NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = R.S.Mackintosh

Found 115 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024MA11      Phys.Rev. C 109, 034605 (2024)

R.S.Mackintosh, N.Keeley

Stripping and pickup contributions to the optical potentials for 3H and 3He on 40Ca

doi: 10.1103/PhysRevC.109.034605
Citations: PlumX Metrics


2023KE03      Phys.Rev. C 107, 034602 (2023)

N.Keeley, R.S.Mackintosh

Reaction channel contributions to the triton + 208Pb optical potential

NUCLEAR REACTIONS 208Pb(t, α), (t, t), E=33 MeV; calculated σ(θ); deduced optical potential parameters, dynamical polarization potentials (DPP). Identified the influence of dynamically nonlocality due to various channel couplings. Comparison with 208Pb(3He, α), (3He, 3He') reactions. Coupled reaction channel (CRC) calculations.

doi: 10.1103/PhysRevC.107.034602
Citations: PlumX Metrics


2022MA55      Phys.Rev. C 106, 054611 (2022)

R.S.Mackintosh, N.Keeley

Reaction channel contributions to the proton + 208Pb optical potential at 40 MeV

NUCLEAR REACTIONS 208Pb(p, d), (p, p'), E=40 MeV; calculated σ(θ), analyzing power; deduced optical potential parameters, dynamical polarization potentials (DPP). Identified the influence of dynamically generated nonlocality due to various channel couplings. Coupled reaction channel (CRC) calculations.

doi: 10.1103/PhysRevC.106.054611
Citations: PlumX Metrics


2021MA69      Phys.Rev. C 104, 044616 (2021)

R.S.Mackintosh, N.Keeley

Reaction channel contributions to proton scattering at 65 MeV

NUCLEAR REACTIONS 40,48Ca(polarized p, p), (p, p), E=65 MeV; 40Ca(p, d)39Ca, E=65 MeV; calculated σ(θ), analyzing power iT11(θ); deduced optical potential parameters, dynamical polarization potentials (DPP) for elastic scattering and neutron pickup reaction; deduced that no smoothly varying global OMP could fit proton elastic scattering from both 40Ca and 48Ca, and that breakup of deuteron must be included in calculations of the DPP due to neutron pickup in proton scattering. Coupled reaction channel (CRC) calculations for neutron pickup and coupled channel (CC) calculations for collective states, with l-independent representation of the dynamical polarization potential (DPP).

doi: 10.1103/PhysRevC.104.044616
Citations: PlumX Metrics


2020KE10      Phys.Rev. C 102, 064611 (2020)

N.Keeley, R.S.Mackintosh

Reaction channel contributions to the triton optical potential

NUCLEAR REACTIONS 16O, 40Ca(t, t), (t, t'), (t, α), E=33 MeV; calculated differential σ(θ), analyzing powers Ay(θ), dynamical polarization potentials (DPPs) by coupling to pickup and inelastic channels; deduced undulatory features in the DPPs. Coupled channel (CC) and coupled reaction channel (CRC) calculations using the FRESCO code. Comparison of σ(θ) calculations with experimental data.

doi: 10.1103/PhysRevC.102.064611
Citations: PlumX Metrics


2019KE05      Phys.Rev. C 99, 034614 (2019)

N.Keeley, R.S.Mackintosh

Pickup coupling contribution to the optical model potential for 30.3 MeV protons and neutrons on 40Ca

NUCLEAR REACTIONS 40Ca(n, n), (p, p), E=25, 30.3, 35, 40, 45 MeV; calculated volume integrals of the four components of the dynamic polarization potentials (DPP) induced by (p, d) and (n, d) couplings, change in rms radius of the real central component, change in the total reaction cross section induced by couplings to various states in 39Ca and 39K, the integrated cross section to the specific coupled reaction channels, radial real central, imaginary central, real spin-orbit, and imaginary spin-orbit components of the DPP. Coupled reaction channel (CRC) calculations using the FRESCO code.

doi: 10.1103/PhysRevC.99.034614
Citations: PlumX Metrics


2019MA68      Eur.Phys.J. A 55, 147 (2019)

R.S.Mackintosh

The angular momentum dependence of nuclear optical potentials

NUCLEAR REACTIONS 16O(p, p), (p, p'), E=30.1 MeV;40Ca(p, p), (p, p'), E=30.3 MeV;40Ca(d, d), (d, d'), E=52 MeV; calculated optical potential components (volume real, volume-imaginary, spinorbit-real, spinorbit-imaginary) of l-independent equivalent of the full l-independent potential of published calculations; calculated Dynamic Polarization Potential (DPP) for scattering of loosely bound nuclei.

doi: 10.1140/epja/i2019-12830-3
Citations: PlumX Metrics


2019MA83      Phys.Rev. C 100, 064613 (2019)

R.S.Mackintosh, N.Keeley

Reaction channel contributions to the helion optical potential

NUCLEAR REACTIONS 16O(3He, 3He), (3He, 3He'), (3He, α), E=32 MeV; 40Ca, 208Pb(3He, 3He), (3He, 3He'), (3He, α), E=33 MeV; calculated σ(θ), Ay(θ), dynamical polarization potentials (DPPs) by coupling to pickup and inelastic channels; deduced undulatory features in the DPPs. Coupled channel (CR) and coupled reaction channel (CRC) calculations using the FRESCO code. Comparison of σ(θ) and Ay(θ) calculations with experimental data.

doi: 10.1103/PhysRevC.100.064613
Citations: PlumX Metrics


2019PH03      Phys.Rev. C 100, 054615 (2019)

N.T.T.Phuc, R.S.Mackintosh, N.H.Phuc, D.T.Khoa

Elastic transfer and parity dependence of the nucleus-nucleus optical potential

NUCLEAR REACTIONS 12C(16O, 16O), (16O, X), E=132, 300 MeV; calculated σ(θ, E) for ground-state channels of 16O and 12C using coupled reaction channel (CRC) approach with two- and ten-channel model space calculated parity-dependent core exchange potential (CEP) from S-matrix using inversion method; deduced strong contribution by the complex Majorana term in the total optical potential (OP).

doi: 10.1103/PhysRevC.100.054615
Citations: PlumX Metrics


2018KE01      Phys.Rev. C 97, 014605 (2018)

N.Keeley, R.S.Mackintosh

Reaction channel coupling effects for nucleons on 16O: Induced undularity and proton-neutron potential differences

