NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 29, 2024.

Search: Author = F.Stancu

Found 39 matches.

Back to query form



2018BR11      Phys.Rev. C 97, 064304 (2018)

D.M.Brink, Fl.Stancu

Skyrme density functional description of the double magic 78Ni nucleus

NUCLEAR STRUCTURE 68,69,70,71,72,73,74,75,76,77,78Ni; calculated proton single-particle energy difference between the unoccupied 1f5/2 and occupied 1f7/2 levels, proton and neutron single particle energies around the Fermi sea with and without tensor force by Hartree-Fock calculations using the Skryme energy density functional; deduced contribution of tensor force to single-particle spectra gap, and doubly-magic character of 78Ni.

doi: 10.1103/PhysRevC.97.064304
Citations: PlumX Metrics


2016ST01      Nucl.Phys. A945, 144 (2016)

Fl.Stancu

SU(3) Clebsch-Gordan coefficients at large Nc

doi: 10.1016/j.nuclphysa.2015.10.003
Citations: PlumX Metrics


2009MA45      Nucl.Phys. A826, 161 (2009)

N.Matagne, Fl.Stancu

Matrix elements of SU(6) generators for baryons with arbitrary Nc quarks in mixed symmetric states [Nc-1, 1]

doi: 10.1016/j.nuclphysa.2009.05.092
Citations: PlumX Metrics


2008MA38      Nucl.Phys. A811, 291 (2008)

N.Matagne, Fl.Stancu

A new look at the [70, 1-] baryon multiplet in the 1/Nc expansion

doi: 10.1016/j.nuclphysa.2008.07.006
Citations: PlumX Metrics


2007BR12      Phys.Rev. C 75, 064311 (2007)

D.M.Brink, Fl.Stancu

Evolution of nuclear shells with the Skyrme density dependent interaction

NUCLEAR STRUCTURE Z=20, Z=50, N=82; calculated proton and neutron single particle energies using Hartree-Fock method and density dependent Skyrme interaction.

doi: 10.1103/PhysRevC.75.064311
Citations: PlumX Metrics


2003PA29      Nucl.Phys. A726, 327 (2003)

Z.Papp, Fl.Stancu

Three-body confinement force in a realistic constituent quark model

doi: 10.1016/j.nuclphysa.2003.07.011
Citations: PlumX Metrics


2003SA16      Phys.Rev. C 67, 054005 (2003)

B.F.Samsonov, Fl.Stancu

Phase shift effective range expansion from supersymmetric quantum mechanics

NUCLEAR REACTIONS 1H(n, n), E=14-350 MeV; calculated phase shifts, potential features. Supersymmetric transformations, phase shift effective range expansion.

doi: 10.1103/PhysRevC.67.054005
Citations: PlumX Metrics


2002BA22      Nucl.Phys. A699, 316c (2002)

D.Bartz, Fl.Stancu

Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model

doi: 10.1016/S0375-9474(01)01510-X
Citations: PlumX Metrics


2002SA39      Phys.Rev. C66, 034001 (2002)

B.F.Samsonov, Fl.Stancu

Phase Equivalent Chains of Darboux Transformations in Scattering Theory

doi: 10.1103/PhysRevC.66.034001
Citations: PlumX Metrics


2001BA14      Phys.Rev. C63, 034001 (2001)

D.Bartz, Fl.Stancu

Nucleon-Nucleon Scattering in a Chiral Constituent Quark Model

doi: 10.1103/PhysRevC.63.034001
Citations: PlumX Metrics


2001BA46      Nucl.Phys. A688, 915 (2001)

D.Bartz, Fl.Stancu

NN Scattering Phase Shifts in a Chiral Constituent Quark Model

doi: 10.1016/S0375-9474(00)00599-6
Citations: PlumX Metrics


2001ST05      Nucl.Phys. A683, 359 (2001)

