NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.H.Mun

Found 11 matches.

Back to query form



2023MU15      Eur.Phys.J. A 59, 149 (2023)

M.-H.Mun, I.J.Shin, W.-G.Paeng, M.Harada, Y.Kim

Nuclear structure in parity doublet model

doi: 10.1140/epja/s10050-023-01064-x
Citations: PlumX Metrics


2023ZH15      Phys.Rev. C 107, L041303 (2023)

K.Y.Zhang, P.Papakonstantinou, M.-H.Mun, Y.Kim, H.Yan, X.-X.Sun

Collapse of the N=28 shell closure in the newly discovered 39Na nucleus and the development of deformed halos towards the neutron dripline

NUCLEAR STRUCTURE 39Na; calculated S(n), single-neutron levels, J, π, quadrupole deformation, rms radius. 31,33,35,37,39,41Na; calculated neutron density distributions. Pointed that 39Na could be single nucleus with the coexistence of several exotic structures, including the quenched N=28 shell closure, Borromean structure, deformed halo, and between the core and the halo. Discussed the microscopic mechanisms behind the shape decoupling phenomenon and the development of halos towards dripline. Deformed relativistic Hartree-Bogoliubov theory in continuum.

doi: 10.1103/PhysRevC.107.L041303
Citations: PlumX Metrics


2023ZH35      Phys.Lett. B 844, 138112 (2023)

K.Y.Zhang, S.Q.Yang, J.L.An, S.S.Zhang, P.Papakonstantinou, M.-H.Mun, Y.Kim, H.Yan

Missed prediction of the neutron halo in 37Mg

NUCLEAR STRUCTURE 35,36,37Mg; calculated neutron density distributions, single-neutron energies, occupation probabilities using a microscopic and self-consistent way using the deformed relativistic Hartree-Bogoliubov theory in continuum; deduced the deformed p-wave halo characteristics of 37Mg.

doi: 10.1016/j.physletb.2023.138112
Citations: PlumX Metrics


2022CH07      Phys.Rev. C 105, 024306 (2022)

Y.-B.Choi, C.-H.Lee, M.-H.Mun, Y.Kim

Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg

NUCLEAR STRUCTURE 152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256Hf, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258W, 162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260Os, 170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262Pt, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264Hg; calculated quadrupole deformation parameters. 256Hf, 258W, 260Os, 256W; calculated neutron, proton and total nuclear densities. 196,208Os; calculated single-particle energy levels, J, π. 198,200,256Hf; calculated proton single-particle levels around the Fermi surface. Discussed the bubble structure and shape coexistence. Calculations based on deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) and relativistic continuum Hartree-Bogoliubov (RCHB) theory with spherical symmetry. Comparison with experimenatal values.

doi: 10.1103/PhysRevC.105.024306
Citations: PlumX Metrics


2022KI10      Phys.Rev. C 105, 034340 (2022)

S.Kim, M.-H.Mun, M.K.Cheoun, E.Ha

Shape coexistence and neutron skin thickness of Pb isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated neutron pairing gaps. 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,260,282,284,286,288,290,292,294,296,298,300,302Pb; calculated deformation parameter by the minimum of the total binding energy. 182,184,186,188,208Pb; calculated neutron single-particle energies for various shape coexistence cases - oblate, spherical, prolate. 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Pb; calculated total binding energy dependence on the deformation.266,268,278Pb; calculated neutron single-particle states occupation probabilities. 260,262,264,266,268,270,272,274,276,278,260,282,284,286,288,290,292,294,296,298,300,302,304Pb; calculated S(2n), Fermi energies, deformation parameters. 208Pb; calculated proton and netron density distributions. 174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated proton and neutron radii, neutron skin thickness. Deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc). Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.034340
Citations: PlumX Metrics


2020MU05      Phys.Rev. C 101, 044602 (2020)

