NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 1, 2024.

Search: Author = O.N.Ghodsi

Found 41 matches.

Back to query form



2024GH02      Phys.Rev. C 109, 024612 (2024)

O.N.Ghodsi, M.Morshedloo, M.M.Amiri

Systematic study of heavy-cluster radioactivity from superheavy nuclei

doi: 10.1103/PhysRevC.109.024612
Citations: PlumX Metrics


2023MO08      Phys.Rev. C 107, 034610 (2023)

M.Morshedloo, O.N.Ghodsi, M.M.Amiri

Influence of the Pauli exclusion principle on heavy-cluster radioactivity

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac, 226Th(14C); 226Th(18O); 228Th(20O); 230U(22Ne); 231Pa(23F); 230,232Th, 231Pa, 232,233,234,235,236U(24Ne); 235U(25Ne); 232Th, 234,236U(26Ne); 234,235,236U, 236,238Pu(28Mg); 236U, 238Pu(30Mg); 238Pu(32Si); 241Am, 242Cm(34Si); calculated T1/2. Investigated the effect on the cluster decay of the appearing repulsive force between the interacting nuclei due to Pauli blocking. Hartree-Fock approach with various variety of Skyrme forces. Comparison to experimental data and calculations performed using the universal decay law (UDL), the unified formula (UF) of half-lives for cluster radioactivity and the scaling law (Horoi).

doi: 10.1103/PhysRevC.107.034610
Citations: PlumX Metrics


2021GH10      Phys.Rev. C 104, 044618 (2021)

O.N.Ghodsi, M.M.Amiri

Exploring α decay properties in the superheavy region through the double-folding formalism and Skyrme interactions

RADIOACTIVITY 294Og, 290,292Lv, 286,288Fl, 270Ds, 264,266Hs, 260,262Sg, 256,258Rf, 252,254No, 248,250Fm, 244,246Cf, 240,242Cm, 236,238Pu, 232,234U, 228,230Th, 226,224Ra, 220,222Rn, 216,218Po(α); calculated Q(α), T1/2(α), probability of α clusterization. 294Og; calculated total potentials within different nucleon density distributions. 296Og, 292Lv, 288Fl, 284Cn; 298120, 294Og, 290Lv, 286Fl, 282Cn; 274Cn, 270Ds, 266Hs, 262Sg, 258Rf, 254No, 250Fm, 246Cf, 242Cm, 238Pu, 234U, 230Th, 226Ra, 222Rn, 218Po, 214Pb; 268Ds, 264Hs, 260Sg, 256Rf, 252No, 248Fm, 244Cf, 240Cm, 236Pu, 232U, 228Th, 224Ra, 220Rn, 216Po, 212Pb; calculated potential strength parameters and volume integrals for 298120, 296Og, 274Cn and 268Ds α-decay chains. Z=84-118; calculated binding energies and rms radii of even-Z nuclei, and deduced deviations from the experimental values using SLy4 and OMGA Skyrme interactions. Calculations of α-nucleus core potentials by double-folding (DF) model, with density distributions of protons and neutrons from self-consistent Hartree-Fock-Bogoliubov (HFB) calculations using SLy4 and OMEGA Skyrme interactions. Comparison with experimental half-lives for α decay.

doi: 10.1103/PhysRevC.104.044618
Citations: PlumX Metrics


2021HA50      Chin.Phys.C 45, 124106 (2021)

M.Hassanzad, O.N.Ghodsi

Theoretical study on the favored alpha-decay half-lives of deformed nuclei

NUCLEAR STRUCTURE Z=93-118; calculated α-decay T1/2 using various versions of proximity potentials within the WKB approximation formalism.

doi: 10.1088/1674-1137/ac28f3
Citations: PlumX Metrics


2021MO17      Chin.Phys.C 45, 044107 (2021)

J.Mohammadi, O.N.Ghodsi

Study of the dinuclear system for 296119 superheavy compound nucleus in fusion reactions

NUCLEAR REACTIONS 251Cf(45Sc, X), 254Es(42Ca, X), 257Fm(39K, X), 258Md(38Ar, X)296119, E>200 MeV; calculated capture and fusion σ, potential energy surfaces.

