NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.Faber

Found 39 matches.

Back to query form



2011FA13      Phys.Rev. C 84, 064314 (2011)

M.Faber, M.P.Faifman, A.N.Ivanov, J.Marton, M.Pitschmann, N.I.Troitskaya

Energy-level displacement of excited NP states of kaonic deuterium in a Faddeev-equation approach

doi: 10.1103/PhysRevC.84.064314
Citations: PlumX Metrics


2010FA01      J.Phys.(London) G37, 015102 (2010)

M.Faber, A.N.Ivanov, P.Kienle, M.Pitschmann, N.I.Troitskaya

The influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC-decay rates of the H-like mother ions

NUCLEAR STRUCTURE 140Pr, 142Pm; calculated EC-decay rates; deduced motion in homogeneous magnetic field cannot be the origin of the periodic time dependence of the EC-decay rates.

doi: 10.1088/0954-3899/37/1/015102
Citations: PlumX Metrics


2009FA10      Phys.Rev. C 80, 035503 (2009)

M.Faber, A.N.Ivanov, V.A.Ivanova, J.Marton, M.Pitschmann, A.P.Serebrov, N.I.Troitskaya, M.Wellenzohn

Continuum-state and bound-state β+-decay rates of the neutron

RADIOACTIVITY 1n(β-); calculated decay rates, the electron energy spectrum for the continuum-state decay mode, angular distributions of the decay probabilities for the continuum-state and bound-state decay modes, and the dependence of the CKM matrix element on the lifetime of the neutron and the axial coupling constant gA. Comparison of calculated correlation coefficients of the energy spectrum of the continuum-state β decay with experimental data.

doi: 10.1103/PhysRevC.80.035503
Citations: PlumX Metrics


2008FA14      Phys.Rev. C 78, 061603 (2008)

M.Faber, A.N.Ivanov, P.Kienle, E.L.Kryshen, M.Pitschmann, N.I.Troitskaya

First-forbidden continuum- and bound-state β--decay rates of bare 205Hg80+ and 207Tl81+ ions

RADIOACTIVITY 205Hg, 207Tl(β-); analyzed ratios of continuum and bound-state decay rates of base ions. Comparisons with data and model calculations.

doi: 10.1103/PhysRevC.78.061603
Citations: PlumX Metrics


2008IV05      Phys.Rev. C 78, 025503 (2008)

A.N.Ivanov, M.Faber, R.Reda, P.Kienle

Weak decays of H-like 140Pr58+ and He-like 140Pr57+ ions

RADIOACTIVITY 140Pr(EC)(β+); calculated decay constants of H-like 58+ and He-like 57+ charge states. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.025503
Citations: PlumX Metrics


2005IV01      Eur.Phys.J. A 23, 1 (2005)

A.N.Ivanov, M.Cargnelli, M.Faber, H.Fuhrmann, V.A.Ivanova, J.Marton, N.I.Troitskaya, J.Zmeskal

From solar proton burning to pionic deuterium through the Nambu-Jona-Lasinio model of light nuclei

ATOMIC PHYSICS, Mesic-atoms 2H; calculated pionic deuterium ground-state width. Nambu-Jona-Lasinio model.

NUCLEAR REACTIONS 2H(π-, X), E at rest; calculated pionic deuterium ground-state width. Nambu-Jona-Lasinio model.

doi: 10.1140/epja/i2004-10070-4
Citations: PlumX Metrics


2005IV02      Eur.Phys.J. A 23, 79 (2005)

A.N.Ivanov, M.Cargnelli, M.Faber, H.Fuhrmann, V.A.Ivanova, J.Marton, N.I.Troitskaya, J.Zmeskal

On kaonic deuterium. Quantum field-theoretic and relativistic covariant approach

ATOMIC PHYSICS, Mesic-atoms 2H; calculated energy level shifts for kaonic deuterium. Quantum field-theoretic and relativistic covariant approach.

