NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 29, 2024.

Search: Author = R.Sartor

Found 36 matches.

Back to query form



2006SA08      Phys.Rev. C 73, 034307 (2006)

R.Sartor

Solution to the Bethe-Faddeev equation within the continuous version of the hole-line expansion

doi: 10.1103/PhysRevC.73.034307
Citations: PlumX Metrics


2003SA55      Phys.Rev. C 68, 057301 (2003)

R.Sartor

Solution of the Bethe-Faddeev equation by direct matrix inversion

doi: 10.1103/PhysRevC.68.057301
Citations: PlumX Metrics


2001SA62      Phys.Rev. C64, 054303 (2001)

R.Sartor

Diagrammatic Analysis of the Hellmann-Feynman Theorem: Numerical applications

doi: 10.1103/PhysRevC.64.054303
Citations: PlumX Metrics


2000SA43      Phys.Rev. C62, 044318 (2000)

R.Sartor

Diagrammatic Analysis of the Hellmann-Feynman Theorem

doi: 10.1103/PhysRevC.62.044318
Citations: PlumX Metrics


1997SA31      Phys.Rev. C56, 942 (1997)

R.Sartor

Enumeration Method for the Hole Line Expansion Diagrams

doi: 10.1103/PhysRevC.56.942
Citations: PlumX Metrics


1996SA17      Phys.Rev. C54, 809 (1996)

R.Sartor

Solution of the Bethe-Goldstone Equation with an Exact Propagator

doi: 10.1103/PhysRevC.54.809
Citations: PlumX Metrics


1994MA07      Nucl.Phys. A568, 1 (1994)

C.Mahaux, R.Sartor

Critical Study of the Dispersive n-90Zr Mean Field by Means of a New Variational Method

NUCLEAR REACTIONS 90Zr(n, n), E=8-24 MeV; calculated σ(θ). Mean field, optical model approaches.

doi: 10.1016/0375-9474(94)90002-7
Citations: PlumX Metrics


1992MA43      Nucl.Phys. A546, 65c (1992)

C.Mahaux, R.Sartor

Embedding of Correlations in the Nuclear Mean Field

NUCLEAR REACTIONS 208Pb(e, e'p), E not given; calculated spectral function. Complex mean field.

doi: 10.1016/0375-9474(92)90502-B
Citations: PlumX Metrics


1991JE02      Phys.Rev. C43, 2211 (1991)

J.-P.Jeukenne, C.Mahaux, R.Sartor

Dependence of the Fermi Energy Upon Neutron Excess

NUCLEAR STRUCTURE A=40-208; calculated symmetry potential strength near Fermi energy. Dispersion relation related analysis input.

doi: 10.1103/PhysRevC.43.2211
Citations: PlumX Metrics


1991MA15      Nucl.Phys. A528, 253 (1991)

C.Mahaux, R.Sartor

Dispersion Relation Approach to the Mean Field and Spectral Functions of Nucleons in 40Ca

NUCLEAR REACTIONS 40Ca(n, n), (p, p), E=30-50 MeV; calculated potential radius parameters vs E. 40Ca(polarized p, p), E=19.6-48 MeV; 40Ca(polarized n, n), E=5-40 MeV; calculated σ(θ), analyzing power vs θ. Dispersion relation approach to mean field.

doi: 10.1016/0375-9474(91)90090-S
Citations: PlumX Metrics


1990MA60      Nucl.Phys. A516, 285 (1990)

C.Mahaux, R.Sartor

Dispersive Versus Constant-Geometry Models of the Neutron-208Pb Mean Field

NUCLEAR REACTIONS 208Pb(n, n), E ≈ 0-16 MeV; calculated σ(E). Mean field approach.

doi: 10.1016/0375-9474(90)90310-I
Citations: PlumX Metrics


1989MA20      Nucl.Phys. A493, 157 (1989)

C.Mahaux, R.Sartor

From Scattering to Very Deeply Bound Neutrons in 208Pb: Extended and improved moment approaches

NUCLEAR REACTIONS 208Pb(n, n), E=10-40 MeV; calculated σ(θ). Complex mean field.

doi: 10.1016/0375-9474(89)90395-3
Citations: PlumX Metrics


1989MA48      Nucl.Phys. A503, 525 (1989)

C.Mahaux, R.Sartor

Variational Moment Approach to the Single-Particle Properties of Protons in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated proton single particle state properties, transfer reaction spectroscopic strengths. Variational moment approach.

doi: 10.1016/0375-9474(89)90248-0
Citations: PlumX Metrics


1988MA21      Nucl.Phys. A481, 381 (1988)

C.Mahaux, R.Sartor

Single-Particle Potential and Quasiparticle Properties of Protons in 208Pb

NUCLEAR REACTIONS 208Pb(p, p), E=-20-40 MeV; calculated potential features, proton quasiparticle strength. Mean field approach.

doi: 10.1016/0375-9474(88)90335-1
Citations: PlumX Metrics


1988MA22      Nucl.Phys. A481, 407 (1988)

