NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = L.Taffara

Found 7 matches.

Back to query form



1990BA16      Phys.Rev. C41, 2425 (1990)

A.Barbadoro, F.Pellegrini, G.F.Segato, L.Taffara, I.Gabrielli, M.Bruno

α-Transfer Contribution to 9Be + 13C Elastic and Inelastic Scattering

NUCLEAR REACTIONS 13C(9Be, 9Be), (9Be, 9Be'), E=50.46 MeV; measured σ(θ). 13C levels deduced cluster spectroscopic strengths. DWBA analysis, α-cluster form factors. Enriched target.

doi: 10.1103/PhysRevC.41.2425
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1451.


1986BA80      Nuovo Cim. 95A, 197 (1986)

A.Barbadoro, D.Consolaro, F.Pellegrini, L.Taffara, D.Trivisonno, M.Bruno, I.Gabrielli

Transfer Processes in 12C + 13C, 16O + 13C and 16O + 12C Elastic Scattering

NUCLEAR REACTIONS 13C(12C, 12C), 12,13C(16O, 16O), E(cm)=48.06, 48.48, 49.14 MeV; measured σ(θ), σ(E(12C)); deduced reaction mechanism, model parameters. 13C deduced levels, J, π. Enriched 13C target. DWBA, optical model, molecular orbit theory.


1984AN06      Nuovo Cim. 79A, 159 (1984)

R.Anni, L.Taffara

Regge Poles and Optical-Potential Backward-Angle Excitation Functions

NUCLEAR REACTIONS 90Zr(α, α), E=20-100 MeV; 40Ca(α, α), E=10-90 MeV; calculated σ(θ=180°) vs E; deduced Regge pole contribution enhancement.

doi: 10.1007/BF02831161
Citations: PlumX Metrics


1980AN28      Nuovo Cim. A59, 38 (1980)

R.Anni, L.Renna, L.Taffara

Heavy-Ion Scattering from Strongly Absorbing Optical Potentials

NUCLEAR REACTIONS 28Si(16O, 16O), E=55 MeV; analyzed σ(θ); deduced sadddle point contributions, characteristics. Watson transformation, strongly absorbing heavy ion potential.

doi: 10.1007/BF02816770
Citations: PlumX Metrics


1979AN32      Nuovo Cim. 53A, 383 (1979)

R.Anni, L.Renna, L.Taffara

Unphysical Reflection Phenomena Involved in the Numerical Calculation Of Heavy-Ion Scattering Cross-Sections

NUCLEAR REACTIONS 27Al(32S, 32S), E=45 MeV; 58Ni(16O, 16O), E=90 MeV; calculated σ(θ); deduced truncation criterion. Schrodinger equation.

doi: 10.1007/BF02776402
Citations: PlumX Metrics


1972AN25      Lett.Nuovo Cim. 5, 723 (1972)

R.Anni, P.Ladiana, L.Taffara

Zero-Range DWBA and FDSM in Sub-Coulomb Neutron Transfer Reactions

doi: 10.1007/BF02815940
Citations: PlumX Metrics


1971AN12      Nucl.Phys. A178, 214 (1971)

R.Anni, L.Taffara, V.Vanzani

Differences between the DWBA and a Feynman-Diagram Approach in Sub-Coulomb Heavy-Ion Neutron Transfer Reactions

NUCLEAR REACTIONS 14N(14N, 13N), E < Coulomb barrier; calculated partial transition amplitudes. DWBA, Feynman diagram approaches.

doi: 10.1016/0375-9474(71)90199-0
Citations: PlumX Metrics


Back to query form