doi: 10.1088/1674-1137/abe03e
Citations: PlumX Metrics


2020GH01      Nucl.Phys. A996, 121691 (2020)

T.Ghasemi, O.N.Ghodsi

Variation of nuclear matter properties in fusion reaction of the 64Ni + 64Ni

doi: 10.1016/j.nuclphysa.2020.121691
Citations: PlumX Metrics


2020GH02      Phys.Rev. C 101, 034606 (2020)

O.N.Ghodsi, M.Hassanzad

α-decay properties of even-even superheavy nuclei

RADIOACTIVITY 260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Sg, 264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Hs, 264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Ds, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298Cn, 268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Fl, 280,282,284,286,288,290,292,294,296,298,300,302Lv, 282,284,286,288,290,292,294,296,298,300,302,304Og, 288,290,292,294,296,298,300,302,304,306120, 296,298,300,302,304,306,308,310,312,314122, 300,302,304,306,308,310,312,314,316,318,320124, 306,308,310,312,314,316,318,320,322,324,326126(α); calculated α-decay half-lives, and α-preformation factors within proximity potentials and deformed-spherical Coulomb potentials using WS4 α-decay energy, and the semiclassical Wentzel-Kramers-Brillouin approximation within the cluster-formation model; predicted 162, 178, and 184 neutron magic numbers. Comparison with other theoretical predictions from semiempirical relationships of Royer, VSS, UDL, and SemFIS2.

doi: 10.1103/PhysRevC.101.034606
Citations: PlumX Metrics


2020MO20      Chin.Phys.C 44, 054107 (2020)

M.Moghaddari Amiri, O.N.Ghodsi

Constraints on neutron skin thickness and symmetry energy of 208Pb through Skyrme forces and cluster model

NUCLEAR STRUCTURE 208Pb, 212Po; calculated binding energies and root-mean-square charge radii, neutron skin thickness using the cluster structure properties.

doi: 10.1088/1674-1137/44/5/054107
Citations: PlumX Metrics


2020MO37      Phys.Rev. C 102, 054602 (2020)

M.Moghaddari Amiri, O.N.Ghodsi

Influence of the Pauli exclusion principle on α decay

RADIOACTIVITY 198,200,202,204,206,208,210,212,214,216,218Po, 200,202,204,206,208,210,212,214,216,218,220,222Rn, 206,208,210,212,214,216,218,220,222,224,226Ra, 212,214,216,218,220,222,224,226,228Th, 218,222,224,226,228U(α); calculated α-decay half-lives using Wentzel-Kramers-Brillouin (WKB) approximation, Gurvitz method, M3Y and modified potentials, and Cluster formation method (CFM). Comparison with experimental data, and with predictions of Viola-Seaborg-Sobiczewski (VSS) empirical formalism, Royer analytic formula (RF), and the universal decay law (UDL). Investigated effects of the repulsive forces arising from Pauli exclusion principle (PEP).

doi: 10.1103/PhysRevC.102.054602
Citations: PlumX Metrics


2020NE11      Int.J.Mod.Phys. E29, 2050070 (2020)

S.Nejati, O.N.Ghodsi

Study of the dependence of alpha decay half-life on the surface symmetry energy

RADIOACTIVITY 208Pb, 210,212Po, 212,214Rn, 214,216Ra, 218Th(α); calculated T1/2, dependence of the bulk and surface contributions on the surface symmetry energy using Skyrme interactions. Comparison with available data.

doi: 10.1142/S0218301320500706
Citations: PlumX Metrics


2020TO02      Nucl.Phys. A994, 121661 (2020)

F.Torabi, E.F.Aguilera, O.N.Ghodsi, A.Gomez-Camacho

Systematic study of elastic scattering and fusion induced by weakly bound 6Li on medium mass targets. Threshold anomalies

doi: 10.1016/j.nuclphysa.2019.121661
Citations: PlumX Metrics


2019GH03      Nucl.Phys. A987, 369 (2019)