C.Mahaux, R.Sartor

Isovector, Isoscalar and Coulomb Contributions to the Mean Field in 208Pb

NUCLEAR REACTIONS 208Pb(p, p), (n, n), E=-20-40 MeV; calculated potential features, differences; deduced isovector, isoscalar and Coulomb contributions. Mean field methods.

doi: 10.1016/0375-9474(88)90336-3
Citations: PlumX Metrics


1988MA40      Nucl.Phys. A484, 205 (1988)

C.Mahaux, R.Sartor

The p-40Ca and n-40Ca Mean Fields from the Iterative Moment Approach

NUCLEAR REACTIONS 40Ca(p, p), (n, n), E=-25-75 MeV; calculated mean field parameters. Iterative moment technique.

doi: 10.1016/0375-9474(88)90071-1
Citations: PlumX Metrics


1987MA28      Nucl.Phys. A468, 193 (1987)

C.Mahaux, R.Sartor

Extrapolation from Positive to Negative Energy of the Woods-Saxon Parametrization of the n-208Pb Mean Field

NUCLEAR STRUCTURE 209Pb; calculated neutron single particle energies. Mean field techniques.

NUCLEAR REACTIONS 208Pb(n, X), E=20-40 MeV; calculated optical model parameters, radial moment, moment ratios. Mean field techniques.

doi: 10.1016/0375-9474(87)90515-X
Citations: PlumX Metrics


1987MA53      Phys.Rev. C36, 1777 (1987)

C.Mahaux, R.Sartor

Fermi-Surface Anomaly for Neutrons in Yttrium

NUCLEAR REACTIONS 89Y(n, n), E not given; calculated n-nucleus interaction potential features. Dispersion relation approach.

doi: 10.1103/PhysRevC.36.1777
Citations: PlumX Metrics


1987MA60      Nucl.Phys. A475, 247 (1987)

C.Mahaux, R.Sartor

Properties of the Quasiparticle Excitations in 207Pb and 209Pb from an Extrapolation of the Optical-Model Potential

NUCLEAR STRUCTURE 209,207Pb; calculated quasiparticle excitation characteristics. 208Pb; calculated neutron density distribution.

doi: 10.1016/0375-9474(87)90165-5
Citations: PlumX Metrics


1986MA11      Nucl.Phys. A451, 441 (1986)

C.Mahaux, R.Sartor

Energy Dependence of the Global Properties of the Empirical Nucleon-Nucleus Potential for 40Ca, 132Sn and 208Pb

NUCLEAR REACTIONS 40Ca, 208Pb(p, p), (n, n), E not given; calculated nucleon-nucleus potential global properties energy dependence.

NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated proton rms radii.

doi: 10.1016/0375-9474(86)90069-2
Citations: PlumX Metrics


1986MA53      Nucl.Phys. A458, 25 (1986)

C.Mahaux, R.Sartor

Empirical and Theoretical Investigation of the Average Potential of Nucleons in 40Ca and 208Pb

NUCLEAR REACTIONS 40Ca, 208Pb(p, p), (n, n), E not given; calculated complex mean field radial moments; deduced average potential. Optical model, dispersion relation approach.

doi: 10.1016/0375-9474(86)90281-2
Citations: PlumX Metrics


1986MA60      Phys.Rev.Lett. 57, 3015 (1986)

C.Mahaux, R.Sartor

Calculation of the Shell-Model Potential from the Optical-Model Potential

NUCLEAR REACTIONS 208Pb(n, n), E=20-40 MeV; calculated shell model potential parameters energy dependence. Dispersion relation approach, optical model base.

doi: 10.1103/PhysRevLett.57.3015
Citations: PlumX Metrics


1986MA61      Phys.Rev. C34, 2119 (1986)

C.Mahaux, R.Sartor

Empirical Evidence of an Energy Dependence of the Radial Shape of the Real Part of the Optical Potential

NUCLEAR REACTIONS 40Ca(p, p), 208Pb(p, p), (p, n), E ≈ 10-40 MeV; analyzed potential parameter fits to data; deduced potential shape radial dependence.

doi: 10.1103/PhysRevC.34.2119
Citations: PlumX Metrics


1986MA69      Nucl.Phys. A460, 466 (1986); Erratum Nucl.Phys. A472, 769 (1987)

C.Mahaux, R.Sartor

Dispersion Relation Approach to the Extrapolation towards Negative Energy of the Optical Potential in 40Ca and 208Pb

NUCLEAR REACTIONS 40Ca(p, p), E=9-20 MeV; 40Ca(n, n), E=9-14 MeV; 208Pb(n, n), E=4-40 MeV; 208Pb(p, p), E=15-30 MeV; calculated optical model real part radial moments. Dispersion relation approach.

doi: 10.1016/0375-9474(86)90425-2
Citations: PlumX Metrics


1984LA04      Nucl.Phys. A414, 309 (1984)

