NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = R.C.Johnson

Found 104 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2021JO03      Phys.Rev. C 104, 024612 (2021)

R.C.Johnson

Three-body model of the d+A system in an antisymmetrized, translationally invariant many nucleon theory

doi: 10.1103/PhysRevC.104.024612
Citations: PlumX Metrics


2021MO20      J.Phys.(London) G48, 095102 (2021)

L.Moschini, N.K.Timofeyuk, R.C.Johnson

Perturbative correction to the adiabatic approximation for (d, p) reactions

NUCLEAR REACTIONS 10Be(d, p), E=40.9, 71 MeV; 55Ni(d, p), E=40 MeV; 40,48Ca(d, p), E=56 MeV; calculated σ(θ). Comparison with available data.

doi: 10.1088/1361-6471/ac105d
Citations: PlumX Metrics


2020CA32      Eur.Phys.J. A 56, 300 (2020)

P.Capel, R.C.Johnson, F.M.Nunes

Study of cluster structures in nuclei through the ratio method

NUCLEAR REACTIONS Pb(11Be, X), E=69 MeV/nucleon; 12C(11Be, X), E=67 MeV/nucleon; analyzed available data; deduced σ(θ), the ratio of angulardistributions for different reaction channels, viz. elastic scattering and breakup, which cancels most of the dependence on the reaction mechanism, in particular it is insensitive to the choice of optical potentials that simulate the projectile-target interaction using Recoil Excitation and Breakup (REB) model.

doi: 10.1140/epja/s10050-020-00310-w
Citations: PlumX Metrics


2019DI09      Phys.Rev. C 99, 064612 (2019)

M.J.Dinmore, N.K.Timofeyuk, J.S.Al-Khalili, R.C.Johnson

Effects of an induced three-body force in the incident channel of (d, p) reactions

NUCLEAR REACTIONS 40Ca(d, p)41Ca, E=11.8, 20, 56 MeV; calculated differential σ(θ, E) using the adiabatic distorted-wave approximation (ADWA) with and without first-order contribution of induced three-body (I3B) force. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.064612
Citations: PlumX Metrics


2019JO02      Phys.Rev. C 99, 044608 (2019)

R.C.Johnson

Antisymmetrized, translationally invariant theory of the nucleon optical potential

doi: 10.1103/PhysRevC.99.044608
Citations: PlumX Metrics


2017JO08      Phys.Rev. C 95, 064610 (2017)

R.C.Johnson

Translation invariance and antisymmetry in the theory of the nucleon optical model

doi: 10.1103/PhysRevC.95.064610
Citations: PlumX Metrics


2016CO06      Phys.Rev. C 93, 054621 (2016)

F.Colomer, P.Capel, F.M.Nunes, R.C.Johnson

Extension of the ratio method to low energy

NUCLEAR REACTIONS 12C, 40Ca, 208Pb(11Be, X), E=20 MeV/nucleon; analyzed ratio method at low energies by calculating ratio of the breakup angular distribution and the summed angular distribution (includes elastic, inelastic, and breakup). Continuum discretized coupled channel method and Coulomb corrected dynamical eikonal approximation. Relevance to features of the original halo wave function from the Ratio method.

doi: 10.1103/PhysRevC.93.054621
Citations: PlumX Metrics


2016LA20      Phys.Rev. C 94, 021602 (2016)

J.A.Lay, R.de Diego, R.Crespo, A.M.Moro, J.M.Arias, R.C.Johnson

Evidence of strong dynamic core excitation in 19C resonant break-up

NUCLEAR REACTIONS 1H(19C, X), E=70 MeV/nucleon; calculated differential σ(θ) for the first and the second 5/2+ resonance using XCDCC and XDDWBA approaches in valence-core model; deduced role of core excitations in the resonant breakup of 19C. Comparison with experimental data.

NUCLEAR STRUCTURE 19C; calculated levels, J, π using shell-model with OXBASH and the WBP interaction, and within semimicroscopic core-plus-valence-particle model (P-AMD) using 18C as an inert core. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.021602
Citations: PlumX Metrics


2015JO06      Phys.Rev. C 91, 054604 (2015)

R.C.Johnson

Spin dependence of the incident channel distorted wave in the theory of the A(d, p)B reaction

doi: 10.1103/PhysRevC.91.054604
Citations: PlumX Metrics


2014JO02      Phys.Rev. C 89, 024605 (2014)

R.C.Johnson, N.K.Timofeyuk

Adiabatic model of (d, p) reactions with explicitly energy-dependent nonlocal potentials

NUCLEAR REACTIONS 16O(d, p), E=15 MeV; 36Ar(d, p), E=9.162 MeV; 40Ca(d, p), E=11.8 MeV; calculated local adiabatic deuteron potentials, σ(θ) with energy-dependent Giannini-Ricco-Zucchiatti (GRZ), energy independent Giannini-Ricco (GR), nonlocal optical nucleon potentials, and energy-dependent local potential CH89. Adiabatic distorted-wave approximation (ADWA) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.024605
Citations: PlumX Metrics


2013CA21      Phys.Rev. C 88, 044602 (2013)

P.Capel, R.C.Johnson, F.M.Nunes

The ratio method: A new tool to study one-neutron halo nuclei

NUCLEAR REACTIONS 12C(11Be, X), E=67 MeV/nucleon; 208Pb(11Be, X), E=69 MeV/nucleon; Pb(19C, X), E=67 MeV/nucleon; analyzed ratio of breakup σ(θ) and summed σ(θ) from elastic, inelastic and breakup channels; investigated new σ ratio method to analyze structure of one-neutron halo nuclei. Recoil excitation and breakup model (REB) with dynamical eikonal approximation (DEA).

doi: 10.1103/PhysRevC.88.044602
Citations: PlumX Metrics


2013CU01      Phys.Rev. C 87, 054601 (2013)

E.S.Cunningham, J.S.Al-Khalili, R.C.Johnson

Effect of spin-spin interactions on nucleon-nucleus scattering

NUCLEAR REACTIONS 10B(p, p), E=200 MeV; calculated polarization transfer coefficient DNN as a function of angle using spin-spin interaction in the optical potential. Spin-spin tensors evaluated with DWBA. Folding model using realistic effective nucleon-nucleon interaction. Local and nonlocal spin-spin tensor interactions. Effect of parameters of the model used to describe the nuclear structure. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054601
Citations: PlumX Metrics


2013HL01      Phys.Rev. C 88, 064608 (2013)

L.Hlophe, Ch.Elster, R.C.Johnson, N.J.Upadhyay, F.M.Nunes, G.Arbanas, V.Eremenko, J.E.Escher, I.J.Thompson

