NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = R.de Diego

Found 15 matches.

Back to query form



2020CA30      Phys.Rev. C 102, 069801 (2020)

J.Casal, M.Rodriguez-Gallardo, J.M.Arias, E.Garrido, R.de Diego

Comment on "From Coulomb excitation cross sections to nonresonant astrophysical rates in three-body systems: The 17Ne case"

NUCLEAR REACTIONS 15O(2p, γ)17Ne, T=0.3-10 GK; calculated contribution to the reaction rate from 1/2+ states, and 1/2+ resonance. 208Pb(17Ne, X), E=500 MeV/nucleon; calculated Coulomb dissociation cross sections for the 1/2+ B(E1) distribution, for the total (1/2+ + 3/2+) B(E1) distribution, and from shifting of the 1/2+ resonance position. Comparison with experimental data. This comment is in response to critique by 2018Pa43 on the calculations in 2016Ca38 about the radiative capture for 17Ne formation.

doi: 10.1103/PhysRevC.102.069801
Citations: PlumX Metrics


2019DI11      Phys.Lett. B 798, 134954 (2019)

A.Di Pietro, A.M.Moro, J.Lei, R.de Diego

Insights into the dynamics of breakup of the halo nucleus 11Be on a 64Zn target

NUCLEAR REACTIONS 64Zn(11Be, X)10Be, E=28.7 MeV; analyzed available data; deduced quasielastic and breakup σ(θ), σ(θ, E) using CDCC and extended CDCC (XCDCC) calculations.

doi: 10.1016/j.physletb.2019.134954
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1856.


2017DE12      Phys.Rev. C 95, 044611 (2017)

R.de Diego, R.Crespo, A.M.Moro

Extracting three-body breakup observables from continuum-discretized coupled-channels calculations with core excitations

NUCLEAR REACTIONS 1H(11Be, X), E=63.7 MeV/nucleon; 64Zn(11Be, X), E=28.7 MeV; calculated σ(θ, E) distributions, angle-integrated energy differential σ(E), and double differential σ(E, θ) as a function of the energy. Two- and three-body breakup observables of a two-body halo nucleus. Extended versions of Continuum-Discretized Coupled-Channels (XCDCC) and Transformed Harmonic Oscillator (THOx) methods with core excitation. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044611
Citations: PlumX Metrics


2016CA38      Phys.Rev. C 94, 054622 (2016)

J.Casal, E.Garrido, R.de Diego, J.M.Arias, M.Rodriguez-Gallardo

Radiative capture reaction for 17Ne formation within a full three-body model

NUCLEAR STRUCTURE 17Ne; calculated energy and probability distribution of the ground state, matter and charge radii of 17Ne Borromean nucleus in a full three-body (15O+p+p) model using analytical transformed harmonic oscillator (THO), and the hyperspherical adiabatic (HA) expansion methods. Comparison with experimental values.

NUCLEAR REACTIONS 15O(2p, γ)17Ne, T9=0.1-10; calculated two-proton capture reaction rate using the THO method, including sequential and direct, resonant and nonresonant contributions, dominant E1 contributions to the reaction rate from the inverse photodissociation process. Comparison with previous theoretical calculations. Relevance to CNO cycles and rp-process.

doi: 10.1103/PhysRevC.94.054622
Citations: PlumX Metrics


2016LA20      Phys.Rev. C 94, 021602 (2016)

J.A.Lay, R.de Diego, R.Crespo, A.M.Moro, J.M.Arias, R.C.Johnson

Evidence of strong dynamic core excitation in 19C resonant break-up

NUCLEAR REACTIONS 1H(19C, X), E=70 MeV/nucleon; calculated differential σ(θ) for the first and the second 5/2+ resonance using XCDCC and XDDWBA approaches in valence-core model; deduced role of core excitations in the resonant breakup of 19C. Comparison with experimental data.

NUCLEAR STRUCTURE 19C; calculated levels, J, π using shell-model with OXBASH and the WBP interaction, and within semimicroscopic core-plus-valence-particle model (P-AMD) using 18C as an inert core. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.021602
Citations: PlumX Metrics


2016MO06      Acta Phys.Pol. B47, 821 (2016)

A.M.Moro, J.Lei, M.Gomez-Ramos, J.M.Arias, R.de Diego, J.Gomez-Camacho, J.A.Lay

Recent Developments for the Calculation of Elastic and Non-elastic Breakup of Weakly-bound Nuclei

doi: 10.5506/APhysPolB.47.821
Citations: PlumX Metrics


2014DE15      Phys.Rev. C 89, 064609 (2014)