O.N.Ghodsi, M.Hassanzad

Systematic study of α-decay half-lives of super-heavy nuclei with 106 ≤ Z ≤ 118

RADIOACTIVITY Z=106-118(α); calculated α-decay T1/2 using Proximity 1977 model; compared with other calculations and available data.

doi: 10.1016/j.nuclphysa.2019.05.001
Citations: PlumX Metrics


2019GH10      Chin.Phys.C 43, 124105 (2019)

B.A.Gheshlagh, O.N.Ghodsi

Determination of isospin asymmetry effects on α-decay

NUCLEAR STRUCTURE Z=82-92; analyzed available data; deduced effect of the isospin asymmetry of proton and neutron density distributions in the neutron skin-type (NST) case and in the Hartree-Fock formalism (HF) on the T1/2 of α emitters.

doi: 10.1088/1674-1137/43/12/124105
Citations: PlumX Metrics


2018DA11      Phys.Rev. C 97, 054621 (2018)

A.Daei-Ataollah, O.N.Ghodsi, M.Mahdavi

Proximity potential and temperature effects on α-decay half-lives

RADIOACTIVITY Z=80-102, A=176-257(α); calculated decay temperature of parent nuclei. Z=84-91, N=106-142(α); calculated released energy of emitted α particle and temperature of parent nuclei versus neutron number, surface energy coefficients, variation of Q-value, α penetration probability and T1/2. Calculations performed using temperature dependent modification of Dutt 2011 proximity model. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.054621
Citations: PlumX Metrics


2018GH02      Int.J.Mod.Phys. E27, 1850016 (2018)

O.N.Ghodsi, M.Khalaj

Systematic study on the isotopic behavior of fusion barrier using the density-dependent nucleon-nucleon interactions

doi: 10.1142/S0218301318500167
Citations: PlumX Metrics


2017PA40      Phys.Rev. C 96, 054612 (2017)

M.R.Pahlavani, O.N.Ghodsi, M.Zadehrafi

4He, 10Be, 14C, and 16O light-fragment-accompanied cold ternary fission of the 250Cm isotope in an equatorial three-cluster model

RADIOACTIVITY 250Cm(SF); calculated driving potentials and fission yields in cold ternary fission for each of the accompanied 4He, 10Be, 14C, and 16O light charged particle for individual even-even mass fragment pairs of Z=2-46, A=4-122 and Z=92-48, A=242-124; deduced that even-mass number components favored over odd-mass-number components, comparison between relative yields for a variety of fragmentation in each group, doubly or near doubly magic closed-shell fragment pairs favored such as 4He+114Ru+132Sn, 10Be+110Mo+130Sn, 14C+104Zr+132Sn, 16O+102Sr+132Sn. Equatorial three-cluster model (TCM) configuration.

doi: 10.1103/PhysRevC.96.054612
Citations: PlumX Metrics


2017TO04      Phys.Rev. C 95, 034601 (2017)

F.Torabi, O.N.Ghodsi, M.R.Pahlavani

Examination of the energy dependence of the fusion process

NUCLEAR REACTIONS 48Ca(40Ca, X), E(cm)=45-70 MeV; 92Zr(16O, X), E(cm)=38-73 MeV; 90Zr(40Ca, X), E(cm)=92-112 MeV; calculated fusion σ(E), interaction potentials using different Skyrme interactions, diffuseness parameters of proton and neutron density distributions. Skyrme energy density functional and coupled-channel formalism. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.034601
Citations: PlumX Metrics


2016GH01      Phys.Rev. C 93, 024612 (2016)

O.N.Ghodsi, A.Daei-Ataollah

Systematic study of α decay using various versions of the proximity formalism

RADIOACTIVITY Z=52-107(α); calculated α-decay half-lives for favored ground-state-to-ground-state transitions of 344 isotopes (136 even-even, 84 even-odd, 76 odd-even, and 48 odd-odd) using 28 versions of proximity potential model in the framework of the Wentzel-Kramers-Brillouin (WKB) approximation; deduced root-mean-square deviations. Comparison with other theoretical studies.