Separable representation of phenomenological optical potentials of Woods-Saxon type

NUCLEAR REACTIONS 48Ca, 132Sn, 208Pb(n, X), E=0-50 MeV; calculated partial wave S matrices, separable representations of two-body transition matrix elements and potentials. Ernst-Shakin-Thaler (EST) scheme with CH89 potential.

doi: 10.1103/PhysRevC.88.064608
Citations: PlumX Metrics


2013PA20      Phys.Rev. C 87, 064613 (2013)

D.Y.Pang, N.K.Timofeyuk, R.C.Johnson, J.A.Tostevin

Rapid convergence of the Weinberg expansion of the deuteron stripping amplitude

NUCLEAR REACTIONS 132Sn(d, p), E=30, 100 MeV; calculated σ(θ) using Weinberg distorted wave components. Weinberg states expansion method. Comparison with continuum discretized coupled channels (CDCC) calculations.

doi: 10.1103/PhysRevC.87.064613
Citations: PlumX Metrics


2013TI02      Phys.Rev.Lett. 110, 112501 (2013);Pub.Note Phys.Rev.Lett. 110, 139901 (2013)

N.K.Timofeyuk, R.C.Johnson

Nonlocality in Deuteron Stripping Reactions

NUCLEAR REACTIONS 40Ca(d, p), E=11.8 MeV; analyzed available data; deduced a method for the analysis of deuteron stripping reactions.

doi: 10.1103/PhysRevLett.110.112501
Citations: PlumX Metrics


2013TI04      Phys.Rev. C 87, 064610 (2013)

N.K.Timofeyuk, R.C.Johnson

Nonlocality in the adiabatic model of A(d, p)B reactions

NUCLEAR REACTIONS 16O, 36Ar, 40Ca(d, p), E=9-15 MeV; calculated σ(θ), Perey factor, local potential. Calculated βn coefficients, moments and effective nonlocality range in A=16, 40, 208 mass range. Effect on spectroscopic factors and ANCs. ADWA theory with nonlocality of nucleon optical potential included in a consistent way together with the deuteron breakup. Deviation from E(d)/2 rule on theoretical cross sections.

doi: 10.1103/PhysRevC.87.064610
Citations: PlumX Metrics


2011CU03      Phys.Rev. C 84, 041601 (2011)

E.S.Cunningham, J.S.Al-Khalili, R.C.Johnson

Role of the tensor exchange potential in nucleon-nucleus scattering

NUCLEAR REACTIONS 10B(p, p), E=200 MeV; calculated spin-spin tensor interactions, polarization transfer coefficient DNN. Distorted-wave Born approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.041601
Citations: PlumX Metrics


2010NG02      Phys.Rev. C 82, 014611 (2010)

N.B.Nguyen, F.M.Nunes, R.C.Johnson

Finite-range effects in (d, p) reactions

NUCLEAR REACTIONS 12C, 48Ca, 69Ga, 86Kr, 90Zr, 124Sn, 208Pb(d, p), E=2-80 MeV; calculated σ(θ) using adiabatic distorted-wave approximation (ADWA) and local energy approximation (LEA). Deuteron breakup and finite range effects. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.014611
Citations: PlumX Metrics


2009JO06      Phys.Rev. C 80, 044616 (2009)

R.C.Johnson

Derivation of a formula for the A(d, p)B transition amplitude from the Faddeev equations of three-body scattering theory

doi: 10.1103/PhysRevC.80.044616
Citations: PlumX Metrics


2009MO39      Phys.Rev. C 80, 064606 (2009)

A.M.Moro, F.M.Nunes, R.C.Johnson

Theory of (d, p) and (p, d) reactions including breakup: Comparison of methods

NUCLEAR REACTIONS 11Be(p, d), E=38.4 MeV/nucleon; 10Be(d, p), E=12.5 MeV/nucleon; calculated σ and σ(θ) using continuum discretized coupled channel (CDCC) and full three body integral (AGS) equations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064606
Citations: PlumX Metrics


2008RO16      Phys.Rev. C 77, 064609 (2008)

M.Rodriguez-Gallardo, J.M.Arias, J.Gomez-Camacho, R.C.Johnson, A.M.Moro, I.J.Thompson, J.A.Tostevin

Four-body continuum-discretized coupled-channels calculations using a transformed harmonic oscillator basis

NUCLEAR REACTIONS 12C(6He, 6He), E=229.8 MeV; 64Zn(6He, 6He), E=10.0, 13.6 MeV; 208Pb(6He, 6He), E=22 MeV; calculated energy spectra, σ(θ). Comparison with experimental data.

doi: 10.1103/PhysRevC.77.064609
Citations: PlumX Metrics


2007AL08      Phys.Rev. C 75, 024608 (2007)

J.S.Al-Khalili, R.Crespo, R.C.Johnson, A.M.Moro, I.J.Thompson

Few-body multiple scattering calculations for 6He on protons

NUCLEAR REACTIONS 1H(α, α), E=699 MeV/nucleon; 1H(6He, 6He), E=717 MeV/nucleon; calculated elastic σ(θ). Multiple scattering expansion, comparison with data.

doi: 10.1103/PhysRevC.75.024608
Citations: PlumX Metrics


2007RO29      Eur.Phys.J. Special Topics 150, 51 (2007)

M.Rodriguez-Gallardo, J.M.Arias, J.Gomez-Camacho, R.C.Johnson, A.M.Moro, I.J.Thompson, J.A.Tostevin

Continuum effects: Structure and reactions of 6He

NUCLEAR STRUCTURE 6He; calculated B(E1), B(E2) distributions using the Transformed Harmonic Oscillator method.

