NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = R.Anni

Found 16 matches.

Back to query form



2003AN16      Phys.Rev. C 67, 057601 (2003)

R.Anni

Regularized Legendre series of improved nearside-farside decomposition for charged particle scattering

NUCLEAR REACTIONS 16O(16O, 16O), E=145 MeV; calculated σ(θ), nearside and farside amplitudes. Resummation technique.

doi: 10.1103/PhysRevC.67.057601
Citations: PlumX Metrics


2002AN26      Phys.Rev. C66, 044610 (2002)

R.Anni, J.N.L.Connor, C.Noli

Improved nearside-farside method for elastic scattering amplitudes

NUCLEAR REACTIONS 16O(16O, 16O), E=145, 480, 704, 1120 MeV; 12C, 40Ca(α, α), E=1370 MeV; calculated σ(θ). Nearside-farside resummation.

doi: 10.1103/PhysRevC.66.044610
Citations: PlumX Metrics


2002AN35      Eur.Phys.J. A 15, 361 (2002)

R.Anni

Shrinking h-bar as a recipe for revealing classical-like properties of optical-potential cross-sections

NUCLEAR REACTIONS 12C(16O, 16O), E=132 MeV; calculated σ(θ), near-side and far-side contributions, quantum and classical effects. Optical potential.

doi: 10.1140/epja/i2001-10213-1
Citations: PlumX Metrics


2001AN04      Phys.Rev. C63, 031601 (2001)

R.Anni

Airy-Like Patterns in Heavy Ion Elastic Scattering

NUCLEAR REACTIONS 12C(16O, 16O), E=132 MeV; analyzed σ(θ); deduced origin of Airy pattern.

doi: 10.1103/PhysRevC.63.031601
Citations: PlumX Metrics


2001AN12      Phys.Rev. C63, 067601 (2001)

R.Anni

Analytical Approximation for the Sphere-Sphere Coulomb Potential

doi: 10.1103/PhysRevC.63.067601
Citations: PlumX Metrics


1995AN02      Nucl.Phys. A584, 35 (1995)

R.Anni, G.Co, P.Pellegrino

Nuclear Charge Density Distributions from Elastic Electron Scattering Data

NUCLEAR REACTIONS 12C, 40Ca, 208Pb(e, e), E not given; calculated charge form factors, charge density. Model independent procedures.

doi: 10.1016/0375-9474(94)00508-K
Citations: PlumX Metrics


1995AN13      Nucl.Phys. A588, 463 (1995)

R.Anni, G.Co

Mean-Field Description of Nuclear Charge Density Distributions

NUCLEAR REACTIONS 12C, 16O, 40Ca, 208Pb(e, e), E not given; analyzed data; deduced charge distribution. Mean-field approach.

doi: 10.1016/0375-9474(95)00067-B
Citations: PlumX Metrics


1991AN15      Phys.Rev. C44, 796 (1991)

R.Anni

Quantum Mechanical Reflective Model for Heavy Ion Scattering

NUCLEAR REACTIONS 90Zr, 62Ni(16O, 16O), E=38-50 MeV; calculated σ(θ). Quantum mechanical reflective model. Data on other target nuclei also analyzed.

doi: 10.1103/PhysRevC.44.796
Citations: PlumX Metrics


1990AN27      Nucl.Phys. A519, 115c (1990)

R.Anni

Reflection in Heavy Ion Elastic Scattering

NUCLEAR REACTIONS 64Ni(16O, 16O), E not given; analyzed σ(θ); deduced nuclear interaction region size. Reflective model.

doi: 10.1016/0375-9474(90)90620-2
Citations: PlumX Metrics


1988AN13      Nuovo Cim. 99A, 857 (1988)

R.Anni, G.Mancarella

A Reflection Model for Heavy-Ion Scattering

NUCLEAR REACTIONS 62Ni(16O, 16O), E ≈ 38-52 MeV; 56Fe, 70Ge(16O, 16O), E not given; calculated σ(θ) vs deflection function; deduced model parameters. Reflection model, other data discussed.

doi: 10.1007/BF02730612
Citations: PlumX Metrics


1984AN06      Nuovo Cim. 79A, 159 (1984)

R.Anni, L.Taffara

Regge Poles and Optical-Potential Backward-Angle Excitation Functions

NUCLEAR REACTIONS 90Zr(α, α), E=20-100 MeV; 40Ca(α, α), E=10-90 MeV; calculated σ(θ=180°) vs E; deduced Regge pole contribution enhancement.

doi: 10.1007/BF02831161
Citations: PlumX Metrics


1981AN05      Lett.Nuovo Cim. 30, 229 (1981)

R.Anni, L.Renna

An Efficient Method for the Summation of Partial-Wave Amplitudes in the Semi-Classical Analysis of Heavy-Ion Scattering.

NUCLEAR REACTIONS 90Zr(α, α), E=95 MeV; 28Si(16O, 16O), E=55 MeV; calculated σ(θ). Semiclassical analysis, partial wave expansion.

doi: 10.1007/BF02817065
Citations: PlumX Metrics


1980AN28      Nuovo Cim. A59, 38 (1980)

R.Anni, L.Renna, L.Taffara

Heavy-Ion Scattering from Strongly Absorbing Optical Potentials

NUCLEAR REACTIONS 28Si(16O, 16O), E=55 MeV; analyzed σ(θ); deduced sadddle point contributions, characteristics. Watson transformation, strongly absorbing heavy ion potential.

doi: 10.1007/BF02816770
Citations: PlumX Metrics


1979AN32      Nuovo Cim. 53A, 383 (1979)

R.Anni, L.Renna, L.Taffara

Unphysical Reflection Phenomena Involved in the Numerical Calculation Of Heavy-Ion Scattering Cross-Sections

NUCLEAR REACTIONS 27Al(32S, 32S), E=45 MeV; 58Ni(16O, 16O), E=90 MeV; calculated σ(θ); deduced truncation criterion. Schrodinger equation.

doi: 10.1007/BF02776402
Citations: PlumX Metrics


1972AN25      Lett.Nuovo Cim. 5, 723 (1972)

R.Anni, P.Ladiana, L.Taffara

Zero-Range DWBA and FDSM in Sub-Coulomb Neutron Transfer Reactions

doi: 10.1007/BF02815940
Citations: PlumX Metrics


1971AN12      Nucl.Phys. A178, 214 (1971)

R.Anni, L.Taffara, V.Vanzani

Differences between the DWBA and a Feynman-Diagram Approach in Sub-Coulomb Heavy-Ion Neutron Transfer Reactions

NUCLEAR REACTIONS 14N(14N, 13N), E < Coulomb barrier; calculated partial transition amplitudes. DWBA, Feynman diagram approaches.

doi: 10.1016/0375-9474(71)90199-0
Citations: PlumX Metrics


Back to query form