NUCLEAR REACTIONS 2H(K-, X), E=low; calculated scattering lengths, hyperon production amplitudes, final state interaction effects. Quantum field-theoretic and relativistic covariant approach.

doi: 10.1140/epja/i2004-10055-3
Citations: PlumX Metrics


2005IV05      Eur.Phys.J. A 25, 329 (2005)

A.N.Ivanov, M.Cargnelli, M.Faber, H.Fuhrmann, V.A.Ivanova, J.Marton, N.I.Troitskaya, J.Zmeskal

On kaonic hydrogen. Phenomenological quantum field theoretic model revisited

NUCLEAR REACTIONS 1H(K-, π-X), (K-, π0X), (K-, π+X), E at 70-150 MeV/c; calculated scattering lengths, σ. Phenomenological quantum field theoretic model, comparisons with data.

doi: 10.1140/epja/i2005-10128-9
Citations: PlumX Metrics


2004IV01      Eur.Phys.J. A 19, 413 (2004)

A.N.Ivanov, M.Faber, A.Hirtl, J.Marton, N.I.Troitskaya

Energy level displacement of the excited nl state of pionic hydrogen

ATOMIC PHYSICS, Mesic-atoms 1H; calculated energy level shifts in pionic hydrogen. Relativistic covariant approach.

NUCLEAR REACTIONS 1H(π-, X), E at rest; calculated energy level shifts in pionic hydrogen. Relativistic covariant approach.

doi: 10.1140/epja/i2003-10134-y
Citations: PlumX Metrics


2004IV03      Eur.Phys.J. A 21, 11 (2004)

A.N.Ivanov, M.Cargnelli, M.Faber, J.Marton, N.I.Troitskaya, J.Zmeskal

On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach

ATOMIC PHYSICS, Mesic-atoms 1H; calculated ground-state energy, radiative decay widths for kaonic hydrogen. Quantum field theoretic and relativistic covariant approach.

doi: 10.1140/epja/i2003-10178-y
Citations: PlumX Metrics


2003IV04      Eur.Phys.J. A 18, 653 (2003)

A.N.Ivanov, M.Faber, A.Hirtl, J.Marton, N.I.Troitskaya

On pionic hydrogen. Quantum field theoretic, relativistic covariant and model-independent approach

ATOMIC PHYSICS, Mesic-atoms 1H; calculated pionic hydrogen energy levels, widths. Quantum field theoretic, relativistic covariant approach.

doi: 10.1140/epja/i2003-10095-1
Citations: PlumX Metrics


2001IV06      Eur.Phys.J. A 12, 87 (2001)

A.N.Ivanov, V.A.Ivanova, H.Oberhummer, N.I.Troitskaya, M.Faber

On the D-Wave State Component of the Deuteron in the Nambu-Jona-Lasinio Model of Light Nuclei

NUCLEAR STRUCTURE 2H; calculated D-wave component admixture. Nambu-Jona-Lasinio model, comparison with data.

doi: 10.1007/s100500170041
Citations: PlumX Metrics


2000IV04      Eur.Phys.J. A 7, 519 (2000)

A.N.Ivanov, H.Oberhummer, N.J.Troitskaya, M.Faber

The Nambu-Jona-Lasinio Model of Light Nuclei

doi: 10.1007/s100500050425
Citations: PlumX Metrics


2000IV05      Eur.Phys.J. A 8, 125 (2000)

A.N.Ivanov, H.Oberhummer, N.I.Troitskaya, M.Faber

On the ΔΔ Component of the Deuteron in the Nambu-Jona-Lasinio Model of Light Nuclei

NUCLEAR STRUCTURE 2H; calculated ΔΔ component contribution. Nambu-Jona-Lasinio model of light nuclei. Comparison with data.

doi: 10.1007/s100530050016
Citations: PlumX Metrics


2000IV06      Eur.Phys.J. A 8, 223 (2000)

A.N.Ivanov, H.Oberhummer, N.I.Troitskaya, M.Faber

Dynamics of Low-Energy Nuclear Forces for Electromagnetic and Weak Reactions with the Deuteron in the Nambu-Jona-Lasinio Model of Light Nuclei

NUCLEAR REACTIONS 1H(n, γ), E=thermal; 2H(γ, n), E=2.62-4.45 MeV; 2H(ν, e-p), E=4-10 MeV; calculated σ. 1H(p, X), E=low; calculated spectroscopic factor Spp(0). 2H(ν-bar, e+n), 2H(ν, nν), E not given; calculated σ averaged over antineutrino energy spectrum. Astrophysics relevance discussed.

doi: 10.1007/s100530050030
Citations: PlumX Metrics


1998FA20      Nuovo Cim. 111A, 513 (1998)