NUCLEAR REACTIONS 12C(6He, 6He), E=229.8 MeV; calculated elastic scattering σ(θ).

doi: 10.1140/epjst/e2007-00264-x
Citations: PlumX Metrics


2007TI02      Phys.Rev. C 75, 034302 (2007)

N.K.Timofeyuk, P.Descouvemont, R.C.Johnson

Isospin symmetry in mirror α decays

NUCLEAR STRUCTURE 7Li, 7Be, 11B, 11C, 19F, 19Ne; calculated mirror states asymptotic normalization coefficients, α resonance widths.

doi: 10.1103/PhysRevC.75.034302
Citations: PlumX Metrics


2007WA46      Nat.Phys. 3, 836 (2007)

P.M.Walker, R.C.Johnson

Two-proton radioactivity: Caught in the act

RADIOACTIVITY 45Fe(2p); measured decay products, Ep, Ip; deduced decay constant, branching ratio. Comparison with available data.

doi: 10.1038/nphys787
Citations: PlumX Metrics


2006TI08      Eur.Phys.J. A 27, Supplement 1, 269 (2006)

N.K.Timofeyuk, P.Descouvemont, R.C.Johnson

Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance for nuclear astrophysics

doi: 10.1140/epja/i2006-08-041-6
Citations: PlumX Metrics


2005GA11      Phys.Rev. C 71, 044606 (2005)

A.Garcia-Camacho, R.C.Johnson, J.A.Tostevin

Improved implementation of the transfer-to-the-continuum method for single-neutron knockout reactions and the validity of standard approximations

NUCLEAR REACTIONS 9Be(n, X), (p, X), E=0-100 MeV; calculated total σ. 9Be(34Si, 33SiX), E=73 MeV/nucleon; 9Be(15C, 14CX), E=54 MeV/nucleon; calculated neutron knock-out σ, parallel momentum distributions. Transfer-to-continuum direct reaction model.

doi: 10.1103/PhysRevC.71.044606
Citations: PlumX Metrics


2005GA52      Phys.Rev. C 72, 044603 (2005)

A.Garcia-Camacho, R.C.Johnson, J.A.Tostevin

Polarization observables and spin-dependent distortion effects in single-nucleon knockout reactions

NUCLEAR REACTIONS 9Be(34Si, 33SiX), E=70 MeV/nucleon; 9Be(17C, 16CX), E=60 MeV/nucleon; calculated polarization observables, effects of nucleon-target spin-orbit distortions. Transfer-to-the-continuum direct reaction model.

doi: 10.1103/PhysRevC.72.044603
Citations: PlumX Metrics


2005ST01      Phys.Rev. C 71, 014612 (2005)

E.J.Stephenson, R.C.Johnson, F.Sammarruca

Inclusion of nonspherical components of the Pauli blocking operator in (p, p') reactions

NUCLEAR REACTIONS 40Ca(p, p'), E=100, 200 MeV; calculated σ(θ), analyzing powers. Nonspherical Pauli blocking operator.

doi: 10.1103/PhysRevC.71.014612
Citations: PlumX Metrics


2004ZH23      J.Phys.(London) G30, 1153 (2004)

Q.Zhao, J.S.Al-Khalili, R.C.Johnson

A quark model framework for the study of nuclear medium effects

NUCLEAR REACTIONS 2H(γ, π0), E=300 MeV; calculated σ(θ), medium effects. Quark model framework, comparison with data.

doi: 10.1088/0954-3899/30/9/014
Citations: PlumX Metrics


2003TI13      Phys.Rev.Lett. 91, 232501 (2003)

N.K.Timofeyuk, R.C.Johnson, A.M.Mukhamedzhanov

Relation between Proton and Neutron Asymptotic Normalization Coefficients for Light Mirror Nuclei and its Relevance to Nuclear Astrophysics

NUCLEAR STRUCTURE 6,7,8Li, 7Be, 8,11,12B, 11,12,13C, 12,13,14,15N, 15,16,17O, 17F, 22,23Ne, 22,26,27Mg, 23Al, 26Si, 27P; calculated overlap integrals, proton and neutron mirror asymptotic normalization coefficients. Astrophysical implications discussed.

doi: 10.1103/PhysRevLett.91.232501
Citations: PlumX Metrics


2002GR10      Phys.Rev. C65, 044612 (2002)

L.V.Grigorenko, R.C.Johnson, I.J.Thompson, M.V.Zhukov

Two-Proton Events in the 17F(p, 2p)16O Reaction

NUCLEAR REACTIONS 1H(17F, 16O), E=33, 44 MeV; calculated two-proton production σ, contribution from 18Ne excited state decay. Comparison with data.

doi: 10.1103/PhysRevC.65.044612
Citations: PlumX Metrics


2002GR25      Eur.Phys.J. A 15, 125 (2002)

L.V.Grigorenko, R.C.Johnson, I.G.Mukha, I.J.Thompson, M.V.Zhukov

Three-body decays of light nuclei: 6Be, 8Li, 9Be, 12O, 16Ne, and 17Ne

NUCLEAR STRUCTURE 8Li, 6,9Be, 12O, 16Ne; calculated two-proton decay related particle spectra, level widths. Comparisons with data.

RADIOACTIVITY 8Li, 6,9Be, 12O, 16Ne(2p); calculated two-proton decay related particle spectra, level widths. Comparisons with data.

doi: 10.1140/epja/i2001-10239-3
Citations: PlumX Metrics


2002SU18      Phys.Rev. C66, 014614 (2002)

N.C.Summers, J.S.Al-Khalili, R.C.Johnson

Nonadiabatic Corrections to Elastic Scattering of Halo Nuclei

NUCLEAR REACTIONS 12C(6He, 6He), (11Be, 11Be), E=10 MeV/nucleon; calculated σ(θ), nonadiabatic corrections. Eikonal approximation, partial wave analysis, two-body projectile.

doi: 10.1103/PhysRevC.66.014614
Citations: PlumX Metrics


2001GR16      Nucl.Phys. A689, 567c (2001)

L.V.Grigorenko, R.C.Johnson, I.G.Mukha, I.J.Thompson, M.V.Zhukov

Two-Proton or Diproton Emission: 19Mg and 48Ni examples

NUCLEAR STRUCTURE 19Mg, 48Ni; calculated two-proton decay energies, widths.

doi: 10.1016/S0375-9474(01)00906-X
Citations: PlumX Metrics


2001GR29      Phys.Rev. C64, 054002 (2001)

L.V.Grigorenko, R.C.Johnson, I.G.Mukha, I.J.Thompson, M.V.Zhukov

Two-Proton Radioactivity and Three-Body Decay: General problems and theoretical approach

NUCLEAR STRUCTURE 6,8,10He, 6,8Li, 6,9Be, 9B, 12C, 12O, 16,17Ne; analyzed three-body decay features. 19Mg, 34Ca, 38,39Ti, 41,42Cr, 45Fe, 48Ni, 54Zn, 58,59Ge, 62,63Se, 66,67Kr; calculated two-proton decay energy, related features. 6Be, 19Mg, 48Ni; calculated proton energy distributions following two-proton decay. Three-body decay model.

doi: 10.1103/PhysRevC.64.054002
Citations: PlumX Metrics


2000GR16      Phys.Rev.Lett. 85, 22 (2000)

L.V.Grigorenko, R.C.Johnson, I.G.Mukha, I.J.Thompson, M.V.Zhukov

Theory of Two-Proton Radioactivity with Application to 19Mg and 48Ni

RADIOACTIVITY 6Be, 17Ne, 19Mg, 48Ni(2p); calculated two-proton decay widths. Three-body model, other models compared.