NUCLEAR REACTIONS 16O(p, p), (n, n), E=30.1 MeV; calculated σ(θ), Ay(θ), phase shifts, and compared with experimental data; calculated dynamical polarization potentials (DPPs) by coupling to pickup channels; deduced undulatory features in the DPPs, and compared with corresponding features of empirical optical model potentials (OMPs). Coupled channel (CR) and coupled reaction channel (CRC) calculations using FRESCO code by including couplings to the 6.13 MeV, 3- state and 22 MeV, 2+ GQR in 16O.

doi: 10.1103/PhysRevC.97.014605
Citations: PlumX Metrics


2018MA52      Phys.Rev. C 98, 024624 (2018)

R.S.Mackintosh, N.Keeley

Remarkable independence of dynamical polarization potentials of the underlying potential

NUCLEAR REACTIONS 40Ca(polarized p, p), E=30.3 MeV; analyzed Ay(θ) data with the inclusion of coupling to the 3/2+ ground state of 39Ca in a search for the conventional Wood-Saxon parameters, dynamical polarization potentials (DPP) with coupling to the 3/2+ g.s. and 5/2+ lumped state in 39Ca; deduced that DPP caused by coupling to pickup channels is qualitatively and almost quantitatively unaffected by substantial changes in the bare potential.

doi: 10.1103/PhysRevC.98.024624
Citations: PlumX Metrics


2017MA06      Phys.Rev. C 95, 024602 (2017)

G.Marquinez-Duran, N.Keeley, K.W.Kemper, R.S.Mackintosh, I.Martel, K.Rusek, A.M.Sanchez-Benitez

Influence of single-neutron stripping on near-barrier 6He 208Pb and 8He + 208Pb elastic scattering

NUCLEAR REACTIONS 208Pb(6He, 6He), (8He, 8He), E=22 MeV; analyzed σ(θ) data, total reaction cross sections for the bare and summed 1n-stripping cross sections; deduced optical model parameters, dynamic polarization potentials, and effect of single-neutron stripping on elastic scattering. Coupled reaction channels (CRC) and S-matrix calculations.

doi: 10.1103/PhysRevC.95.024602
Citations: PlumX Metrics


2017MA19      Eur.Phys.J. A 53, 66 (2017)

R.S.Mackintosh

Elastic scattering phenomenology

doi: 10.1140/epja/i2017-12257-x
Citations: PlumX Metrics


2016MA52      Phys.Rev. C 94, 034602 (2016)

R.S.Mackintosh

Evidence for L-dependence generated by channel coupling: 16O scattering from 12C at 115.9 MeV

NUCLEAR REACTIONS 12C(16O, 16O), E=115.9 MeV; calculated σ(θ), elastic channel S matrix from existing coupled channel (CC) calculations inverted; deduced angular momentum dependence of optical potentials.

doi: 10.1103/PhysRevC.94.034602
Citations: PlumX Metrics


2015MA12      Phys.Rev. C 91, 024616 (2015)

R.S.Mackintosh, Y.Hirabayashi, S.Ohkubo

Emergence of a secondary rainbow and the dynamical polarization potential for 16O on 12C at 330 MeV

NUCLEAR REACTIONS 12C(16O, 16O), E≈300 MeV; analyzed dynamic polarization potential (DPP) and secondary rainbow effect using S-matrix to potential, SL to V(r) inversion, and coupled channel calculations; deduced effect of direct coupling between the collective states of 12C and 16O. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.024616
Citations: PlumX Metrics


2014KE05      Phys.Rev. C 90, 044602 (2014)

N.Keeley, R.S.Mackintosh

Dynamic polarization potential and dynamical nonlocality in nuclear potentials: Nucleon-nucleus potential

NUCLEAR REACTIONS 40Ca(p, d), (n, d), E=30.3 MeV; calculated angular distributions; deduced dynamical polarization potential (DPP); investigated effects of non-locality induced by phonon couplings. Coupled-channel (CC) and distorted wave Born approximations (DWBA) calculations.

doi: 10.1103/PhysRevC.90.044602
Citations: PlumX Metrics


2014MA83      Phys.Rev. C 90, 044601 (2014)

R.S.Mackintosh, N.Keeley

Phonon coupling effects in proton scattering from 40Ca

NUCLEAR REACTIONS 40Ca(p, p), (p, p'), E=20-90 MeV; calculated dynamical polarization potential (DPP) with full coupling to the GQR, 3- state and multi-phonon states, inelastic scattering σ(E); deduced l-dependent undulatory nature of the contribution of phonon coupling. S-matrix to potential inversion method for coupled channel and optical model potential calculations.

doi: 10.1103/PhysRevC.90.044601
Citations: PlumX Metrics


2013MA55      Phys.Rev. C 88, 014608 (2013)

R.S.Mackintosh, D.Y.Pang

Significant features of 8B scattering from 208Pb at 170.3 MeV

NUCLEAR REACTIONS 208Pb(8B, 8B), E=170.3 MeV; calculated CDCC breakup S-matrix inversion, σ(θ); deduced dynamic polarization potentials. Continuum discretized coupled channels (CDCC) calculations. Discussed anomalous behavior.

doi: 10.1103/PhysRevC.88.014608
Citations: PlumX Metrics


2013MA82      Phys.Rev. C 88, 054603 (2013)

R.S.Mackintosh

Interpreting increases in |SL| due to channel coupling

NUCLEAR REACTIONS 58Ni(6Li, 6Li), E=19.04 MeV; 58Ni(7Be, 7Be), E=24.12 MeV; 58Ni(8B, 8B), E=29.26 MeV; 208Pb(6He, 6He), E=66 MeV; calculated σ(θ), change in reaction σ due to breakup coupling and breakup cross section, elastic scattering S matrix SL, dynamic polarization potential (DPP) due to breakup coupling, wrong way (WW) effect. Continuum discretized coupled channel (CDCC) calculations.

doi: 10.1103/PhysRevC.88.054603
Citations: PlumX Metrics


2012MA22      Phys.Rev. C 85, 064603 (2012), Erratum Phys.Rev. C 97, 069901 (2018)

R.S.Mackintosh, N.Keeley

Coupling effects in proton scattering from 40Ca

NUCLEAR REACTIONS 40Ca(polarized p, p), E=30.3 MeV; calculated dynamic polarization potential (DPP), analyzing powers, effect of (p, d) pickup couplings. Coupled reaction channel (CRC) calculations.

doi: 10.1103/PhysRevC.85.064603
Citations: PlumX Metrics


2012MA47      Phys.Rev. C 86, 047602 (2012)

R.S.Mackintosh, D.Y.Pang

Increase in lSLl induced by channel coupling: The case of deuteron breakup

NUCLEAR REACTIONS 58Ni(d, d), E=56, 79, 120 MeV; calculated elastic scattering matrix magnitude, σ(θ), dynamic polarization potentials (DPP) induced by S-wave and d-wave breakup (BU). Continuum discretized coupled channels (CDCC) calculations. Anomalous effect of couplings on S-matrix, relation of non-locality of optical model potentials. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.047602
Citations: PlumX Metrics