doi: 10.1103/PhysRevC.93.024612
Citations: PlumX Metrics


2016GH05      Phys.Rev. C 93, 054620 (2016)

O.N.Ghodsi, E.Gholami

Effect of deformation and vibration on the α decay half-life

RADIOACTIVITY 162Hf, 174Os, 176,178,190Pt, 188,190Pb, 226Ra, 226Th, 226U(α); calculated half-lives using one-dimensional potential (ODP) and coupled channel (CC) approaches with two versions of Coulomb and proximity potential model: spherical (CPPM) and deformed (CPPMDN). Comparison with experimental values and other theoretical calculations.

doi: 10.1103/PhysRevC.93.054620
Citations: PlumX Metrics


2016GH08      Phys.Rev. C 93, 064611 (2016)

O.N.Ghodsi, F.Torabi

Effect of nuclear matter incompressibility on the 16O + 208Pb system

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)=70-110 MeV; 90Zr(40Ca, X), E(cm)=93-111 MeV; calculated fusion σ(E), fusion barrier distributions as function of incident energy; deduced incompressibility of nuclear matter as a function of energy. Internuclear potential model with various Skyrme forces using CCFULL code. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.064611
Citations: PlumX Metrics


2015GH02      Phys.Rev. C 91, 034611 (2015)

O.N.Ghodsi, S.M.Motevalli, E.Gholami

Half-life of spherical α emitters and intrinsic properties of nuclei

RADIOACTIVITY 146,148Sm, 148Gd, 224Ra(α); calculated penetration probabilities, half-lives using coupled channel formalism by considering effects of surface vibrations in daughter nuclei. Comparison with calculations using semiclassical WKB approximation, other theoretical predictions, and with experimental data for half-lives.

doi: 10.1103/PhysRevC.91.034611
Citations: PlumX Metrics


2015GH07      Phys.Rev. C 92, 064612 (2015)

O.N.Ghodsi, F.Torabi

Comparative study of fusion barriers using Skyrme interactions and the energy density functional

NUCLEAR REACTIONS 58Ni(16O, X), E(cm)=29-55 MeV; 48Ca(36S, X), E(cm)=35-65 MeV; 40Ca(40Ca, X), E(cm)=48-68 MeV; 197Au(19F, X), E(cm)=80-152 MeV; calculated fusion σ(E), barrier heights using SVI, SII, and SIII Skyrme energy density functional in the semiclassical extended Thomas-Fermi (ETF) approximation. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.064612
Citations: PlumX Metrics


2014GH05      Phys.Rev. C 89, 054607 (2014)

O.N.Ghodsi, F.Lari

Parametrization of barrier characteristics for deformed oriented nuclei

NUCLEAR REACTIONS 16O, 40Ar, 84Kr, 197Au, 208Pb(27Al, X), E not given; 16O, 40Ca, 92Mo, 197Au, 209Bi(20Ne, X), E not given; calculated barrier height and position, reduced fusion position using proximity potential for spherical-oblate and spherical-prolate nuclei, hot and cold fusion barriers.

doi: 10.1103/PhysRevC.89.054607
Citations: PlumX Metrics


2014GH06      Phys.Rev. C 89, 064612 (2014)

O.N.Ghodsi, A.Moradi

Systematic study of the isotopic behavior of the fusion cross section at energies near and below the fusion barrier using the proximity formalism

doi: 10.1103/PhysRevC.89.064612
Citations: PlumX Metrics


2014RA06      Phys.Rev. C 89, 034006 (2014)

M.Ramezani, O.N.Ghodsi

Analysis of the fusion excitation functions for the 28Si + 94, 100Mo systems

NUCLEAR REACTIONS 94,100Mo(28Si, X), E(cm)=64-98 MeV; calculated fusion σ(E), average angular momenta, astrophysical S factor below Coulomb barrier; predictions for threshold energy of fall-off phenomena ES using AW, M3Y, and M3Y+Rep potentials. Comparison with experimental results.

doi: 10.1103/PhysRevC.89.034006
Citations: PlumX Metrics


2013GH02      Phys.Rev. C 88, 034601 (2013)