doi: 10.1103/PhysRevLett.85.22
Citations: PlumX Metrics


2000JO15      Phys.Rev. C62, 027603 (2000)

R.C.Johnson, C.J.Goebel

Inequality for Approximate Halo Nuclear Cross Sections

doi: 10.1103/PhysRevC.62.027603
Citations: PlumX Metrics


1999CR02      Phys.Rev. C60, 034007 (1999)

R.Crespo, R.C.Johnson

Probing Halo Nucleus Structure Through Intermediate Energy Elastic Scattering

NUCLEAR REACTIONS 1H(11Li, 11Li), E=800 MeV/nucleon; calculated σ(θ); deduced core recoil effects. Multiple scattering expansion.

doi: 10.1103/PhysRevC.60.034007
Citations: PlumX Metrics


1999RU07      Phys.Rev. C60, 027002 (1999)

S.Rugmai, J.S.Al-Khalili, R.C.Johnson, J.A.Tostevin

Three-Body Effects in the (d, 2He) Charge-Exchange Reaction

NUCLEAR REACTIONS 12C(d, 2p), E=270 MeV; calculated σ(θ); deduced three-body effects. Eikonal description, comparison with distorted wave approach.

doi: 10.1103/PhysRevC.60.027002
Citations: PlumX Metrics


1999TI04      Phys.Rev. C59, 1545 (1999)

N.K.Timofeyuk, R.C.Johnson

Deuteron Stripping and Pick-Up on Halo Nuclei

NUCLEAR REACTIONS 16O(d, p), E=36, 63.2 MeV; 10Be(p, p), E=14 MeV; 10Be(d, p), E=25 MeV; 11Be(p, d), E=35 MeV; calculated σ(θ); deduced recoil excitation, breakup effects.

doi: 10.1103/PhysRevC.59.1545
Citations: PlumX Metrics


1998JO11      J.Phys.(London) G24, 1583 (1998)

R.C.Johnson

Non-Adiabatic Corrections to Elastic Scattering of Halo Nuclei in a Special Model

doi: 10.1088/0954-3899/24/8/037
Citations: PlumX Metrics


1998TO05      Nucl.Phys. A630, 340c (1998)

J.A.Tostevin, R.C.Johnson, J.S.Al-Khalili

Manifestation of Halo Size Scattering and Reactions

NUCLEAR REACTIONS 12C(6Li, X), (6He, X), E=800 MeV/nucleon; analyzed reaction σ; deduced projectile radius dependence. 12C(11Be, 11Be), E=49.3 MeV/nucleon; 12C(19C, 19C), E=30 MeV/nucleon; calculated σ(θ).

doi: 10.1016/S0375-9474(97)00772-0
Citations: PlumX Metrics


1998TO08      Phys.Lett. 424B, 219 (1998)

J.A.Tostevin, S.Rugmai, R.C.Johnson, H.Okamura, S.Ishida, N.Sakamoto, H.Otsu, T.Uesaka, T.Wakasa, H.Sakai, T.Niizeki, H.Toyokawa, Y.Tajima, H.Ohnuma, M.Yosoi, K.Hatanaka, T.Ichihara

Coulomb Breakup of Light Composite Nuclei

NUCLEAR REACTIONS 12C, 28Si, 40Ca, 90Zr, 118Sn, 165Ho, 208Pb(d, np), E=140 MeV; measured σ(Ep, θ(p), θ(n)); deduced Coulomb dissociation mechanism. Core-valence model.

doi: 10.1016/S0370-2693(98)00228-7
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE1702.


1998TO10      Phys.Rev. C57, 3225 (1998)

J.A.Tostevin, S.Rugmai, R.C.Johnson

Coulomb Dissociation of Light Nuclei

NUCLEAR REACTIONS 12C, 28Si, 40Ca, 90Zr, 118Sn, 165Ho, 208Pb(d, np), E=56, 140, 270 MeV; calculated σ(Ep, θ(n), θ(p)); deduced Coulomb breakup mechanism importance. Comparison with data.

doi: 10.1103/PhysRevC.57.3225
Citations: PlumX Metrics


1997CH32      Nucl.Phys. A624, 275 (1997)

J.A.Christley, J.S.Al-Khalili, J.A.Tostevin, R.C.Johnson

Four-Body Adiabatic Model Applied to Elastic Scattering

NUCLEAR REACTIONS 12C(11Li, 11Li), E=55, 110, 220, 330, 637, 1100 MeV; calculated σ(θ). Four-body adiabatic, eikonal models compared, comparison with data for E=637 MeV.

doi: 10.1016/S0375-9474(97)00360-6
Citations: PlumX Metrics


1997JO16      Phys.Rev.Lett. 79, 2771 (1997)

R.C.Johnson, J.S.Al-Khalili, J.A.Tostevin

Elastic Scattering of Halo Nuclei

NUCLEAR REACTIONS 12C(11Be, 11Be), E=49.3 MeV/nucleon; calculated σ(θ), form factors. 12C(19C, 19C), E=30 MeV/nucleon; calculated form factor, σ(θ); deduced halo structure role.

doi: 10.1103/PhysRevLett.79.2771
Citations: PlumX Metrics


1997SA54      Nucl.Phys. A624, 299 (1997)

A.J.Sargeant, R.C.Johnson, J.A.Tostevin

Symmetrisation in the Semiclassical Theory of Coulomb Excitation

doi: 10.1016/S0375-9474(97)00375-8
Citations: PlumX Metrics


1996BU09      Phys.Rev. C53, 3009 (1996)

M.P.Bush, J.S.Al-Khalili, J.A.Tostevin, R.C.Johnson

Sensitivity of Reaction Cross Sections to Halo Nucleus Density Distributions

NUCLEAR REACTIONS 1H, 12C, 208Pb(11Li, X), E=800 MeV/nucleon; calculated reaction σ, transparency function vs model parameters ratio; deduced halo nucleus density distribution dependence. Optical limit Glauber model.

doi: 10.1103/PhysRevC.53.3009
Citations: PlumX Metrics


1996CR03      Phys.Rev. C53, 3022 (1996)

R.Crespo, R.C.Johnson, J.A.Tostevin

Mean Field Calculations of Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 16O, 208Pb(p, p), E=100-400 MeV; calculated mean field optical potential real, imaginary parts; deduced corrections to potential multiple scattering expansion first term.

doi: 10.1103/PhysRevC.53.3022
Citations: PlumX Metrics


1996NU01      Nucl.Phys. A596, 171 (1996)

F.M.Nunes, I.J.Thompson, R.C.Johnson

Core Excitation in One Neutron Halo Systems

NUCLEAR STRUCTURE 11Be, 13C; calculated levels, rms matter radius, B(λ). 10Li; calculated levels. Core excitation plus coupled channels approach.

doi: 10.1016/0375-9474(95)00398-3
Citations: PlumX Metrics


1996NU02      Nucl.Phys. A609, 43 (1996)

F.M.Nunes, J.A.Christley, I.J.Thompson, R.C.Johnson, V.D.Efros

Core Excitation in Three-Body Systems: Application to 12Be

NUCLEAR STRUCTURE 12Be; calculated ground state binding energy, rms matter radius, levels, 10Be momentum distribution, spectroscopic factors for 11Be+n. Three-body hyperspherical formulation.