2011KE02      Phys.Rev. C 83, 044608 (2011)

N.Keeley, R.S.Mackintosh

Dynamic polarization potential due to pickup coupling for proton scattering from 6He

NUCLEAR REACTIONS 6,8He(p, d), E=71 MeV/nucleon; calculated dynamic polarization potentials (DPP), σ(θ), Ay(θ) using coupled-channel analysis. Influence of deuteron breakup.

doi: 10.1103/PhysRevC.83.044608
Citations: PlumX Metrics


2011MA38      Phys.Rev. C 83, 057601 (2011)

R.S.Mackintosh, N.Keeley

Addendum to "Strong coupling effects in proton scattering from 8He"

NUCLEAR REACTIONS 8He(p, p), E=25, 61.3 MeV/nucleon; analyzed σ(θ) and analyzing powers, radial dependence of dynamic polarization potentials (DPP) using the continuum-discretized coupled channels (CDCC) formalism applied to the (p, d) coupling channels. Breakup of the outgoing deuteron.

doi: 10.1103/PhysRevC.83.057601
Citations: PlumX Metrics


2011PA37      Phys.Rev. C 84, 064611 (2011)

D.Y.Pang, R.S.Mackintosh

Dynamic polarization potential due to 6Li breakup on 12C

NUCLEAR REACTIONS 12C(6Li, 6Li), E=90-318 MeV; calculated σ(E, θ), breakup coupling, energy dynamic of dynamic polarization potentials (DPP), S-matrix inversion compared with trivially equivalent local potential (TELP). Continuum discretized coupled-channels (CDCC) formalism with a two-body cluster model. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064611
Citations: PlumX Metrics


2010KE06      Nucl.Phys. A834, 792c (2010)

N.Keeley, R.S.Mackintosh, C.Beck

Breakup Coupling Effects on Near-Barrier 6Li, 7Be and 8B + 58Ni Elastic Scattering Compared

NUCLEAR REACTIONS 58Ni(6Li, 6Li), E=19.4 MeV; 58Ni(7Be, 7Be), E=24.12 MeV; 58Ni(8B, 8B), E=29.26 MeV; calculated σ(θ) using CDCC code FRESCO; deduced L-dependence of S-matrix, effect of coupling.

doi: 10.1016/j.nuclphysa.2010.01.148
Citations: PlumX Metrics


2010MA17      Phys.Rev. C 81, 034612 (2010)

R.S.Mackintosh, N.Keeley

Strong coupling effects in proton scattering from 8He

NUCLEAR REACTIONS 8He(p, p), (polarized p, p)E=15.66, 25, 61.3 MeV/nucleon; calculated differential σ(θ), analyzing powers; deduced dynamic polarization potentials (DPP) using coupled reaction channel (CRC) model with influence of deuteron coupling on proton scattering and including coupling to the triton partition.

doi: 10.1103/PhysRevC.81.034612
Citations: PlumX Metrics


2009MA03      Phys.Rev. C 79, 014611 (2009)

R.S.Mackintosh, N.Keeley

6He breakup dynamic polarization potential reexamined

NUCLEAR REACTIONS 208Pb(6He, X), E=22, 27, 32 MeV; calculated dynamic polarization potentials. Continuum-discretized coupled channels calculations.

doi: 10.1103/PhysRevC.79.014611
Citations: PlumX Metrics


2008KE05      Phys.Rev. C 77, 054603 (2008)

N.Keeley, R.S.Mackintosh

Pickup coupling effects in deuteron scattering: The case of d + 40Ca

NUCLEAR REACTIONS 40Ca(d, 3He), (d, α), (d, t), (d, d), (d, p), E=52 MeV; calculated spectroscopic factors, σ(θ), rms radii, dynamic polarization parameters. Coupled reaction channels calculations followed by S-matrix approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.77.054603
Citations: PlumX Metrics


2007MA59      Phys.Rev. C 76, 024601 (2007)

R.S.Mackintosh, N.Keeley

Strong pickup-channel coupling effects in proton scattering: The case of p+10Be

doi: 10.1103/PhysRevC.76.024601
Citations: PlumX Metrics


2005GI07      Phys.Rev. C 71, 064311 (2005)

L.Giot, P.Roussel-Chomaz, C.E.Demonchy, W.Mittig, H.Savajols, N.Alamanos, F.Auger, A.Gillibert, C.Jouanne, V.Lapoux, L.Nalpas, E.C.Pollacco, J.L.Sida, F.Skaza, M.D.Cortina-Gil, J.Fernandez-Vazquez, R.S.Mackintosh, A.Pakou, S.Pita, A.Rodin, S.Stepantsov, G.M.Ter-Akopian, K.Rusek, I.J.Thompson, R.Wolski

Investigation of 6He cluster structures

NUCLEAR REACTIONS 1H(6He, α), E=25 MeV/nucleon; measured σ(θ); deduced particle transfer contributions, entrance potential dependence. 6He deduced spectroscopic factors for t+t and α+2n cluster configurations. 1H(6He, p), E=25 MeV/nucleon; measured σ(θ). 3He(α, α), E(cm)=28.7 MeV; calculated σ(θ). SPEG spectrometer and MUST array at GANIL. DWBA and coupled-channels calculations.

doi: 10.1103/PhysRevC.71.064311
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0354.


2005GI18      Eur.Phys.J. A 25, Supplement 1, 267 (2005)

L.Giot, P.Roussel-Chomaz, N.Alamanos, F.Auger, M.-D.Cortina-Gil, Ch.E.Demonchy, J.Fernandez, A.Gillibert, C.Jouanne, V.Lapoux, R.S.Mackintosh, W.Mittig, L.Nalpas, A.Pakou, S.Pita, E.C.Pollacco, A.Rodin, K.Rusek, H.Savajols, J.L.Sida, F.Skaza, S.Stepantsov, G.Ter-Akopian, I.Thompson, R.Wolski

Study of the ground-state wave function of 6He via the 6He(p, t)α transfer reaction

NUCLEAR REACTIONS 1H(6He, α), E=25 MeV/nucleon; measured σ(θ); deduced particle transfer contributions, entrance potential dependence. 6He deduced spectroscopic factors for t+t and a+2n cluster configurations. SPEG spectrometer and MUST array at GANIL. DWBA and coupled-channels calculations.

doi: 10.1140/epjad/i2005-06-021-5
Citations: PlumX Metrics


2005KE03      Phys.Rev. C 71, 057601 (2005)