Fl.Stancu, L.Ya.Glozman

The Short-Range Baryon-Baryon Interaction in a Chiral Constituent Quark Model

doi: 10.1016/S0375-9474(00)00461-9
Citations: PlumX Metrics


1999BA20      Phys.Rev. C59, 1756 (1999)

D.Bartz, Fl.Stancu

Important Configurations for NN Processes in a Goldstone Boson Exchange Model

doi: 10.1103/PhysRevC.59.1756
Citations: PlumX Metrics


1999BA98      Phys.Rev. C60, 055207 (1999)

D.Bartz, Fl.Stancu

NN Interaction in a Goldstone Boson Exchange Model

doi: 10.1103/PhysRevC.60.055207
Citations: PlumX Metrics


1997ST24      Phys.Rev. C56, 2779 (1997); Erratum Phys.Rev. C59, 1219 (1999)

F.Stancu, S.Pepin, L.Ya.Glozman

Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model

doi: 10.1103/PhysRevC.56.2779
Citations: PlumX Metrics


1997ST30      Z.Phys. A359, 321 (1997)

P.Stassart, Fl.Stancu

Positive Parity Nonstrange Baryons Beyond 2 GeV

doi: 10.1007/s002180050408
Citations: PlumX Metrics


1997WI07      Phys.Rev. C56, 486 (1997)

L.Wilets, M.A.Alberg, S.Pepin, Fl.Stancu, J.Carlson, W.Koepf

Quark Substructure Approach to 4He Charge Distribution

NUCLEAR STRUCTURE 4He; calculated density distribution; deduced proton size vs density. Realistic nucleonic wave functions, quark substructure, chromodielectric model.

doi: 10.1103/PhysRevC.56.486
Citations: PlumX Metrics


1996PE03      Phys.Rev. C53, 1368 (1996)

S.Pepin, Fl.Stancu, W.Koepf, L.Wilets

Nucleon-Nucleon Interaction in the Chromodielectric Soliton Model: Dynamics

doi: 10.1103/PhysRevC.53.1368
Citations: PlumX Metrics


1995ST08      Z.Phys. A351, 77 (1995)

P.Stassart, Fl.Stancu

Δπ Decay of Baryons in a Flux-Tube-Breaking Mechanism

doi: 10.1007/BF01292788
Citations: PlumX Metrics


1994KO22      Phys.Rev. C50, 614 (1994)

W.Koepf, L.Wilets, S.Pepin, Fl.Stancu

The Nucleon-Nucleon Potential in the Chromodielectric Soliton Model: Statics

NUCLEAR STRUCTURE 1H; calculated μ; deduced chromodielectric soliton model parameters. Self-consistent mean field calculation. Model used for NN-interaction.

doi: 10.1103/PhysRevC.50.614
Citations: PlumX Metrics


1985ST25      Phys.Rev. C32, 1937 (1985)

Fl.Stancu, D.M.Brink

Effect of Shell Structure on the Nucleon Transfer Contribution to the Imaginary Part of the Heavy Ion Optical Potential

NUCLEAR REACTIONS 40Ca(16O, 16O), E=40-214.1 MeV; 60Ni(16O, 16O), E=142 MeV; 208Pb(16O, 16O), E=129.5-312.6 MeV; 32S(32S, 32S), E=90.9 MeV; 40Ca(40Ca, 40Ca), E=143.6-240 MeV; calculated heavy ion optical potential imaginary term near strong absorption radius.

doi: 10.1103/PhysRevC.32.1937
Citations: PlumX Metrics


1984SA08      Phys.Rev. C29, 1756 (1984)

R.Sartor, Fl.Stancu

Density Matrix Approach to the Complex Heavy Ion Optical Potential: Exchange part

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential parameter dependence. Density matrix approach.

doi: 10.1103/PhysRevC.29.1756
Citations: PlumX Metrics


1983SA14      Nucl.Phys. A404, 392 (1983)

R.Sartor, Fl.Stancu

Unified Skyrme Approach to the Real and Imaginary Parts of the Heavy-Ion Optical Potential

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 208Pb; calculated binding energies, charge radii. Hartree-Fock method, Skyrme interaction.