NUCLEAR REACTIONS 12Be(p, d), E=30 MeV; calculated σ(θ). Finite-range DWBA, three-body hyperspherical formulation.

doi: 10.1016/S0375-9474(96)00284-9
Citations: PlumX Metrics


1995CR03      Phys.Rev. C51, 3283 (1995)

R.Crespo, J.A.Tostevin, R.C.Johnson

Spin Dependence of the Scattering of Protons from Halo Nuclei

NUCLEAR REACTIONS 8He(polarized p, p), E=72, 200 MeV/nucleon; calculated σ(θ), analyzing power vs θ; deduced core, valence nucleon contributions to p-8He spin dependence. Kerman, McManus, Thaler multiple scattering expansion, single scattering approximation.

doi: 10.1103/PhysRevC.51.3283
Citations: PlumX Metrics


1995RO02      Nucl.Phys. A584, 362 (1995)

E.J.Roberts, C.V.Sukumar, R.C.Johnson, D.M.Brink

Semi-Classical Analysis of Scattering of Deformed Heavy-Ions Below the Coulomb Barrier

NUCLEAR REACTIONS 58Ni(polarized 7Li, 7Li), E=10 MeV; calculated T20(θ), T21(θ), T22(θ). Semi-classical approach.

doi: 10.1016/0375-9474(94)00458-Y
Citations: PlumX Metrics


1994CH02      J.Phys.(London) G20, 169 (1994)

J.A.Christley, R.C.Johnson, I.J.Thompson

The Fusion of 16O with an Aligned 165Ho Target

NUCLEAR REACTIONS, ICPND 165Ho(16O, X), E ≈ 69-80 MeV; calculated fusion σ(E). Aligned target, coupled-channels method.

doi: 10.1088/0954-3899/20/1/017
Citations: PlumX Metrics


1994CR02      Phys.Rev. C49, 1091 (1994)

R.Crespo, R.C.Johnson, J.A.Tostevin, R.S.Mackintosh, S.G.Cooper

Equivalent Local Potentials to Multiple Scattering Calculations of Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 16O(p, p), E=100, 135, 200 MeV; calculated local phase equivalent potentials. Multiple scattering expansion of the optical potential.

doi: 10.1103/PhysRevC.49.1091
Citations: PlumX Metrics


1994CR07      Phys.Rev. C50, 2995 (1994)

R.Crespo, R.C.Johnson, J.A.Tostevin

Validity of Local Density Prescriptions for Microscopic Calculations of Proton Nucleus Elastic Scattering

NUCLEAR STRUCTURE 16O; calculated σ(θ), vector analyzing power, nucleon elastic scattering; deduced local density approximation validity. Kerman-McManus-Thaler multiple scattering expansion second term, WKB equivalent potential in optical model.

doi: 10.1103/PhysRevC.50.2995
Citations: PlumX Metrics


1993CR02      Phys.Rev. C48, 351 (1993)

R.Crespo, R.C.Johnson, J.A.Tostevin

Binding Effects in Proton-Nucleus Elastic Scattering

NUCLEAR REACTIONS 16O(polarized p, p), E=200 MeV; calculated analyzing power vs θ; deduced proton-nucleus binding effects role. Optical model, Kerman, McManus and Thaler expansion.

doi: 10.1103/PhysRevC.48.351
Citations: PlumX Metrics


1993LA17      Phys.Rev. C48, 1307 (1993)

A.Laid, J.A.Tostevin, R.C.Johnson

Deuteron Breakup Effects in Transfer Reactions Using a Weinberg State Expansion Method

NUCLEAR REACTIONS 66Zn(polarized d, p), E=88.2 MeV; calculated σ(θ), iT11(θ). Weinberg state expansion method.

doi: 10.1103/PhysRevC.48.1307
Citations: PlumX Metrics


1992AL10      Nucl.Phys. A546, 622 (1992)

J.S.Al-Khalili, R.C.Johnson

A Three-Body Glauber Model for Polarized Deuteron Scattering at Intermediate Energies

NUCLEAR REACTIONS 58Ni(polarized d, d), E=400, 700 MeV; calculated σ(θ), vector, tensor analyzing power vs θ. Parameter free Glauber model.

doi: 10.1016/0375-9474(92)90548-X
Citations: PlumX Metrics


1992CR05      Phys.Rev. C46, 279 (1992)

R.Crespo, R.C.Johnson, J.A.Tostevin

Multiple Scattering Theory of Proton Elastic Scattering at Intermediate Energies

NUCLEAR REACTIONS 16O(polarized p, p), E=135-300 MeV; calculated σ(θ), analyzing power vs θ; deduced nonlocalities role. Kerman-McManus optical potential, multiple scattering expansion.

doi: 10.1103/PhysRevC.46.279
Citations: PlumX Metrics


1992KA43      J.Phys.(London) G18, 1967 (1992)

A.Kabir, R.C.Johnson

The Scattering of Polarized 23Na as a Composite of 11B and 12C

NUCLEAR REACTIONS 208Pb(polarized 23Na, 23Na), (polarized 23Na, 23Na'), (polarized 23Na, X), E=170 MeV; calculated σ(θ), analyzing powers; deduced projectile 11B+12C cluster description applicability.

doi: 10.1088/0954-3899/18/12/012
Citations: PlumX Metrics


1992TU01      J.Phys.(London) G18, 367 (1992)

G.Tungate, S.J.Hall, J.Gomez-Camacho, R.C.Johnson

Deviations from Tidal Symmetry in Polarized 7Li Excitation

NUCLEAR REACTIONS 120Sn(polarized 7Li, 7Li'), E=44 MeV; calculated tensor analyzing power; deduced deviations from tidal symmetry.

doi: 10.1088/0954-3899/18/2/017
Citations: PlumX Metrics


1991CR04      Phys.Rev. C44, R1735 (1991)