N.Keeley, R.S.Mackintosh

Breakup dynamic polarization potential for 6He + 208Pb: Energy dependence and generic properties

NUCLEAR REACTIONS 208Pb(6He, X), E=27, 40, 53, 66 MeV; calculated dynamic polarization potential.

doi: 10.1103/PhysRevC.71.057601
Citations: PlumX Metrics


2005SK03      Phys.Lett. B 619, 82 (2005)

F.Skaza, N.Keeley, V.Lapoux, N.Alamanos, F.Auger, D.Beaumel, E.Becheva, Y.Blumenfeld, F.Delaunay, A.Drouart, A.Gillibert, L.Giot, K.W.Kemper, R.S.Mackintosh, L.Nalpas, A.Pakou, E.C.Pollacco, R.Raabe, P.Roussel-Chomaz, J.-A.Scarpaci, J.-L.Sida, S.Stepantsov, R.Wolski

Important pickup coupling effect on 8He(p, p) elastic scattering

NUCLEAR REACTIONS 1H(8He, p), (8He, d), E=15.7 MeV/nucleon; measured deuteron and proton spectra, σ(θ). 8He(p, p), E=15.7 MeV/nucleon; deduced effect of coupling to pickup reaction. Coupled-channels framework, dynamic polarization potential.

doi: 10.1016/j.physletb.2005.05.061
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0359.


2004KU02      J.Phys.(London) G30, R1 (2004)

V.I.Kukulin, R.S.Mackintosh

The application of inversion to nuclear scattering

doi: 10.1088/0954-3899/30/R01
Citations: PlumX Metrics


2004MA70      Nucl.Phys. A742, 3 (2004)

R.S.Mackintosh

The p + 6He interaction from Ec.m. = 0.5 to 25 MeV

NUCLEAR REACTIONS 6He(p, X), 6Li(n, X), E(cm)=0.5-25 MeV; calculated interaction potentials. S-matrix inversion, resonating group model.

doi: 10.1016/j.nuclphysa.2004.06.002
Citations: PlumX Metrics


2004MA72      Phys.Rev. C 70, 024604 (2004)

R.S.Mackintosh, N.Keeley

Breakup dynamic polarization potential for 6He+208Pb at 27 MeV

NUCLEAR REACTIONS 208Pb(6He, X), E=27 MeV; calculated dynamic polarization potential.

doi: 10.1103/PhysRevC.70.024604
Citations: PlumX Metrics


2003CO08      Nucl.Phys. A723, 45 (2003)

S.G.Cooper, R.S.Mackintosh

Data-to-potential inversion for tensor polarized deuterons scattered from 4He

NUCLEAR REACTIONS 4He(polarized d, d), E=4-13 MeV; analyzed σ(θ), analyzing powers; deduced potential. Iterative perturbative procedure.

doi: 10.1016/S0375-9474(03)01082-0
Citations: PlumX Metrics


2003HE02      Nucl.Phys. A713, 63 (2003)

H.Heiberg-Andersen, R.S.Mackintosh, J.S.Vaagen

A new phenomenological τ-α interaction

NUCLEAR REACTIONS 4He(3He, 3He), E=20-30 MeV; calculated σ(θ), analyzing powers, parity dependence features, three-nucleon exchange process. 7Be deduced level energy. Phenomenological interaction, comparisons with data.

doi: 10.1016/S0375-9474(02)01291-5
Citations: PlumX Metrics


2003MA08      Phys.Rev. C 67, 034607 (2003)

R.S.Mackintosh, K.Rusek

Dynamic polarization potential for 6He+p due to breakup

NUCLEAR REACTIONS 1H(6He, 6He), E(cm)=21.57, 35.06 MeV; calculated σ(θ), breakup contribution to dynamic polarization potential. Iterative-perturbative inversion method.

doi: 10.1103/PhysRevC.67.034607
Citations: PlumX Metrics


2003MA67      Nucl.Phys. A728, 415 (2003)

R.S.Mackintosh

Theoretical and empirical d + 4He potentials: an anomalous Majorana component?

NUCLEAR REACTIONS 2H(α, α), E ≈ 10-120 MeV; calculated, analyzed scattering potential, parity dependence, related features. Resonating group method, iterative perturbative procedure.

doi: 10.1016/j.nuclphysa.2003.09.005
Citations: PlumX Metrics


2002BO58      Phys.Rev. C 66, 064602 (2002)

I.Boztosun, R.S.Mackintosh

Investigation of the coupling potential by means of S-matrix inversion

NUCLEAR REACTIONS 12C, 24Mg(12C, 12C), 28Si(16O, 16O), E=93.8, 126.7 MeV; calculated coupling potential, effect on inelastic scattering potential. S-matrix inversion.

doi: 10.1103/PhysRevC.66.064602
Citations: PlumX Metrics


2000CO22      Nucl.Phys. A677, 187 (2000)

S.G.Cooper, V.I.Kukulin, R.S.Mackintosh, V.N.Pomerantsev

An Inversion Procedure for Coupled-Channel Scattering: Determining the deuteron-nucleus tensor interaction

NUCLEAR REACTIONS 58Ni(d, d'), E=56 MeV; 4He(d, d'), E=8-13 MeV; 56Fe(d, d'), E=30 MeV; calculated scattering potential. 4He(d, d'), E=10 MeV; calculated σ(θ), analyzing powers. S-matrix to potential inversion procedure, coupled channels approach.

doi: 10.1016/S0375-9474(00)00309-2
Citations: PlumX Metrics


1999CO11      Phys.Rev. C59, 2361 (1999)

S.G.Cooper, V.I.Kukulin, R.S.Mackintosh, V.N.Pomerantsev

Spin 1 Inversion: A Majorana tensor force for deuteron alpha scattering

NUCLEAR REACTIONS 4He(polarized d, d'), E ≈ 10 MeV; analyzed σ(θ), tensor analyzing powers; deduced tensor interaction. S-matrix to potential inversion.

doi: 10.1103/PhysRevC.59.2361
Citations: PlumX Metrics


1999KU21      Yad.Fiz. 62, No 7, 1187 (1999); Phys.Atomic Nuclei 62, 1114 (1999)

V.I.Kukulin, V.N.Pomerantsev, S.G.Cooper, R.S.Mackintosh

Majorana Tensor FOrce for Deuteron-Nucleus Interactions

NUCLEAR REACTIONS 4He(d, d), E not given; analyzed data; deduced parity-dependent tensor component in internucleus interaction. Coupled-channel inversion technique.