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential real, imaginary parts vs separation distance. Skyrme approach.

doi: 10.1016/0375-9474(83)90555-9
Citations: PlumX Metrics


1983SA36      Phys.Rev. C28, 2533 (1983)

R.Sartor, Fl.Stancu

Complex Heavy Ion Optical Potential and the Proximity Concept

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential components vs ion-ion separation distance. Proximity approximation.

doi: 10.1103/PhysRevC.28.2533
Citations: PlumX Metrics


1983TA17      Rev.Roum.Phys. 28, 857 (1983)

Fl.Stancu, M.T.Magda, S.Dima, M.Macovel, E.Ivanov, R.Dumitrescu, C.Stan-Sion

Energy Spectrum of Neutrons Produced by Deuterons on Thick Be Target

NUCLEAR REACTIONS 9Be(d, n), E=13 MeV; measured σ(θ), σ(En). Thin, thick targets.


1982SA20      Phys.Rev. C26, 1025 (1982)

R.Sartor, Fl.Stancu

Density Matrix Approach to the Complex Heavy Ion Optical Potential

NUCLEAR REACTIONS 16O(16O, 16O), E not given; calculated optical potential characteristics. Density matrix expansion, complex effective interaction.

doi: 10.1103/PhysRevC.26.1025
Citations: PlumX Metrics


1982ST08      Phys.Rev. C25, 2450 (1982)

Fl.Stancu, D.M.Brink

Nucleon Transfer Contribution to the Absorptive Potential in Heavy-Ion Scattering

NUCLEAR REACTIONS 40Ca(16O, 16O), E=55.6, 103.6, 214.1 MeV; 58Ni(16O, 16O), E=45, 60, 81 MeV; 60Ni(16O, 16O), E=142 MeV; 208Pb(16O, 16O), E=129.5, 192, 312.6 MeV; 40Ca(20Ne, 20Ne), E=151 MeV; 32S(32S, X), E=90.9 MeV; 40Ca(40Ca, 40Ca), E=143.6, 186, 240 MeV; 209Bi(136Xe, 136Xe), E=940, 1130 MeV; calculated nucleon transfer contribution to absorption potential. Proximity method, Pauli blocking, barrier penetration effects.

doi: 10.1103/PhysRevC.25.2450
Citations: PlumX Metrics


1981BR11      Phys.Rev. C24, 144 (1981)

D.M.Brink, Fl.Stancu

Time-Dependent Hartree-Fock and the One-Body Dissipation for Head-On Collisions

NUCLEAR REACTIONS 139La(86Kr, X), E=360-1000 MeV; 209Bi(84Kr, X), E=500-1000 MeV; calculated interaction potential vs separation distance, classical trajectories. Head-on collisions, window formula for friction, one-body dissipation.

doi: 10.1103/PhysRevC.24.144
Citations: PlumX Metrics


1981DE13      Phys.Rev. C23, 1503 (1981)

J.-L.Dethier, Fl.Stancu

Fusion Cross Section of Light Ions at Sub-Coulomb Energies

NUCLEAR REACTIONS 16O(16O, X), E(cm)=4-9.76 MeV; 12C(14N, X), E(cm)=1-6.07 MeV; 12C(10B, X), E(cm)=0.25-4.22 MeV; calculated σ(fusion, E). Barrier penetration model.

doi: 10.1103/PhysRevC.23.1503
Citations: PlumX Metrics


1981GN01      Nucl.Phys. A366, 520 (1981)

C.Gnucci, Fl.Stancu

Classical Trajectory Calculations with Time-Dependent Forces in Heavy-Ion Collisions

NUCLEAR REACTIONS 139La(86Kr, X), E=505, 610, 710 MeV; calculated σ(θ); 209Bi(136Xe, X), E=1130 MeV; calculated σ(θ, E), σ(θ), energy loss, deflection function. Classical trajectory model, time-dependent forces, deep inelastic collisions.