O.N.Ghodsi, H.R.Moshfegh, R.Gharaei

Role of the saturation properties of hot nuclear matter in the proximity formalism

NUCLEAR REACTIONS 54Fe, 58,62Ni, 59Co(16O, X), E(cm)=25-48 MeV; 62Ni(40Ca, X), E(cm)=65-110 MeV; 72,73Ge(37Cl, X), E(cm)=63-77 MeV; 58Ni(28Si, X), E(cm)=47-63 MeV; 62,64Ni(30Si, X), E not given; 60Ni(35Cl, X), E not given; calculated barrier heights VB and positions RB in fusion reactions, fusion σ(E), diffuseness parameter vs temperature. Equation of state (EoS) extracted from extended Thomas-Fermi model (ETFM) for asymmetric nuclear matter at finite temperature. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.034601
Citations: PlumX Metrics


2013GH06      Phys.Rev. C 88, 054617 (2013)

O.N.Ghodsi, R.Gharaei

Analysis of heavy-ion fusion reactions at extreme sub-barrier energies using the proximity formalism

NUCLEAR REACTIONS 100Mo(28Si, X), E(cm)=62-98 MeV; 54Fe(58Ni, X), 64Ni(64Ni, X), E(cm)=82-110 MeV; calculated fusion σ(E). Coupled-channels approach based on proximity potential Prox.77 and its modified forms IPM-1, IPM-2 and IPM-3, with couplings to the low-lying 2+ and 3- states in target and projectile nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.054617
Citations: PlumX Metrics


2013GO15      Chin.Phys.Lett. 30, 102502 (2013)

M.Golshanian, O.N.Ghodsi, R.Gharaei, V.Zanganeh

The Analysis of the Fusion Reaction of two Colliding Nuclei Using the FCC Lattice Model

NUCLEAR REACTIONS 64Ni, 92Zr(28Si, X), 60Ni(58Ni, X), 58Ni(48Ti, X), 48Ti(40Ca, X), 46Ti(46Ti, X), E<120 MeV; calculated fusion cross sections based on the FCC+CDM3Y6 model. Comparison with available data.

doi: 10.1088/0256-307X/30/10/102502
Citations: PlumX Metrics


2013SA14      Chin.Phys.Lett. 30, 042502 (2013)

M.Salehi, O.N.Ghodsi

The Influence of the Dependence of Surface Energy Coefficient to Temperature in the Proximity Model

NUCLEAR REACTIONS 72Ge(16O, X), 48Ti(40Ca, X), 59Co(37Cl, X), 76Ge(37Cl, X), 58Ni(40Ca, X), 89Y(32S, X), 208Pb(16O, X), 92Zr(35Cl, X), E(cm) < 110 MeV; calculated fusion σ. Comparison with available data.

doi: 10.1088/0256-307X/30/4/042502
Citations: PlumX Metrics


2012GH01      Eur.Phys.J. A 48, 21 (2012)

O.N.Ghodsi, R.Gharaei

The systematic study of the influence of neutron excess on the fusion cross-sections using different proximity-type potentials

COMPILATION 28,29,30Si(12C, X), (16O, X), E not given;28Si(18O, X), (28Si, X), E not given; 30Si(16O, X), (28Si, X), (30Si, X), E not given;40,44,48Ca(40Ca, X), E not given;48Ca(48Ca, X), E not given; 58Ni(28Si, X), (30Si, X), (32S, X), (34S, X), (36S, X), (40Ar, X), (40Ca, X), (48Ti, X), (58Ni, X), E not given;60Ni(48Ti, X), (50Ti, X), E not given;62Ni(28Si, X), (30Si, X), (40Ar, X), (40Ca, X), E not given;64Ni(28Si, X), (30Si, X), (32S, X), (34S, X), (36S, X), (40Ar, X), (46Ti, X), (48Ti, X), (58Ni, X), (64Ni, X), E not given; compiled, analyzed data on σ and fusion barriers; calculated σ, fusion barriers using different proximity potentials.