M.Faber, A.N.Ivanov, N.I.Troitskaya

Nambu-Jona-Lasinio Approach to Realization of Confining Medium


1997IV02      Nucl.Phys. A617, 414 (1997); Erratum Nucl.Phys. A625, 896 (1997)

A.N.Ivanov, N.I.Troitskaya, M.Faber, H.Oberhummer

On the Relativistic Field Theory Model of the Deuteron II

NUCLEAR REACTIONS 1H(n, γ), E=low; 1H(p, X), E=low; calculated radiative capture, fusion σ respectively. Relativistic field theory model.

doi: 10.1016/S0375-9474(97)00016-X
Citations: PlumX Metrics


1997IV04      Z.Phys. A358, 81 (1997)

A.N.Ivanov, N.I.Troitskaya, M.Faber, H.Oberhummer

On the S-Wave πD-Scattering Length in the Relativistic Field Theory Model of the Deuteron

NUCLEAR REACTIONS 2H(π, π), E not given; calculated S-wave scattering length; deduced importance of Δ-resonance.

doi: 10.1007/s002180050279
Citations: PlumX Metrics


1987HI13      J.Phys.(Paris), Colloq.C-2, 59 (1987)

R.R.Hilton, S.Iwasaki, H.J.Mang, P.Ring, M.Faber

Structure of the Giant Angle Dipole

NUCLEAR STRUCTURE 156Gd; calculated GDR angular analog B(M1).


1985CI01      Nucl.Phys. A438, 318 (1985)

O.Civitarese, M.Faber, H.Markum, A.Plastino

Modified BCS Treatment of Pairing Correlation in 240Pu at High Spin and Finite Temperature

NUCLEAR STRUCTURE 240Pu; calculated ground, proton, neutron pairing gap energies, total free energy, differences. Modified BCS treatment.

doi: 10.1016/0375-9474(85)90378-1
Citations: PlumX Metrics


1984FA13      Acta Phys.Pol. B15, 949 (1984)

M.E.Faber, M.Ploszajczak, K.Junker

Shape and Fission Instability of Rotating Nuclei at Finite Temperatures

NUCLEAR STRUCTURE 238U; calculated fission barrier, deformation, isentropic energy surfaces, shell energy, thermal particle-hole excitation energy vs deformation. 210Po; calculated first, second fission barriers. Rotating liquid drop model.


1984RI05      Nucl.Phys. A419, 261 (1984)

P.Ring, L.M.Robledo, J.L.Egido, M.Faber

Microscopic Theory of the Isovector Dipole Resonance at High Angular Momenta

NUCLEAR REACTIONS 158Er(γ, X), E=10-20 MeV; calculated giant isovector dipole absorption σ(E). Temperature dependent linear response theory.

NUCLEAR STRUCTURE 158,164Er; calculated potential energy surfaces, gap parameters. Temperature dependent linear response theory.

doi: 10.1016/0375-9474(84)90393-2
Citations: PlumX Metrics


1983FA10      Phys.Lett. 127B, 5 (1983)

M.E.Faber, J.L.Egido, P.Ring

The Giant Resonance in Hot Rotating Nuclei

NUCLEAR REACTIONS 158,164Er(γ, X), E=10-20 MeV; calculated dipole absorption σ(E). Linear response theory, hot rotating nuclei.

NUCLEAR STRUCTURE 158,164Er; calculated GDR energy, splitting vs angular momentum, temperature. Linear response theory, hot rotating nuclei.

doi: 10.1016/0370-2693(83)91618-0
Citations: PlumX Metrics


1983FA13      J.Phys.(London) G9, 1069 (1983)

M.Faber, A.Faessler, H.Markum

Different Treatments of Pairing Correlations for Nuclear Shapes at High Spin

NUCLEAR STRUCTURE 150Gd, 240Pu; calculated proton, neutron pairing gaps, ground state energy vs spin, pairing energy vs deformation space parameters; deduced shape, fission stability. Strutinsky type calculations, modified BCS equations.

doi: 10.1088/0305-4616/9/9/012
Citations: PlumX Metrics


1982MA32      Nuovo Cim. 70A, 62 (1982)

H.Markum, M.E.Faber, A.Ansari, G.Eder, A.Faessler

Investigation of Pairing Correlations in High-Spin States by HBF and BCS Approach

NUCLEAR STRUCTURE 150Gd; calculated total energy, deformation energy vs total angular momentum. HFB, modified BCS formalisms.