1999MA02      Nucl.Phys. A645, 399 (1999)

R.S.Mackintosh, S.G.Cooper, V.I.Kukulin

Determination of 6Li-4He Interaction from Multi-Energy Scattering Data

NUCLEAR REACTIONS 4He(polarized 6Li, 6Li), E=19.6, 27.7, 37.5 MeV; analyzed σ(θ), vector analyzing power vs theta; deduced interaction potential. Energy dependent components, Majorana terms.

doi: 10.1016/S0375-9474(98)00623-X
Citations: PlumX Metrics


1998CO17      Phys.Rev. C58, R31 (1998)

S.G.Cooper, V.I.Kukulin, R.S.Mackintosh, E.V.Kuznetsova

New Technique for Phase Shift Analysis: Multienergy Solution of Inverse Scattering Problem

NUCLEAR REACTIONS 4He(polarized d, d), E=3-12 MeV; analyzed σ(θ), iT11(θ); deduced phase shifts. Direct inversion from multienergy data to potentials.

doi: 10.1103/PhysRevC.58.R31
Citations: PlumX Metrics


1998MA48      J.Phys.(London) G24, 1599 (1998)

R.S.Mackintosh, S.G.Cooper

Using Inverse Scattering Methods to Study Inter-Nucleus Potentials

NUCLEAR REACTIONS 4He(polarized d, d), E=3-11.5 MeV; calculated σ(θ), iT11(θ). Iterative-perturbative method, applications to exotic nuclei discussed.

doi: 10.1088/0954-3899/24/8/039
Citations: PlumX Metrics


1997MA24      J.Phys.(London) G23, 565 (1997)

R.S.Mackintosh, S.G.Cooper

The Energy Dependence of the Nucleon-Nucleus Potential

NUCLEAR REACTIONS 16O(n, n), E=4-20 MeV; 40Ca(n, n), E=12-20 MeV; calculated nucleon-nucleus potential vs E; deduced energy-dependent inversion procedure related features. Comparison between different approaches.

doi: 10.1088/0954-3899/23/5/009
Citations: PlumX Metrics


1997MA63      Nucl.Phys. A625, 651 (1997)

R.S.Mackintosh, S.G.Cooper

Deuteron-α Interaction by Inversion of RGM S-Matrix: Determination of spin-orbit potential for spin-one projectile

NUCLEAR REACTIONS 4He(d, d), E(cm)=17-55 MeV; calculated potential; deduced spin-orbit role. Iterative-perturbative procedure.

doi: 10.1016/S0375-9474(97)00495-8
Citations: PlumX Metrics


1996CO20      Phys.Rev. C54, 3133 (1996)

S.G.Cooper, R.S.Mackintosh

Energy Dependent Potentials Determined by Inversion: The p + α potential up to 65 MeV

NUCLEAR REACTIONS 16O(p, p), E not given; calculated zero energy potentials. 4He(p, p), E ≤ 65 MeV; calculated phase shifts vs E; deduced zero energy potentials. Inversion of resonating group methods phase shifts.

doi: 10.1103/PhysRevC.54.3133
Citations: PlumX Metrics


1995AI02      J.Phys.(London) G21, 577 (1995)

S.Ait-Tahar, R.S.Mackintosh, M.A.Russell

A Note on the Implications of Causality for l-Dependent Potentials

NUCLEAR REACTIONS 16O(16O, 16O), E(cm) ≤ 80 MeV; calculated l-dependence of potential real part; deduced dispersion correction dependent term role, l-dependent potentials causality implications.

doi: 10.1088/0954-3899/21/4/009
Citations: PlumX Metrics


1995CO01      Nucl.Phys. A582, 283 (1995)

S.G.Cooper, R.S.Mackintosh

11Li + 28Si and 11Li + 12C Elastic Scattering Studied by Inversion

NUCLEAR REACTIONS 28Si(11Li, 11Li), E=319 MeV; 12C(11Li, 11Li), E=637 MeV; analyzed σ(θ). Inversion technique, two-step phenomenology.

doi: 10.1016/0375-9474(94)00477-5
Citations: PlumX Metrics


1995CO18      Nucl.Phys. A592, 338 (1995)

S.G.Cooper, R.S.Mackintosh

Quantitative Contribution of Antisymmetry to the Nucleon-Nucleus Potential

NUCLEAR REACTIONS 4He(p, p), E(cm)=50 MeV; 3He(p, p), E(cm)=10-40 MeV; 3H(n, n), E(cm)=14.63-17.25 MeV; 6Li(n, n), E(cm)=8.57, 12 MeV; 16O(n, n), E=10-30 MeV; 40Ca(n, n), E=10, 30 MeV; calculated local equivalent potentials to single configuration RGM S-matricies. Iterative-pertubative inversion techniques.

doi: 10.1016/0375-9474(95)00310-W
Citations: PlumX Metrics


1995MA37      Nucl.Phys. A589, 377 (1995)

R.S.Mackintosh, S.G.Cooper

Exchange Contributions to Nucleus-Nucleus Potentials Deduced from RGM Phase Shifts Using Inversion

NUCLEAR REACTIONS 3He(α, α), E(cm)=60 MeV; 16O(α, α), E(cm)=18 MeV; 3H(α, α), E(cm)=20 MeV; calculated resonating group method phase shifts; deduced potentials.

doi: 10.1016/0375-9474(95)00171-V
Citations: PlumX Metrics


1994CO10      Phys.Rev. C50, 1308 (1994)

S.G.Cooper, R.S.Mackintosh, A.Csoto, R.G.Lovas

Local 4He-p Potentials from Resonating-Group Method Phase Shifts

NUCLEAR REACTIONS 4He(p, p), E ≤ 20 MeV; calculated phase shifts vs E; deduced phase equivalent potentials, local potentials comparison. Multi-channel resonating group method.

doi: 10.1103/PhysRevC.50.1308
Citations: PlumX Metrics


1994CO14      Nucl.Phys. A576, 308 (1994)

S.G.Cooper, R.S.Mackintosh

16O + 16O Elastic Scattering at 350 MeV Studied by Inversion

NUCLEAR REACTIONS 16O(16O, 16O), E=350 MeV; analyzed σ(θ). Two-step method including inversion.

doi: 10.1016/0375-9474(94)90261-5
Citations: PlumX Metrics


1994CR02      Phys.Rev. C49, 1091 (1994)

R.Crespo, R.C.Johnson, J.A.Tostevin, R.S.Mackintosh, S.G.Cooper

Equivalent Local Potentials to Multiple Scattering Calculations of Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 16O(p, p), E=100, 135, 200 MeV; calculated local phase equivalent potentials. Multiple scattering expansion of the optical potential.