doi: 10.1140/epja/i2012-12021-x
Citations: PlumX Metrics


2012GH02      Int.J.Mod.Phys. E21, 1250011 (2012)

O.N.Ghodsi, F.Lari

Fusion cross-sections for 35Cl+92Zr reaction calculated in proximity and double-folding models

NUCLEAR REACTIONS 92Zr(35Cl, X), E(cm)<100 MeV; calculated barrier height and distribution, total fusion σ. Comparison with double-folding and proximity models.

doi: 10.1142/S0218301312500115
Citations: PlumX Metrics


2012GH06      Phys.Rev. C 85, 064620 (2012)

O.N.Ghodsi, R.Gharaei

Temperature dependence of the repulsive core potential in heavy-ion fusion reactions

NUCLEAR REACTIONS 40Ca(28Si, X), E(cm)=175.2-265.8 MeV; 48Ti(35Cl, X), E(cm)=57.5-92.2 MeV; 74Ge(40Ar, X), E(cm)=108.4-147.3 MeV; calculated fusion cross sections, total interaction potentials, repulsive core strengths, temperature-dependent potentials. Equation of state of hot nuclear matter based on density- dependent Seyler-Blanchard formalism. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.064620
Citations: PlumX Metrics


2012GH08      Phys.Rev. C 86, 024615 (2012)

O.N.Ghodsi, R.Gharaei, F.Lari

Systematic study of the isotopic dependence of fusion dynamics for neutron- and proton-rich nuclei using a proximity formalism

NUCLEAR REACTIONS 22Si(10C, X), 22,24,26,28,29,30Si(12C, X), (16O, X), 20,22,24Mg, 22Si(12O, X), 24Mg, 22Si(14O, X), 24Mg, 28Si(18O, X), 24,26Mg(16O, X), 30,32S(20Mg, X), (22Mg, X), 32,34S(24Mg, X), (26Mg, X), 22,24Si(22Si, X), 24,26Si(24Si, X), 26,28Si(26Si, X), 28,30Si(28Si, X), 30Si(30Si, X), 52,54,56Ni(26Si, X), 52,54,58,62,64Ni(28Si, X), 58,62,64Ni(30Si, X), 34,40Ca(34Ca, X), 36,40Ca(36Ca, X), 38,40Ca, 38,40,42,44Ti(38Ca, X), 40Ca, 38,40,42,46,48,50Ti(40Ca, X), (44Ca, X), 40,48Ca(48Ca, X), 52,56Ni(26S, X), (28S, X), (30S, X), 58,64Ni(32S, X), (34S, X), (36S, X), 52,54,56Ni(34Ar, X), 52,54Ni(36Ar, X), 58,60,62,64Ni(40Ar, X), 50,52,54,56Ni(36Ca, X), 52,54,56Ni(38Ca, X), 52,54,58,62Ni(40Ca, X), 48,50,52,56Ni(40Ti, X), 52,56Ni(42Ti, X), 58,60,64Ni(48Ti, X), 64Ni(46Ti, X), 60Ni(50Ti, X), 48Ni(48Ni, X), 50Ni(50Ni, X), (52Ni, X), 50,54,56Ni(54Ni, X), 50,52,54Ni(56Ni, X), 58,64Ni(58Ni, X), 64Ni(64Ni, X), E(cm)=55-85 MeV; calculated fusion σ, barrier positions, barrier heights based on the AW 95, Bass 80, Denisov DP, and Prox. 2010 potentials. Proximity formalism. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.024615
Citations: PlumX Metrics


2012ZA02      Phys.Rev. C 85, 034601 (2012)

V.Zanganeh, N.Wang, O.N.Ghodsi

Dynamical nucleus-nucleus potential and incompressibility of nuclear matter

NUCLEAR REACTIONS 208Pb(48Ca, X), E(cm)=179, 200, 205 MeV; calculated time evolution of density distribution, dynamical nucleus-nucleus potential, nuclear potential. 208Pb(16O, X), E(cm)=70-110 MeV; calculated fusion excitation function, dynamical nucleus-nucleus potential. 197Au(197Au, X), 40Ca(40Ca, X), E=35 MeV/nucleon; calculated fragment charge distribution. Improved quantum molecular-dynamics (ImQMD) model using several interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034601
Citations: PlumX Metrics