M.-H.Mun, K.Kwak, G.G.Adamian, N.V.Antonenko

Possible production of neutron-rich No isotopes

NUCLEAR REACTIONS 248,249,250,251Cf, 254Es(36S, X), (40Ar, X), (48Ca, X), (50Ti, X), 258No/259No/260No/261No/262No/263No/264No/265No/266No, E(cm)=150-230 MeV; 249,250,251Cf, (48Ca, X), Q=48-70 MeV; 254Es(36S, X), (40Ar, X), (48Ca, X), (50Ti, X), Q=30-55 MeV; calculated production σ(E) in zero-neutron and one-neutron evaporation channels. Comparison of production yields of No and Md isotopes. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.101.044602
Citations: PlumX Metrics


2019MU09      Phys.Rev. C 99, 054627 (2019)

M.-H.Mun, K.Kwak, G.G.Adamian, N.V.Antonenko

Possible production of neutron-rich Md isotopes in multinucleon transfer reactions with Cf and Es targets

NUCLEAR REACTIONS 254Es(14C, X)258Md/259Md/260Md/261Md/262Md, E(cm)=60-80 MeV; 254Es(18O, X)258Md/259Md/260Md/261Md/262Md, E(cm)=80-95 MeV; 254Es(22Ne, X)258Md/259Md/260Md/261Md/262Md, E(cm)=100-120 MeV; 254Es(26Mg, X)258Md/259Md/260Md/261Md/262Md, E(cm)=115-140 MeV; 254Es(30Si, X)258Md/259Md/260Md/261Md/262Md, E(cm)=130-160 MeV; 254Es(36S, X)258Md/259Md/260Md/261Md/262Md, E(cm)=155-165 MeV; 254Es(40Ar, X)258Md/259Md/260Md/261Md/262Md/263Md/264Md/265Md, E(cm)=170-210 MeV; 254Es(40Ar, X)258Md/259Md/260Md/261Md/262Md/263Md, E(cm)=210-230 MeV; 249Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md, E(cm)=200-210 MeV; 250Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md/263Md, E(cm)=200-210 MeV; 251Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md/263Md/264Md, E(cm)=195-212.5 MeV; 252Cf(48Ca, X)258Md/259Md/260Md/261Md/262Md/263Md/264Md/265Md, E(cm)=195-212.5 MeV; calculated total capture σ(E), maximal production σ(E) for zero- and one-neutron evaporation channels of multinucleon transfer reactions. Dinuclear system (DNS) model.

doi: 10.1103/PhysRevC.99.054627
Citations: PlumX Metrics


2016MU17      Eur.Phys.J. A 52, 363 (2016)

M.-Hw.Mun, G.G.Adamian, N.V.Antonenko, Y.-O.Lee

Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

NUCLEAR REACTIONS 238U(48Ca, x)259,260,261,262,263Md, E(cm)=191-197 MeV;242,244Pu(48Ca, x)259,260,261,262,263Md, E(cm)=191-201 MeV;245,246,248Cm(48Ca, x)259,260,261,262,263Md, E(cm)=197-205 MeV; calculated σ.

doi: 10.1140/epja/i2016-16363-y
Citations: PlumX Metrics


2015MU05      Phys.Rev. C 91, 054610 (2015)

