function of time, and apparent temperature dependence of the reduction of scintillations for electrons due to finite ion recombination time and signal integration time. Relevance of liquid He detector for solar neutrino detection, search for electric dipole moment of neutron, measurement of the free neutron lifetime, and detection of light dark-matter particles.

doi: 10.1103/PhysRevC.102.035503
Citations: PlumX Metrics


2019CA17      Phys.Rev. C 100, 015501 (2019)

N.Callahan, C.-Y.Liu, F.Gonzalez, E.Adamek, J.D.Bowman, L.Broussard, S.M.Clayton, S.Currie, C.Cude-Woods, E.B.Dees, X.Ding, W.Fox, P.Geltenbort, K.P.Hickerson, M.A.Hoffbauer, A.T.Holley, A.Komives, S.W.T.MacDonald, M.Makela, C.L.Morris, J.D.Ortiz, R.W.Pattie, J.Ramsey, D.J.Salvat, A.Saunders, E.I.Sharapov, S.K.L.Sjue, Z.Tang, J.Vanderwerp, B.Vogelaar, P.L.Walstrom, Z.Wang, H.Weaver, W.Wei, J.Wexler, A.R.Young

Monte Carlo simulations of trapped ultracold neutrons in the UCNt experiment

RADIOACTIVITY 1n(β-); calculated neutron dynamics, trajectory and neutron detection rate in Ultra-cold neutron (UCN) magneto-gravitational neutron trap by developing an in-depth Monte Carlo model for the UCNτ experiments. Discussed implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach 0.01% level of precision.

doi: 10.1103/PhysRevC.100.015501
Citations: PlumX Metrics


2018IT01      Phys.Rev. C 97, 012501 (2018)

T.M.Ito, E.R.Adamek, N.B.Callahan, J.H.Choi, S.M.Clayton, C.Cude-Woods, S.Currie, X.Ding, D.E.Fellers, P.Geltenbort, S.K.Lamoreaux, C.-Y.Liu, S.MacDonald, M.Makela, C.L.Morris, R.W.Pattie, J.C.Ramsey, D.J.Salvat, A.Saunders, E.I.Sharapov, S.Sjue, A.P.Sprow, Z.Tang, H.L.Weaver, W.Wei, A.R.Young

Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

RADIOACTIVITY 1n(β-); measured cold neutron time of arrival (TOA) spectrum, UCN density, dUCNcounts normalized to the UCN monitor detector near the exit of the biological shield using upgraded ultracold neutron (UCN) source at Los Alamos National Laboratory. Discussed implication for a possible neutron electric dipole moment (EDM) experiment.

doi: 10.1103/PhysRevC.97.012501
Citations: PlumX Metrics


2018PA53      Science 360, 627 (2018)

R.W.Pattie, N.B.Callahan, C.Cude-Woods, E.R.Adamek, L.J.Broussard, S.M.Clayton, S.A.Currie, E.B.Dees, X.Ding, E.M.Engel, D.E.Fellers, W.Fox, P.Geltenbort, K.P.Hickerson, M.A.Hoffbauer, A.T.Holley, A.Komives, C.-Y.Liu, S.W.T.MacDonald, M.Makela, C.L.Morris, J.D.Ortiz, J.Ramsey, D.J.Salvat, A.Saunders, S.J.Seestrom, E.I.Sharapov, S.K.Sjue, Z.Tang, J.Vanderwerp, B.Vogelaar, P.L.Walstrom, Z.Wang, W.Wei, H.L.Weaver, J.W.Wexler, T.L.Womack, A.R.Young, B.A.Zeck

Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection

RADIOACTIVITY 1NN(β-); measured T1/2 of free neutron using ultracold neutrons stored in a magneto-gravitational trap at the Los Alamos Neutron Science Center UCN facility. Comparison with previous measurements.

doi: 10.1126/science.aan8895
Citations: PlumX Metrics


2018TA18      Phys.Rev.Lett. 121, 022505 (2018)

Z.Tang, M.Blatnik, L.J.Broussard, J.H.Choi, S.M.Clayton, C.Cude-Woods, S.Currie, D.E.Fellers, E.M.Fries, P.Geltenbort, F.Gonzalez, K.P.Hickerson, T.M.Ito, C.-Y.Liu, S.W.T.MacDonald, M.Makela, C.L.Morris, C.M.O'Shaughnessy, R.W.Pattie, B.Plaster, D.J.Salvat, A.Saunders, Z.Wang, A.R.Young, B.A.Zeck

Search for the Neutron Decay n → X + γ, Where X is a Dark Matter Particle

RADIOACTIVITY 1NN(γ); measured decay products, Eγ, Iγ; deduced lack of the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence.

doi: 10.1103/PhysRevLett.121.022505
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter S.W.MacDonald: , S.W.MACDONALD