doi: 10.1103/PhysRevC.49.1091
Citations: PlumX Metrics


1994RA06      Phys.Rev. C49, 1621 (1994)

G.H.Rawitscher, D.Lukaszek, R.S.Mackintosh, S.G.Cooper

Local Representation of the Exchange Nonlocality in n-16O Scattering

NUCLEAR REACTIONS 16O(n, n), E=20, 50 MeV; analyzed σ(θ). Microscopic folding model, exchange nonlocality local representation.

doi: 10.1103/PhysRevC.49.1621
Citations: PlumX Metrics


1993AI02      Nucl.Phys. A561, 285 (1993)

S.Ait-Tahar, R.S.Mackintosh, S.G.Cooper

Local Representation of a Deep Parity and l-Dependent 16O + 20Ne Potential

NUCLEAR REACTIONS 20Ne(16O, 16O), E=24.5 MeV; calculated σ(θ). Interative perturbative inversion method.

doi: 10.1016/0375-9474(93)90154-P
Citations: PlumX Metrics


1993AI03      Nucl.Phys. A562, 101 (1993)

S.Ait-Tahar, R.S.Mackintosh, S.G.Cooper, T.Wada

Energy Dependence of a Local Equivalent Potential for RGM Phase Shifts for 16O + 16O

NUCLEAR REACTIONS 16O(16O, 16O), E=30-500 MeV; calculated σ(θ). Local equivalent potential for resonating group method phase shifts.

doi: 10.1016/0375-9474(93)90034-U
Citations: PlumX Metrics


1993MA09      Phys.Rev. C47, 1716 (1993)

R.S.Mackintosh, S.G.Cooper

Studying the 16O + 12C Dynamic Polarization Potential by Inversion

NUCLEAR REACTIONS 12C(16O, 16O), E=168-311 MeV; calculated σ(θ); deduced dynamic polarization features. Coupled-channels, continuum discretized coupled-channels S-matricies, S(l)-V(r) inversion.

doi: 10.1103/PhysRevC.47.1716
Citations: PlumX Metrics


1993MC01      Nucl.Phys. A552, 401 (1993)

M.A.McEwan, S.G.Cooper, R.S.Mackintosh

Elastic-Scattering Phenomenology by Inversion: (I). 12C + 12C from 140 to 2400 MeV

NUCLEAR REACTIONS 12C(12C, 12C), E=0.14-2.4 GeV; calculated σ(θ); deduced potential parameters. Local internuclear potential, two-step procedure.

doi: 10.1016/0375-9474(93)90501-N
Citations: PlumX Metrics


1992AI01      Nucl.Phys. A542, 499 (1992)

S.Ait-Tahar, S.G.Cooper, R.S.Mackintosh

An l-Independent Representation of Deep l-Dependent 16O + 16O Potential

NUCLEAR REACTIONS 16O(16O, 16O), E=30-150 MeV; calculated l-independent equivalents of l-dependent potentials.

doi: 10.1016/0375-9474(92)90108-V
Citations: PlumX Metrics


1992CO01      Phys.Rev. C45, 770 (1992)

S.G.Cooper, M.A.McEwan, R.S.Mackintosh

Elastic Scattering Phenomenology by Inversion: 16O on 12C at 608 MeV

NUCLEAR REACTIONS 12C(16O, 16O), E=608 MeV; calculated model parameters. Optical model, S-matrix approach, inversion techniques.

doi: 10.1103/PhysRevC.45.770
Citations: PlumX Metrics


1992HA12      Nucl.Phys. A540, 171 (1992)

P.R.Hayes, N.M.Clarke, K.I.Pearce, M.B.Becha, R.S.Mackintosh, J.B.A.England, L.Zybert, G.M.Field, S.Roman

A Comparison of 3H and 3He Scattering from Light Deformed Nuclei

NUCLEAR REACTIONS 22,20Ne(t, t'), (3He, 3He'), E=33.4 MeV; measured σ(θ); 26,24Mg(t, t'), (3He, 3He'), E ≈ 34 MeV; analyzed data; deduced potential parameters. 20,22Ne, 26,24Mg deduced deformation lengths, multipole moments. Coupled channel analysis.

doi: 10.1016/0375-9474(92)90199-T
Citations: PlumX Metrics


1991CO05      Phys.Rev. C43, 1001 (1991)

S.G.Cooper, R.S.Mackintosh

Proton-4He Potential Derived from Phase Shifts

NUCLEAR REACTIONS 4He(p, p), E=0-23 MeV; analyzed phase shifts; deduced parity dependent potential. Iterative-perturbative inversion analysis.

doi: 10.1103/PhysRevC.43.1001
Citations: PlumX Metrics


1990CO11      Nucl.Phys. A511, 29 (1990)

S.G.Cooper, R.S.Mackintosh

Nucleon Wavefunctions for Elastic Scattering in the Presence of Dynamically Induced Non-Locality

NUCLEAR REACTIONS 40Ca(p, p), E=30.3 MeV; 48Ca(p, p), E=65 MeV; calculated dynamic polarization potential.

doi: 10.1016/0375-9474(90)90025-H
Citations: PlumX Metrics


1990CO15      Nucl.Phys. A513, 373 (1990)

S.G.Cooper, R.S.Mackintosh

The O + Pb Interaction Near the Coulomb Barrier

NUCLEAR REACTIONS 208Pb(16O, 16O), E=80-102 MeV; calculated interaction potential parameters. Inversion procedure.

doi: 10.1016/0375-9474(90)90103-S
Citations: PlumX Metrics


1990CO29      Nucl.Phys. A517, 285 (1990)

S.G.Cooper, R.S.Mackintosh

S-Matrix to Potential Inversion of Low-Energy α-12C Phase Shifts

NUCLEAR REACTIONS 12C(α, α), E < inelastic threshold; calculated phase shift vs E.

doi: 10.1016/0375-9474(90)90036-L
Citations: PlumX Metrics


1990CO38      Z.Phys. A337, 357 (1990)

S.G.Cooper, R.S.Mackintosh

An l-Independent Representation of a Majorana Potential

NUCLEAR REACTIONS 20Ne(α, α), E=54.1 MeV; calculated σ(θ). S-matrix equivalent to parity dependent potential.