M.-H.Mun, G.G.Adamian, N.V.Antonenko, Y.Oh, Y.Kim

Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams

NUCLEAR REACTIONS 160Gd, 164Dy, 170Er, 176Yb, 180Hf, 186W, 192Os, 204Hg, 208Pb, 232Th(48Ca, X)52Ca/54Ca/56Ca/58Ca, E(cm)=150-225 MeV; 64,66,68,70,72,74,76,78Ni, 86,88,90,92,94Kr(160Gd, X)166Gd/168Gd/170Gd/172Gd/174Gd, E(cm)=145-260 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se, 86,88,90,92,94Kr(164Dy, X)170Dy/172Dy/174Dy/176Dy/178Dy, E(cm)=150-260 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se, 86,88,90,92,94Kr(170Er, X)176Er/178Er/180Er/182Er/184Er, E(cm)=150-270 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se, 86,88,90,92,94Kr(176Yb, X)182Yb/184Yb/186Yb/188Yb/190Yb, E(cm)=160-270 MeV; 64,66,68,70,72,74,76,78Ni(180Hf, X)186Hf/188Hf/190Hf/192Hf/194Hf, E(cm)=190-230 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se(186W, X)192W/194W/196W/198W/200W, E(cm)=170-270 MeV; 48Ca, 50Ti, 54Cr, 58Fe, 64,66,68,70,72,74,76,78Ni, 70Zn, 76Ge, 82Se(192Os, X)196Os/198Os/200Os/202Os/204Os, E(cm)=165-270 MeV; 48Ca, 66,68,70,72,74,76,78Ni(204Hg, X)210Hg/212Hg/214Hg/216Hg, E(cm)=192-255 MeV; 48Ca, 66,68,70,72,74,76,78Ni(208Pb, X)214Pb/216Pb/218Pb/220Pb, E(cm)=200-268 MeV; 48Ca, 66,68,70,72,74,76,78Ni(232Th, X)238Th/240Th/242Th/244Th, E(cm)=199-261 MeV; calculated σ(E) for production of neutron-rich nuclei close to the neutron drip line in multi-nucleon transfer reactions. Dinuclear system (DNS) approach with synthesis through nucleon transfers and decay into two fragments.

doi: 10.1103/PhysRevC.91.054610
Citations: PlumX Metrics


2014MU02      Phys.Rev. C 89, 034622 (2014)

M.-H.Mun, G.G.Adamian, N.V.Antonenko, Y.Oh, Y.Kim

Production cross section of neutron-rich isotopes with radioactive and stable beams

NUCLEAR REACTIONS 48Ca, 70Zn, 86Kr, 88Sr(144Xe, X)148Xe/150Xe/152Xe, E(cm)=130-240 MeV; 48Ca(134Te, X), (136Te, X)136Te/138Te/140Te/142Te, E(cm)=120-170 MeV; 68,70Zn(142Xe, X), (144Xe, X)82Zn/84Zn/86Zn, E(cm)=160-195 MeV; 48Ca(134Te, X), (136Te, X)52Ca/54Ca/56Ca/58Ca/60Ca, E(cm)=125-165 MeV; 198Pt(48Ca, X), (50Ti, X), (54Cr, X), (58Fe, X), (64Ni, X), (70Zn, X), (76Ge, X)202Pt/204Pt/206Pt, E(cm)=170-270 MeV; 198Pt(48Ca, X)202Pt/203Pt/204Pt/205Pt/206Pt, E(cm)=170-220 MeV; 198Pt(64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X)202Pt/204Pt/206Pt/208Pt/210Pt, E(cm)=215-260 MeV; calculated production σ for neutron-rich isotopes close to the neutron drip line using stable and radioactive beams. Diffusive multinucleon transfer reaction model.

doi: 10.1103/PhysRevC.89.034622
Citations: PlumX Metrics


2011KI25      J.Korean Phys.Soc. 59, 1023s (2011)

H.Il.Kim, D.H.Kim, Y.-O.Lee, M.Mun

Nuclear Data Evaluations for Silicon Isotopes Induced by Proton, Deuteron and Alpha

NUCLEAR REACTIONS 28,29,30Si(p, p'), (d, d'), (α, α'), E=0-200 MeV; calculated, evaluated σ; 28Si(p, p), E=5.93, 17.7, 28.4, 40.2, 51.9, 65, 80, 100, 179 MeV;29Si(p, p), E=10, 40, 80 MeV;30Si(p, p), E=40.8, 180 MeV;28Si(d, d), E=7, 11, 13, 17.9, 29.5, 52, 56 MeV;29Si(d, d), E=10, 12.3 MeV;30Si(d, d), E=10, 11.8, 12.3, 17 MeV;28Si(α, α'), E=5.96, 27, 40, 104, 120, 166 MeV;29Si(α, α'), E=26.3, 28, 41 MeV;30Si(α, α'), E=26.6, 27, 41 MeV; calculated, evaluated σ(θ). TALYS code. Calculations compared to data.

doi: 10.3938/jkps.59.1023
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter M.H.Mun: , M.H.MUN