2011GH06      Phys.Rev. C 84, 024612 (2011)

O.N.Ghodsi, R.Gharaei

Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

NUCLEAR REACTIONS 40Ca(40Ar, X), E(cm)=80-140 MeV; calculated density distribution overlaps, total potentials, fusion cross sections; deduced incompressibility effects of nuclear matter for the heavy-ion fusion reactions using equation of state of hot polarized nuclear matter. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.024612
Citations: PlumX Metrics


2010GH01      Acta Phys.Pol. B41, 695 (2010)

O.N.Ghodsi, M.Salehi

The Influence of 35Cl Deformation on the Fusion Reaction with 92Zr

NUCLEAR REACTIONS 92Zr(35Cl, X), E=82-98 MeV/nucleon; calculated interacting potential, heavy-ion fusion barrier, σ. Comparison with experimental data.


2010GH04      Nucl.Phys. A846, 40 (2010)

O.N.Ghodsi, V.Zanganeh

The effect of the nuclear state equation on the surface diffuseness parameter of the Woods-Saxon potential in the heavy ion fusion reactions

NUCLEAR REACTIONS 92Zr(12C, X), E(cm)=28-41 MeV; 92Zr(16O, X), E(cm)=37-70 MeV; 92Zr(28Si, X), E(cm)=65-88 MeV; 92Zr(35Cl, X), E(cm)=75-98 MeV; calculated complete fusion σ, intranuclear potential and barrier distribution.

doi: 10.1016/j.nuclphysa.2010.06.005
Citations: PlumX Metrics


2009GH03      Phys.Rev. C 79, 044604 (2009)

O.N.Ghodsi, V.Zanganeh

Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

NUCLEAR REACTIONS 46Ti(46Ti, X), E not given; 238U(48Ca, X), E not given; 70Ge(27Al, X), E not given; calculated height and location of fusion barriers, densities of participating nuclei using Monte Carlo simulation and double- folding model calculations.

doi: 10.1103/PhysRevC.79.044604
Citations: PlumX Metrics


2009GH07      Int.J.Mod.Phys. E18, 1751 (2009)

O.N.Ghodsi, M.Mahmoodi, J.Ariai

The effect of surface nucleon density on the total potential of di-nuclear systems

NUCLEAR REACTIONS 144Nd, 144Sm, 209Bi(16O, X), E(cm)=52-94 MeV; calculated neutron and proton densities, fusion barrier height; deduced dependence of fusion barrier on the ratio of the density of neutrons to that of the protons.

doi: 10.1142/S0218301309013816
Citations: PlumX Metrics


2007GH05      Phys.Rev. C 75, 034605 (2007)

O.N.Ghodsi, M.Mahmoodi, J.Ariai

Calculation of complete fusion cross sections of heavy ion reactions using the Monte Carlo method

NUCLEAR REACTIONS 92Zr(12C, X), (16O, X), (28Si, X), 48Ca(40Ca, X), (48Ca, X), 208Pb(16O, X), E not given; calculated fusion barrier energies, nucleus-nucleus potential. 48Ca(48Ca, X), E(cm)=48-60 MeV; calculated fusion σ. Comparison with data.

doi: 10.1103/PhysRevC.75.034605
Citations: PlumX Metrics


2007GH11      Eur.Phys.J. A 33, 65 (2007)

O.N.Ghodsi, J.Ariai

Calculation of the Coulomb potential between spherical-deformed and deformed-deformed nuclei using the Monte Carlo method

NUCLEAR STRUCTURE 16O, 27Al, 70Ge, 238U; calculated deformations parameters using HFB model.

NUCLEAR REACTIONS 238U(16O, X), E not given; 70Ge(27Al, X), E not given; calculated coulomb potentials using Monte Carlo simulations.

doi: 10.1140/epja/i2007-10412-8
Citations: PlumX Metrics


Back to query form