R.Crespo, R.C.Johnson, J.A.Tostevin

Multiple Scattering Effects in Proton Nucleus Elastic Scattering at Intermediate Energies

NUCLEAR REACTIONS, ICPND 16O(p, p), E=135-200 MeV; calculated σ(θ), reaction σ(E). Kerman-McManus-Thaler optical potential, second-order corrections.

doi: 10.1103/PhysRevC.44.R1735
Citations: PlumX Metrics


1991KA15      J.Phys.(London) G17, L105 (1991)

A.Kabir, R.C.Johnson, M.H.Tostevin

Cluster Folding-Model for Quasi-Elastic Scattering of 23Na from 208Pb

NUCLEAR REACTIONS 208Pb(polarized 23Na, 23Na), E=170 MeV; calculated σ(θ), tensor analyzing power vs θ. Cluster folding model.

doi: 10.1088/0954-3899/17/7/002
Citations: PlumX Metrics


1990AL01      Phys.Rev. C41, R806 (1990)

J.S.Al-Khalili, J.A.Tostevin, R.C.Johnson

Effects of Singlet Breakup on Deuteron Elastic Scattering at Intermediate Energies

NUCLEAR REACTIONS 58Ni(polarized d, d), E=400 MeV; calculated σ(θ), tensor analyzing power; deduced singlet breakup contribution.

doi: 10.1103/PhysRevC.41.R806
Citations: PlumX Metrics


1990AL26      Nucl.Phys. A514, 649 (1990)

J.S.Al-Khalili, J.A.Tostevin, R.C.Johnson

Singlet Channel Coupling in Deuteron Elastic Scattering at Intermediate Energies

NUCLEAR REACTIONS 58Ni(polarized d, d), E=200-700 MeV; calculated σ(θ), analyzing power, rotation parameter vs θ.

doi: 10.1016/0375-9474(90)90015-E
Citations: PlumX Metrics


1990CR02      Phys.Rev. C41, 2257 (1990)

R.Crespo, R.C.Johnson, J.A.Tostevin

Full Folding Calculations for Proton-Nucleus Elastic Scattering at Intermediate Energies

NUCLEAR REACTIONS 16O, 40Ca(polarized p, p), E(cm)=200 MeV; calculated vector analysing powers. Full-folding, optimal factorization, KMT first order optical potential.

doi: 10.1103/PhysRevC.41.2257
Citations: PlumX Metrics


1990ST20      Phys.Rev. C42, 2562 (1990)

E.J.Stephenson, A.D.Bacher, G.P.A.Berg, V.R.Cupps, C.C.Foster, N.Hodiwalla, P.Li, J.Lisantti, D.A.Low, D.W.Miller, C.Olmer, A.K.Opper, B.K.Park, R.Sawafta, S.W.Wissink, J.A.Tostevin, D.A.Coley, R.C.Johnson

Enhancement of the Near-Side Component in Quasiadiabatic Calculations of the 66Zn(d, p)67Zn Reaction

NUCLEAR REACTIONS 67Zn(polarized p, p), E=91.8 MeV; 66Zn(polarized d, p), E=88.2 MeV; measured σ(θ), proton polarization, analyzing power vs θ; deduced model parameters. Quasiadiabatic model.

doi: 10.1103/PhysRevC.42.2562
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC0453.


1989JO05      Nucl.Phys. A505, 26 (1989)

R.C.Johnson, E.J.Stephenson, J.A.Tostevin

Nature of the Amplitudes Missing from Adiabatic Distorted-Wave Models of Medium Energy (d, p) and (p, d) Reactions

NUCLEAR REACTIONS 116Sn(d, p), E=79 MeV; calculated σ(θ). Adiabatic distorted wave models.

doi: 10.1016/0375-9474(89)90415-6
Citations: PlumX Metrics


1989YA01      Phys.Rev.Lett. 62, 133 (1989)

M.Yahiro, J.A.Tostevin, R.C.Johnson

Three-Body Treatment of the Final State in the (3He, pp) Reaction on Medium-Mass Nuclei

NUCLEAR REACTIONS 28Si(polarized 3He, 2p), E=33, 52 MeV; analyzed σ(θ), analyzing power vs E(2p). Three-body approach to final state.

doi: 10.1103/PhysRevLett.62.133
Citations: PlumX Metrics


1988AB03      J.Phys.(London) G14, L1 (1988); Corrigendum J.Phys.(London) G14, 829 (1988)

S.Abu-Kamar, M.Igarashi, R.C.Johnson, J.A.Tostevin

The 2H(d, n)3He Reaction at Very Low Energies

NUCLEAR REACTIONS 2H(d, n), E(cm) ≈ 55 keV; calculated σ. One-step reaction model.

doi: 10.1088/0305-4616/14/1/004
Citations: PlumX Metrics


1988AL15      J.Phys.(London) G14, L103 (1988)

J.S.Al-Khalili, J.A.Tostevin, R.C.Johnson, M.Kawai

The Momentum-Dependent T(p) Tensor Interaction in Intermediate-Energy Deuteron Scattering

NUCLEAR REACTIONS 58Ni(polarized d, d), E=400 MeV; calculated tensor analyzing power vs θ, potential form factors. Pauli-induced breakup.

doi: 10.1088/0305-4616/14/5/007
Citations: PlumX Metrics


1988OT01      J.Phys.(London) G14, L7 (1988)

W.Ott, R.Butsch, H.Jansch, G.Tungate, E.Steffens, K.Becker, K.Blatt, H.Leucker, D.Fick, J.Gomez-Camacho, R.C.Johnson

Tidal Symmetry in Scattering of Polarised 7Li Projectiles

NUCLEAR REACTIONS 26Mg(polarized 7Li, 7Li), E=44 MeV; calculated σ(θ), analyzing powers. Tidal symmetry.

doi: 10.1088/0305-4616/14/1/002
Citations: PlumX Metrics


1987NI12      Nucl.Phys. A465, 173 (1987)

H.Nishioka, R.C.Johnson

Tensor Interaction in Heavy-Ion Scattering (II). Partial-wave expansions

NUCLEAR REACTIONS 58Ni(7Li, 7Li), E=20.3 MeV; 58Ni(23Na, 23Na), E=90 MeV; calculated tensor interaction characteristics.

doi: 10.1016/0375-9474(87)90303-4
Citations: PlumX Metrics


1987ST16      Nucl.Phys. A469, 467 (1987)

E.J.Stephenson, V.R.Cupps, J.A.Tostevin, R.C.Johnson, J.D.Brown, C.C.Foster, W.P.Jones, D.W.Miller, H.Nann, P.Schwandt

The Effects of Far-Side Dominance on the j-Dependence of the Medium Energy 116Sn(d, p)117Sn Reaction

NUCLEAR REACTIONS 116Sn(d, p), (polarized d, p), E=79.2 meV; measured σ(E(p), θ), A(E(p), θ); deduced reaction mechanism. Enriched target. DWBA analysis.

doi: 10.1016/0375-9474(87)90033-9
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC0777.