R.de Diego, J.M.Arias, J.A.Lay, A.M.Moro

Continuum-discretized coupled-channels calculations with core excitation

NUCLEAR REACTIONS 1H(11Be, X), E=10, 63.7, 200 MeV/nucleon; calculated differential breakup σ(θ, E). 64Zn(11Be, X), E=28.7 MeV; calculated quasielastic and breakup differential σ(θ). 208Pb(11Be, X), E=69 MeV/nucleon; calculated breakup differential σ(θ). Scattering of a two-body halo nucleus. Dipole strength distribution for 11Be deduced from Coulomb breakup experiments. Extended version of Continuum-discretized coupled-channels (XCDCC) method with core excitation. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.064609
Citations: PlumX Metrics


2014DE18      Eur.Phys.J. A 50, 93 (2014)

R.de Diego, E.Garrido, D.V.Fedorov, A.S.Jensen

Production of 6He and 9Be by radiative capture and four-body recombination

doi: 10.1140/epja/i2014-14093-x
Citations: PlumX Metrics


2011DE12      Few-Body Systems 50, 331 (2011)

R.de Diego, E.Garrido, D.V.Fedorov, A.S.Jensen

Relative Production Rates of 6He, 9Be, 12C in Astrophysical Environments

doi: 10.1007/s00601-010-0162-0
Citations: PlumX Metrics


2011GA47      Eur.Phys.J. A 47, 102 (2011)

E.Garrido, R.de Diego, D.V.Fedorov, A.S.Jensen

Direct and sequential radiative three-body reaction rates at low temperatures

NUCLEAR REACTIONS 4He(α, γ)8Be(n, γ), E=0.1-3 MeV;12C(γ, 2α), E=0.05-0.4 MeV; calculated σ, reaction rate using three-body and sequential decay; deduced parameters. Comparison with available data.

doi: 10.1140/epja/i2011-11102-8
Citations: PlumX Metrics


2010DE18      Europhys.Lett. 90, 52001 (2010)

R.de Diego, E.Garrido, D.V.Fedorov, A.S.Jensen

Relative production rates of 6He, 9Be, 12C in astrophysical environments

NUCLEAR REACTIONS 4He(α, x)8Be, 8Be(α, γ)12C, 8Be(n, γ)9Be, 4He(n, x), 5He(n, γ)6He, E=0-3 MeV; calculated σ, production rates of three-cluster nuclei for different temperatures.

doi: 10.1209/0295-5075/90/52001
Citations: PlumX Metrics


2010DE30      J.Phys.(London) G37, 115105 (2010)

R.de Diego, E.Garrido, D.V.Fedorov, A.S.Jensen

Alternative path for bridging the A = 5, 8 gap in neutron-rich nucleosynthesis scenarios

NUCLEAR REACTIONS 4He(2n, γ), 6He(α, n)9Be, E=0.1 MeV; calculated electromagnetic and nuclear strength functions, Boltzmann-averaged electromagnetic and nuclear rates, four-body recombination reactions; deduced alternative path for bridging the gap of unstable nuclear isotopes with A=5, 8.

doi: 10.1088/0954-3899/37/11/115105
Citations: PlumX Metrics


2010DE43      J.Phys.:Conf.Ser. 205, 012047 (2010)

R.de Diego, E.Garrido, D.V.Fedorov, A.S.Jensen

Astrophysical reaction rates for 6He and 9Be production by electromagnetic radiative capture and four-body recombination

NUCLEAR REACTIONS 4He(2n, γ), (n, αγ), E(cm)≈0-1.5 MeV; calculated dipole, quadrupole reaction rates, unnormalized σ. Compared with other papers.

doi: 10.1088/1742-6596/205/1/012047
Citations: PlumX Metrics


2008DE03      Phys.Rev. C 77, 024001 (2008)

R.de Diego, E.Garrido, A.S.Jensen, D.V.Fedorov

Cluster sum rules for three-body systems with angular-momentum dependent interactions

NUCLEAR STRUCTURE 6He; calculated dipole resonance energies, dipole strength function. Sum rule.

doi: 10.1103/PhysRevC.77.024001
Citations: PlumX Metrics


2007DE18      Nucl.Phys. A786, 71 (2007)

R.de Diego, E.Garrido, D.V.Fedorov, A.S.Jensen

Neutron-3H potentials and the 5H-properties

NUCLEAR STRUCTURE 4,5H; calculated resonance energies, J, π, configurations. Complex scaled hyperspherical adiabatic expansion method.

doi: 10.1016/j.nuclphysa.2007.02.002
Citations: PlumX Metrics


Back to query form