doi: 10.1016/0375-9474(81)90525-X
Citations: PlumX Metrics


1981SA33      Phys.Rev. C24, 2347 (1981)

R.Sartor, Fl.Stancu

The Nucleus-Nucleus Optical Potential Derived from a Complex Skyrme-Type Interaction

NUCLEAR REACTIONS 16O(16O, 16O), E=83, 322 MeV; calculated nucleus-nucleus optical potential. Complex energy function, Skyrme-type interaction.

doi: 10.1103/PhysRevC.24.2347
Citations: PlumX Metrics


1979ST14      Phys.Rev.Lett. 43, 1094 (1979)

F.Stancu

Static Polarization Effects in the Nucleus-Nucleus Potential

NUCLEAR REACTIONS 90Zr, 40Ca(40Ca, X), 90Zr, 208Pb(90Zr, X), 48Ca, 56Ni(208Pb, X), E not given; calculated real part of nucleus-nucleus potential. Variable surface thickness. Deduced barrier, its position for an arbitrary pair.

doi: 10.1103/PhysRevLett.43.1094
Citations: PlumX Metrics


1978ST24      J.Phys.(Paris) 39, 799 (1978)

F.Stancu

The Sensitivity of the Real Part of the Nucleus-Nucleus Potential to Nuclear Densities

NUCLEAR REACTIONS 48Ca(16O, 16O), E=40 MeV; 48Ca(48Ca, 48Ca), 208Pb(16O, 16O), E not given; calculated real part of nucleus-nucleus potential. Method based on energy functional of Skyrme nucleon-nucleon interaction.

doi: 10.1051/jphys:01978003908079900
Citations: PlumX Metrics


1977ST13      Phys.Lett. 68B, 108 (1977)

F.Stancu, D.M.Brink, H.Flocard

The Tensor Part of Skyrme's Interaction

NUCLEAR STRUCTURE 48Ca, 56Ni; calculated p, n levels.

doi: 10.1016/0370-2693(77)90178-2
Citations: PlumX Metrics


1976ST15      Nucl.Phys. A270, 236 (1976)

F.Stancu, D.M.Brink

The Real Part of the Nucleus-Nucleus Interaction

NUCLEAR REACTIONS 48Ca(16O, 16O), E=40, 60 MeV; calculated σ(θ).

doi: 10.1016/0375-9474(76)90137-8
Citations: PlumX Metrics


1975BR13      Nucl.Phys. A243, 175 (1975)

D.M.Brink, F.Stancu

Interaction Potential between Two 16O Nuclei Derived from the Skyrme Interaction

NUCLEAR REACTIONS 16O(16O, 16O); calculated potential.

doi: 10.1016/0375-9474(75)90027-5
Citations: PlumX Metrics


1973ST05      Nucl.Phys. A205, 561 (1973)

F.Stancu

Separable-Potential Model for the Nucleon-Nucleus Interaction

NUCLEAR REACTIONS 16O(n, n); calculated σ(E).

doi: 10.1016/0375-9474(73)90706-9
Citations: PlumX Metrics


1972ST02      Nucl.Phys. A179, 714 (1972)

F.Stancu, J.P.Jeukenne

Separable Single-Particle Hamiltonian and its Local Equivalent

NUCLEAR REACTIONS 3He, 11C, 15O, 39Ca(n, n), E=0.216, 4.659 MeV; calculated equivalent local potentials, damping functions.

doi: 10.1016/0375-9474(72)90614-8
Citations: PlumX Metrics


1968GU11      Nuovo Cimento 58A, 503 (1968)

I.Guiasu, F.Stancu

Particle-Hole Description of Even-Parity T = 1 Levels of 12B

NUCLEAR STRUCTURE 12B; calculated even-parity levels. Particle-hole model.


Back to query form