1987TO15      Nucl.Phys. A465, 83 (1987)

J.A.Tostevin, M.H.Lopes, R.C.Johnson

Antisymmetrization Corrections in Deuteron Elastic Scattering and Deuteron-Induced Transfer Reactions

NUCLEAR REACTIONS, MECPD 58Ni(polarized d, d), E=80 MeV; calculated σ(θ), vector, tensor analyzing power vs θ. 54Fe(d, p), E=23.8 MeV; calculated σ(θ). Antisymmetrization corrections.

doi: 10.1016/0375-9474(87)90300-9
Citations: PlumX Metrics


1986GO19      J.Phys.(London) G12, L235 (1986)

J.Gomez-Camacho, R.C.Johnson

Tidal Symmetry in Nuclear Reactions: Application to the scattering of polarised projectiles

NUCLEAR REACTIONS 208Pb(23Na, 23Na), (polarized 23Na, 23Na), E=200 MeV; calculated σ, tensor analyzing power vs θ. Tidal spin basis calculations.

doi: 10.1088/0305-4616/12/10/004
Citations: PlumX Metrics


1986ST06      Phys.Lett. 171B, 358 (1986)

E.J.Stephenson, R.C.Johnson, J.A.Tostevin, V.R.Cupps, J.D.Brown, C.C.Foster, J.A.Gering, W.P.Jones, D.A.Low, D.W.Miller, H.Nann, C.Olmer, A.K.Opper, P.Schwandt, J.W.Seubert, S.W.Wissink

Inplications of Far-Side Dominance for the Disagreement between Distorted Wave Theory and Well-Matched Intermediate Energy (d, p) Reactions

NUCLEAR REACTIONS 116Sn(polarized d, p), E=90 MeV; analyzed σ(θ), analyzing power vs θ. 66Zn(polarized d, p), E=88.1 MeV; measured proton polarization vs θ; deduced far-side dominance insignificance.

doi: 10.1016/0370-2693(86)91420-6
Citations: PlumX Metrics


1986TO15      Phys.Lett. 182B, 124 (1986)

J.A.Tostevin, R.C.Johnson

Antisymmetrization Corrections to Three-Body Models of Deuteron Stripping Reactions

NUCLEAR REACTIONS 116Sn(d, p), E=79 MeV; calculated Pauli radial correction factor, σ(θ); deduced antisymmetrization corrections. Three body models.

doi: 10.1016/0370-2693(86)91561-3
Citations: PlumX Metrics


1985BR05      Nucl.Phys. A436, 125 (1985)

J.D.Brown, J.M.Barnwell, S.Roman, H.E.Conzett, D.Eversheim, R.M.Larimer, J.Birchall, C.Lapointe, J.S.C.McKee, N.M.Clarke, R.J.Griffiths, J.S.Hanspal, R.A.McCulloch, R.C.Johnson, J.A.Tostevin

Separation of Projectile and Ejectile Spin-Orbit Distortions in an L=0 (d, 3He) Reaction

NUCLEAR REACTIONS 30Si(polarized 3He, d), 31P(polarized d, d), E=33 MeV; measured σ(θ), analyzing power vs θ. DWBA analysis, natural 31P, enriched 30Si targets.

doi: 10.1016/0375-9474(85)90545-7
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1331.


1985NI04      Nucl.Phys. A440, 557 (1985)

H.Nishioka, R.C.Johnson

Tensor Interaction in Heavy-Ion Scattering (I). The Turning-Point Model

NUCLEAR REACTIONS 58Ni(7Li, 7Li), (polarized 7Li, 7Li), E=20.3 MeV; 58Ni(23Na, 23Na), E=90 MeV; 58Ni(d, d), (polarized d, d), E=80 MeV; calculated σ(θ), tensor analyzing power θ.

doi: 10.1016/0375-9474(85)90246-5
Citations: PlumX Metrics


1984NI01      Nucl.Phys. A415, 230 (1984)

H.Nishioka, J.A.Tostevin, R.C.Johnson, K.-I.Kubo

Projectile Excitation and Structure Effects in 6Li and 7Li Scattering

NUCLEAR REACTIONS 58Ni(polarized 6Li, 6Li), (polarized 7Li, 7Li), E(cm)=18.1 MeV; calculated σ(θ), analyzing power vs θ; deduced projectile excitation, structure effects. Coupled-channels calculations, cluster wave functions.

doi: 10.1016/0375-9474(84)90622-5
Citations: PlumX Metrics


1984NI11      Phys.Rev.Lett. 53, 1881 (1984)

H.Nishioka, R.C.Johnson

Evidence for a Novel Spin Dependence in the Nucleus-Nucleus Interaction

NUCLEAR REACTIONS 58Ni(polarized 7Li, 7Li), E(cm)=18.1 MeV; calculated tensor analyzing power vs θ; deduced second-rank spin-dependent interaction role.

doi: 10.1103/PhysRevLett.53.1881
Citations: PlumX Metrics


1984WI08      Phys.Lett. 138B, 253 (1984)

G.Windham, H.Nishioka, J.A.Tostevin, R.C.Johnson

Projectile Excitation Effects on Vector Polarized 6Li Scattering from 28Si and 16O

NUCLEAR REACTIONS 28Si, 16O(polarized 6Li, 6Li), E=22.8 MeV; calculated σ(θ), iT11(θ); deduced projectile excitation effects. Coupled-channels, cluster structure, single folding model.

doi: 10.1016/0370-2693(84)91652-6
Citations: PlumX Metrics


1983LO14      Phys.Rev. C28, 1779 (1983)

M.H.Lopes, J.A.Tostevin, R.C.Johnson

Electric Polarizability of the Deuteron and the Nucleon-Nucleon Interaction

NUCLEAR STRUCTURE 2H; calculated electric polarizability; deduced central, tensor components. Continuum, P-wave effects.

doi: 10.1103/PhysRevC.28.1779
Citations: PlumX Metrics


1983NI03      Phys.Lett. 124B, 17 (1983)

H.Nishioka, J.A.Tostevin, R.C.Johnson

Deformation Effects in Aligned 6Li Scattering

NUCLEAR REACTIONS 58Ni(polarized 6Li, 6Li), (polarized 7Li, 7Li), E(cm)=18.1 MeV; calculated σ(θ), tensor analyzing power vs θ; deduced second rank tensor potential. Single folding model, cluster model wave functions.