1989CO11      Phys.Rev. C40, 502 (1989)

S.G.Cooper, R.S.Mackintosh

p-4He Scattering: Inversion of phase shifts at 64.9 MeV

NUCLEAR REACTIONS 4He(p, p), E=64.9 MeV; analyzed phase shift; deduced Schrodinger, Dirac potentials parameters.

doi: 10.1103/PhysRevC.40.502
Citations: PlumX Metrics


1989MA25      Nucl.Phys. A494, 123 (1989)

R.S.Mackintosh, S.G.Cooper

Studing the Heavy-Ion Dynamic Polarization Potential

NUCLEAR REACTIONS 12C(16O, 16O), E=139.2 MeV; calculated potential parameters. Dynamic polarization potential.

doi: 10.1016/0375-9474(89)90201-7
Citations: PlumX Metrics


1988CL04      J.Phys.(London) G14, 1399 (1988)

N.M.Clarke, P.R.Hayes, M.B.Becha, K.I.Pearce, R.J.Griffiths, J.B.A.England, L.Zybert, C.N.Pinder, G.M.Field, R.S.Mackintosh

New Measurements of the Mass and Energy Levels of 22F

NUCLEAR REACTIONS 22Ne(t, 3He), E=33.4 MeV; measured σ(E(3He)), σ(θ); deduced Q. 22F deduced levels, J, π, mass. Shell model calculation.

NUCLEAR STRUCTURE 22F; calculated levels. Shell model.

doi: 10.1088/0305-4616/14/11/011
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1186.


1988MA05      Nucl.Phys. A476, 287 (1988)

R.S.Mackintosh, S.G.Cooper, A.A.Ioannides

Apparent Emissive Effects in Local Optical Potentials

NUCLEAR REACTIONS 16O(p, p), E=34.1 MeV; calculated real, imaginary potentials; deduced emissive effect role.

doi: 10.1016/0375-9474(88)90485-X
Citations: PlumX Metrics


1988MA30      Nucl.Phys. A483, 173 (1988)

R.S.Mackintosh, A.A.Ioannides, S.G.Cooper

Stationary State Currents in Nuclear Reactions: Rotational coupling in alpha-particle scattering

NUCLEAR REACTIONS 20Ne(α, α), E=104 MeV; calculated potentials. Stationary state currents.

doi: 10.1016/0375-9474(88)90530-1
Citations: PlumX Metrics


1988MA31      Nucl.Phys. A483, 195 (1988)

R.S.Mackintosh, A.A.Ioannides, S.G.Cooper

Stationary State Currents in Proton Scattering: Alternative representation of ' emissive ' potentials

NUCLEAR REACTIONS 16O, 40Ca(p, p), E=34.1 MeV; calculated potentials. Stationary state currents.

doi: 10.1016/0375-9474(88)90531-3
Citations: PlumX Metrics


1987CO27      Nucl.Phys. A472, 101 (1987)

S.G.Cooper, R.S.Mackintosh, A.A.Ioannides

Systematics of the Pickup Contribution to the Nucleon-Nucleus Interaction

NUCLEAR REACTIONS 40Ca(p, p), (n, n), E=30.3-65 MeV; 48Ca(p, p), (n, n), E=65 MeV; calculated potential parameters. 48Ca(polarized p, p), E=65 MeV; calculated σ(θ), analyzing power vs θ. Finite-range coupled reaction channel model.

doi: 10.1016/0375-9474(87)90222-3
Citations: PlumX Metrics


1987IO02      Nucl.Phys. A467, 482 (1987)

A.A.Ioannides, R.S.Mackintosh

S-Matrix to Potential Inversion at Fixed Energy. (II). Inclusion of spin; CRC effects in proton scattering

NUCLEAR REACTIONS 40Ca(p, p), E=30.3 MeV; calculated potential parameter characteristics. S-matrix to potential inversion.

doi: 10.1016/0375-9474(87)90541-0
Citations: PlumX Metrics


1987MA39      Nucl.Phys. A472, 85 (1987)

R.S.Mackintosh, S.G.Cooper, A.A.Ioannides

Do We Understand Deuteron Scattering at all ( Question ): The polarization potential due to mass-three channels

NUCLEAR REACTIONS 40Ca(d, d), E=52, 80, 200 MeV; calculated potential parameters, S-matrix elements. Effective local polarization potential.

doi: 10.1016/0375-9474(87)90221-1
Citations: PlumX Metrics


1986IO01      Phys.Lett. 169B, 113 (1986)

A.A.Ioannides, R.S.Mackintosh

Universal Features of the Breakup Contribution to the Composite Particle Optical Potential

NUCLEAR REACTIONS 58Ni(d, d), E=80 MeV; 12C(6Li, 6Li), E=156 MeV; calculated breakup polarization potential characteristics; deduced S, S+D channel, continuum-continuum coupling roles.

doi: 10.1016/0370-2693(86)90632-5
Citations: PlumX Metrics


1986MA47      Phys.Lett. 178B, 1 (1986)

R.S.Mackintosh, A.A.Ioannides, I.J.Thompson

Finite-Range Coupled Reaction Channel Calculation of Pickup Contribution to the Proton Optical-Model Potential

NUCLEAR REACTIONS 40Ca(p, d), E=30.3 MeV; calculated potential parameter characteristics. Finite-range coupled reaction channel calculations.

doi: 10.1016/0370-2693(86)90459-4
Citations: PlumX Metrics


1985IO01      Nucl.Phys. A438, 354 (1985)

A.A.Ioannides, R.S.Mackintosh

A Method for S-Matrix to Potential Inversion at Fixed Energy (I). Method Description and Evaluation

NUCLEAR REACTIONS 16O(p, p), E=35.2 MeV; calculated σ(θ). S-matrix to potential inversion at fixed energy.

doi: 10.1016/0375-9474(85)90380-X
Citations: PlumX Metrics


1985IO04      Phys.Lett. 161B, 43 (1985)

A.A.Ioannides, R.S.MacKintosh

Potential Model Representation of Channel Coupling and the Coulomb Barrier Anomaly

NUCLEAR REACTIONS 208Pb(16O, 16O), E=80 MeV; calculated potential parameters, renormalization; deduced channel coupling role. Potential inversion procedure, iterative-perturbative S-Matrix.

doi: 10.1016/0370-2693(85)90605-7
Citations: PlumX Metrics


1983KO06      Nucl.Phys. A395, 248 (1983)

A.M.Kobos, G.R.Satchler, R.S.Mackintosh

An Optical Potential Description of 16O + 28Si Elastic Scattering

NUCLEAR REACTIONS 28Si(16O, 16O), E(cm)=21.1-34.8 MeV; analyzed σ(θ); deduced optical model, potential parameters. Double folded potential, model independent correction term.

doi: 10.1016/0375-9474(83)90099-4
Citations: PlumX Metrics


1982KO23      Nucl.Phys. A389, 205 (1982)