G.La Rana, C.Ngo, A.Faessler, L.Rikus, R.Sartor, M.Barranco, X.Vinas

Heavy-Ion Optical Potentials at Finite Temperature Calculated using a Complex Effective Interaction Derived from a Realistic Force

NUCLEAR REACTIONS 40Ca(40Ca, 40Ca), E=400, 800 MeV; 208Pb(40Ca, 40Ca), E=1 GeV; calculated optical potential parameters vs separation distance, temperature. Double folding method.

doi: 10.1016/0375-9474(84)90647-X
Citations: PlumX Metrics


1984SA08      Phys.Rev. C29, 1756 (1984)

R.Sartor, Fl.Stancu

Density Matrix Approach to the Complex Heavy Ion Optical Potential: Exchange part

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential parameter dependence. Density matrix approach.

doi: 10.1103/PhysRevC.29.1756
Citations: PlumX Metrics


1983SA14      Nucl.Phys. A404, 392 (1983)

R.Sartor, Fl.Stancu

Unified Skyrme Approach to the Real and Imaginary Parts of the Heavy-Ion Optical Potential

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 208Pb; calculated binding energies, charge radii. Hartree-Fock method, Skyrme interaction.

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential real, imaginary parts vs separation distance. Skyrme approach.

doi: 10.1016/0375-9474(83)90555-9
Citations: PlumX Metrics


1983SA36      Phys.Rev. C28, 2533 (1983)

R.Sartor, Fl.Stancu

Complex Heavy Ion Optical Potential and the Proximity Concept

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential components vs ion-ion separation distance. Proximity approximation.

doi: 10.1103/PhysRevC.28.2533
Citations: PlumX Metrics


1982SA20      Phys.Rev. C26, 1025 (1982)

R.Sartor, Fl.Stancu

Density Matrix Approach to the Complex Heavy Ion Optical Potential

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential characteristics. Density matrix expansion, complex effective interaction.

doi: 10.1103/PhysRevC.26.1025
Citations: PlumX Metrics


1981KH03      Nucl.Phys. A369, 495 (1981)

S.B.Khadkikar, L.Rikus, A.Faessler, R.Sartor

Surface and Volume Contributions to Real and Imaginary Parts of the Heavy-Ion Optical Potential

NUCLEAR REACTIONS 16O(16O, 16O), E=80, 332 MeV; calculated σ(θ). Feshbach projection technique, heavy-ion optical potential.

doi: 10.1016/0375-9474(81)90034-8
Citations: PlumX Metrics


1981SA12      Nucl.Phys. A359, 467 (1981)

R.Sartor, A.Faessler, S.B.Khadkikar, S.Krewald

Folding Computation of the 16O + 16O Optical Potential with a Complex Effective Force

NUCLEAR REACTIONS 16O(16O, 16O), E=0, 83, 332 MeV; calculated real, imaginary optical potential terms. Folding method, complex effective force.

doi: 10.1016/0375-9474(81)90250-5
Citations: PlumX Metrics


1981SA33      Phys.Rev. C24, 2347 (1981)

R.Sartor, Fl.Stancu

The Nucleus-Nucleus Optical Potential Derived from a Complex Skyrme-Type Interaction

NUCLEAR REACTIONS 16O(16O, 16O), E=83, 322 MeV; calculated nucleus-nucleus optical potential. Complex energy function, Skyrme-type interaction.

doi: 10.1103/PhysRevC.24.2347
Citations: PlumX Metrics


1980CU07      Phys.Rev. C21, 2342 (1980)

J.Cugnon, R.Sartor

Factorization in High-Energy Nucleus-Nucleus Fragmentation Cross Sections

NUCLEAR REACTIONS 63Cu(27Al, X), (107Ag, X), E=relativistic; calculated fragmentation probability function. Abrasion-ablation model.

doi: 10.1103/PhysRevC.21.2342
Citations: PlumX Metrics


1978SA19      Phys.Rev. C18, 1035 (1978)

R.Sartor

Energy of the First 3/2- Excited State of 7Li

NUCLEAR REACTIONS 6Li(n, t), E ≤ 3.9 MeV; analyzed σ, integral σ. 7Li deduced levels.

doi: 10.1103/PhysRevC.18.1035
Citations: PlumX Metrics


1976SA16      Nucl.Phys. A267, 29 (1976)

R.Sartor

A Computation of the Optical Potential in Nuclear Matter from a Separable Nucleon-Nucleon Interaction

NUCLEAR STRUCTURE 8Be, 12C, 16O, 27Al; calculated 1s hole state widths.

doi: 10.1016/0375-9474(76)90641-2
Citations: PlumX Metrics


1974LE30      J.Phys.(Paris) 35, 895 (1974)

A.Lejeune, R.Sartor

Analysis of the 6Li(n, t)α Reaction over the Energy Range 14 to 3900 keV

NUCLEAR REACTIONS 6Li(n, t), E=14-3900 keV; analyzed data, calculated σ(E, Et). 7Li deduced resonances, level-width.

doi: 10.1051/jphys:019740035012089500
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset22605.


Back to query form