doi: 10.1016/0370-2693(83)91393-X
Citations: PlumX Metrics


1983TO05      Phys.Lett. 124B, 135 (1983)

J.A.Tostevin, R.C.Johnson

On the Spin-Dependence of Transfer Channel Coupling in Sub-Coulomb Deuteron Scattering

NUCLEAR REACTIONS 208Pb(polarized d, d), E=7, 8, 9 MeV; calculated σ(θ), vector analyzing power vs θ. Sub-Coulomb energies, transfer channel coupling.

doi: 10.1016/0370-2693(83)91420-X
Citations: PlumX Metrics


1982JO02      Phys.Rev. C26, 348 (1982)

R.C.Johnson, N.Austern, M.H.Lopes

Antisymmetrized Deuteron Stripping

NUCLEAR REACTIONS 24Mg(p, d), E=94 MeV; calculated σ(θ). Antisymmetrized deuteron-nucleus system.

doi: 10.1103/PhysRevC.26.348
Citations: PlumX Metrics


1982NA14      Nucl.Phys. A385, 525 (1982)

M.A.Nagarajan, I.J.Thompson, R.C.Johnson

Elastic Scattering of 89 MeV 7Li by 40Ca and 48Ca

NUCLEAR REACTIONS 48,40Ca(7Li, 7Li), 48Ca(7Li, 7Li'), E=89 MeV; calculated σ(θ); deduced projectile breakup effects. Adiabatic model.

doi: 10.1016/0375-9474(82)90102-6
Citations: PlumX Metrics


1982NI03      Phys.Rev.Lett. 48, 1795 (1982)

H.Nishioka, R.C.Johnson, J.A.Tostevin, K.-I.Kubo

Spin-Orbit Interaction Induced by Heavy-Ion Projectile Excitation

NUCLEAR REACTIONS 58Ni(6Li, 6Li), (polarized 6Li, 6Li), E(cm)=20.7 MeV; 58Ni(7Li, 7Li), (polarized 7Li, 7Li), E(cm)=18.1 MeV; analyzed σ(θ), iT11(θ); deduced effective spin-orbit interaction, projectile excitation. Coupled-channels analysis.

doi: 10.1103/PhysRevLett.48.1795
Citations: PlumX Metrics


1980NI11      Phys.Rev. C22, 2457 (1980)

H.Nishioka, R.C.Johnson

Adiabatic Treatment of Medium-Energy Composite-Projectile Reaction Cross Section

NUCLEAR REACTIONS 12C, 16O, 40Ca(d, X), E(cm)=250-300 MeV/nucleon; calculated total σ(reaction). Adiabatic treatment.

doi: 10.1103/PhysRevC.22.2457
Citations: PlumX Metrics


1979TO12      Phys.Lett. 85B, 14 (1979)

J.A.Tostevin, R.C.Johnson

Corrections to Conventional Sub-Coulomb Stripping Calculations of Tensor Analysing Powers

NUCLEAR REACTIONS 208Pb(polarized d, p), E=9 MeV; calculated tensor analyzing power. Coulomb stretching of deuteron internal wave function in adiabatic approximation.

doi: 10.1016/0370-2693(79)90766-4
Citations: PlumX Metrics


1978WA05      Phys.Rev. C17, 1315 (1978)

N.S.Wall, A.A.Cowley, R.C.Johnson, A.M.Kobos

Modified Optical Potential for the Elastic Scattering of Complex Particles

NUCLEAR REACTIONS 40Ca, 58Ni, 90Zr(3He, 3He), (α, α); calculated modified optical potential.

doi: 10.1103/PhysRevC.17.1315
Citations: PlumX Metrics


1976WA15      Nucl.Phys. A274, 168 (1976)

G.L.Wales, R.C.Johnson

Deuteron Break-up Effects in (p, d) Reactions at 65 MeV

NUCLEAR REACTIONS 12C, 14N(p, d), E=65 MeV; calculated, re-examined σ, role of three-body channels. Johnson-Soper approach.

doi: 10.1016/0375-9474(76)90234-7
Citations: PlumX Metrics


1975KN07      Phys.Rev.Lett. 35, 1570 (1975)

L.D.Knutson, B.P.Hichwa, A.Barroso, A.M.Eiro, F.D.Santos, R.C.Johnson

Effects of the Triton D State in (d, t) Reactions

NUCLEAR REACTIONS 118Sn(d, t), E=12.0 MeV; 208Pb(d, t), E=12.3 MeV; measured polarization parameters T20, T21, T22.

doi: 10.1103/PhysRevLett.35.1570
Citations: PlumX Metrics


1974HA65      J.Phys.(London) A7, 2017 (1974)

J.D.Harvey, R.C.Johnson

The Effect of Singlet Break-up States in Deuteron Stripping Reactions

NUCLEAR REACTIONS 54Fe(polarized d, p), E=23 MeV; calculated σ(Ep, θ), A(θ).

doi: 10.1088/0305-4470/7/16/006
Citations: PlumX Metrics


1974JA07      Phys.Lett. 49B, 249 (1974)

D.F.Jackson, R.C.Johnson

Energy Dependence of Alpha-Particle and Heavy-Ion Optical Potentials

NUCLEAR REACTIONS 12C, 24Mg, 90Zr(α, α'); analyzed σ(θ), deduced optical model parameters.

doi: 10.1016/0370-2693(74)90425-0
Citations: PlumX Metrics


1973JO10      Nucl.Phys. A208, 221 (1973)

R.C.Johnson, F.D.Santos, R.C.Brown, A.A.Debenham, G.W.Greenlees, J.A.R.Griffith, O.Karban, D.C.Kocher, S.Roman

Vector and Tensor Analysing Power of (d, p) Reactions and Deuteron D-State Effects

NUCLEAR REACTIONS 9Be, 12C, 16O, 19F, 25Mg, 28Si, 40Ca(polarized d, p), E=12.3 MeV; measured analyzing powers iT11(θ), T20(θ), T22(θ), deduced importance of d-state effects. 10Be, 13C, 17O, 20F, 26Mg, 29Si, 41Ca deduced level J. Enriched 25Mg, 40Ca targets.

doi: 10.1016/0375-9474(73)90371-0
Citations: PlumX Metrics


1972JO03      Nucl.Phys. A182, 619 (1972)

R.C.Johnson, P.J.R.Soper

Relation between the Deuteron and Nucleon Optical Potentials

doi: 10.1016/0375-9474(72)90540-4
Citations: PlumX Metrics


Back to query form    [Next]