A.M.Kobos, R.S.Mackintosh, J.R.Rook

Uncertainty in the Nucleon-Nucleus Optical Potential

NUCLEAR REACTIONS 16O(p, p), (polarized p, p), E=30 MeV; calculated S-matrix element vs (L), Wolfenstein R-parameter; deduced nucleon-nucleus optical potential features. Phase shift analysis.

doi: 10.1016/0375-9474(82)90516-4
Citations: PlumX Metrics


1982KO25      Phys.Rev. C26, 1766 (1982)

A.M.Kobos, R.S.Mackintosh

Evaluation of Model-Independent Optical Potentials for the 16O + 40Ca System

NUCLEAR REACTIONS 40Ca(16O, 16O), E(cm)=35.7 MeV; analyzed data; deduced potentials. Optical, full, restricted spline model analyses.

doi: 10.1103/PhysRevC.26.1766
Citations: PlumX Metrics


1982MA35      Phys.Lett. 116B, 95 (1982)

R.S.Mackintosh, A.M.Kobos

Potential Model Representation of 6Li Break-Up through a Simple Inversion Procedure

NUCLEAR REACTIONS 12C(6Li, 6Li), E=156 MeV; calculated projectile breakup effects; deduced adiabatic breakup local potential equivalent. Inversion method, iterative perturbation approach.

doi: 10.1016/0370-2693(82)90983-2
Citations: PlumX Metrics


1980MA19      Phys.Lett. 92B, 59 (1980)

R.S.Mackintosh, A.M.Kobos

Application of Model Independent Analyses to the Evaluation of M3Y Heavy Ion Folding Model

NUCLEAR REACTIONS 40Ca, 24Mg(6Li, 6Li), E=88 MeV; 40Ca(6Li, 6Li), E=30 MeV; 28Si(16O, 16O), E=55 MeV; analyzed data. Model independent spline interpolation method.

doi: 10.1016/0370-2693(80)90303-2
Citations: PlumX Metrics


1979KO01      J.Phys.(London) G5, 97 (1979)

A.M.Kobos, R.S.Mackintosh

The Phenomenology of Proton Elastic Scattering and Evidence for Angular-Momentum-Dependent Optical-Model Potentials

NUCLEAR REACTIONS 16O(p, p), E=23-52 MeV; 40Ca(p, p), E=17-48 MeV; 58Ni(p, p), E=40, 100 MeV; 56Fe(p, p), E=30.3 MeV; calculated σ(θ), A(θ). L-dependent optical model.

doi: 10.1088/0305-4616/5/1/012
Citations: PlumX Metrics


1979MA01      Nucl.Phys. A313, 173 (1979)

R.S.Mackintosh, J.K.Hamilton

Inelastic Scattering Calculations with Projected Hartree-Fock Wave Functions

NUCLEAR REACTIONS 20Ne(p, p'), E=24.5 MeV; 24Mg(p, p'), E=49.5 MeV; calculated σ(θ). Projected Hartree-Fock wave functions, coupled-channels formalism.

doi: 10.1016/0375-9474(79)90574-8
Citations: PlumX Metrics


1978GE02      Phys.Lett. 73B, 250 (1978)

B.Z.Georgiev, R.S.Mackintosh

Evaluation of Local Equivalent Methods for Treating Exchange in Elastic Proton Scattering

NUCLEAR REACTIONS 40Ca(p, p), E=15-55 MeV; calculated σ, polarization.

doi: 10.1016/0370-2693(78)90506-3
Citations: PlumX Metrics


1978MA25      J.Phys.(London) G4, L135 (1978)

R.S.Mackintosh, A.M.Kobos

Evidence for an Imaginary Spin-Orbit Term in the Proton Optical Potential

NUCLEAR STRUCTURE 40Ca, 16O; calculated proton optical potential parameter.

doi: 10.1088/0305-4616/4/6/006
Citations: PlumX Metrics


1978SV01      Phys.Rev. C18, 983 (1978)

J.P.Svenne, R.S.Mackintosh

Spin-Orbit Force and the Deformation of 12C

NUCLEAR STRUCTURE 12C; calculated deformation.

doi: 10.1103/PhysRevC.18.983
Citations: PlumX Metrics


1977HA09      J.Phys.(London) G3, L19 (1977)

J.K.Hamilton, R.S.Mackintosh

Nuclear Shape Determination: The Effect of Density-Dependent Interactions

NUCLEAR MOMENTS 20Ne, 24Mg, 154Sm; calculated quadrupole moment.

doi: 10.1088/0305-4616/3/2/001
Citations: PlumX Metrics


1977KO22      Acta Phys.Pol. B8, 887 (1977)

A.M.Kobos, R.S.Mackintosh

The Contribution of Pickup Channels to the Helion Optical Potential

NUCLEAR REACTIONS 58Ni(3He, 3He), (3He, α), E=37.7, 51.3 MeV; calculated σ(θ).


1977MA09      Nucl.Phys. A280, 86 (1977)

R.S.Mackintosh

Nuclear Shape Measurement and the Validity of the Collective Model for Light Nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg; calculated collective properties.

doi: 10.1016/0375-9474(77)90295-0
Citations: PlumX Metrics


1977MA15      Phys.Lett. 68B, 213 (1977)

R.S.Mackintosh, L.A.Cordero

Evidence for Explicit Angular Momentum Dependence of the Proton Optical Model Potential

NUCLEAR REACTIONS 40Ca(polarized p, p), E=30.3 MeV; calculated σ(θ), A(θ).

doi: 10.1016/0370-2693(77)90272-6
Citations: PlumX Metrics


1976MA19      Z.Phys. A276, 25 (1976)

R.S.Mackintosh

A Comment on the Use of Folding Models for Inelastic Alpha-Particle Scattering

NUCLEAR REACTIONS 20Ne(α, α'), E=104 MeV; calculated folding model parameters.

doi: 10.1007/BF01414589
Citations: PlumX Metrics


1976MA29      Phys.Lett. 62B, 127 (1976)

R.S.Mackintosh, A.M.Kobos

The Real and Imaginary Proton Optical Potentials: The Importance of Deuteron Channels

NUCLEAR REACTIONS 40Ca(p, p), E=30 MeV; calculated potential with deuteron channel, σ(θ).

doi: 10.1016/0370-2693(76)90484-6
Citations: PlumX Metrics


1976MA36      Nucl.Phys. A266, 379 (1976)

R.S.Mackintosh

Neutron Component Deformations, Folding Models and Satchler's Theorem

NUCLEAR STRUCTURE 24Mg, 20Ne, 154Sm, 166Er, 232Th, 238U; calculated potential parameters. Folding model.

doi: 10.1016/0375-9474(76)90365-1
Citations: PlumX Metrics


Back to query form    [Next]