1982PL01      Phys.Rev. C25, 1538 (1982)

M.Ploszajczak, M.E.Faber

Competition between Fission and Neutron Emission at High Spins and Excitation Energies

NUCLEAR STRUCTURE 210Po, 232U; analyzed Γf/Γn; deduced shell effects, angular momentum, saddle point deformation. Statistical theory.

doi: 10.1103/PhysRevC.25.1538
Citations: PlumX Metrics


1981BE41      Phys.Scr. 24, 200 (1981)

T.Bengtsson, M.E.Faber, G.Leander, P.Moller, M.Ploszajczak, I.Ragnarsson, S.Aberg

Some Properties of Superdeformed Nuclei

NUCLEAR STRUCTURE 152Dy; calculated potential, shell energy surfaces; 90,92Zr, 96Ru; calculated potential energy vs deformation; 96Ru; calculated liquid drop model energy. Anisotropic harmonic oscillator potential. A ≈ 100; deduced superdeformed properties. A ≈ 150; deduced superdeformed properties.

doi: 10.1088/0031-8949/24/1B/016
Citations: PlumX Metrics


1981BO12      J.Phys.(London) G7, 321 (1981)

N.Bottges, A.Faessler, M.E.Faber

Collective Transitions in Nuclei with 'Rotations' around the Symmetry Axis

NUCLEAR STRUCTURE 154Er; calculated yrast line, B(E2); 150,152Gd, 152,154Dy, 152,156Er; calculated B(E2); deduced γ-vibrations around axially symmetric equilibruim deformation. BCS, number projection before variation.

doi: 10.1088/0305-4616/7/3/008
Citations: PlumX Metrics


1981FA04      Phys.Rev. C24, 1047 (1981)

M.E.Faber

Influence of Angular Momentum on the Mass Distribution of Heavy-Ion-Induced Fission

NUCLEAR STRUCTURE 205At; calculated deformation energy surfaces; deduced fusion-fission event mass distribution width. Heated rotating nuclei, Strutinsky method.

doi: 10.1103/PhysRevC.24.1047
Citations: PlumX Metrics


1981FA05      Phys.Scr. 24, 189 (1981)

M.E.Faber, M.Ploszajczak

Shell Structure in Superdeformed Light Nuclei (A < 40) at High Rotational Frequencies

NUCLEAR STRUCTURE 24Mg, 26,27Al, 28,30Si; calculated deformation, superdeformation energy surfaces. Cranking Strutinsky model, Saxon-Woods potential.

doi: 10.1088/0031-8949/24/1B/015
Citations: PlumX Metrics


1981PL04      Phys.Scr. 24, 243 (1981)

M.Ploszajczak, M.Faber

Investigation of the Proton Shell Structure near Z = 64

NUCLEAR STRUCTURE Z=64, N=82; calculated neutron, proton energy gaps, proton quasiparticle binding, pairing energies.

doi: 10.1088/0031-8949/24/1B/019
Citations: PlumX Metrics


1980FA15      Z.Phys. A297, 277 (1980)

M.E.Faber

The Mass Distribution Width of Heavy-Ion Fission for Various Composite Systems

NUCLEAR STRUCTURE 205At, 221Pa; caculated rotating liquid drop energy; deduced fission barrier height, mass distribution width correlation.

doi: 10.1007/BF01892810
Citations: PlumX Metrics


1979FA08      Z.Phys. A291, 331 (1979)

M.Faber, M.Ploszajczak

Angular Momentum and Energy Dependence of Fission and n, p, 4He Emission from 194Hg Compound Nucleus

NUCLEAR STRUCTURE 194Hg; calculated spin, temperature dependence of fission, particle emission. Strutinsky shell corrections, Woods-Saxon field.

doi: 10.1007/BF01408383
Citations: PlumX Metrics


1979FA10      Nucl.Phys. A326, 129 (1979)

M.Faber, M.Ploszajczak, A.Faessler

Fission Instability of Nuclei at Very High Angular Momenta

NUCLEAR STRUCTURE 150Gd, 170Yb, 194Pb, 232,236,238U, 212Po, 252Cf, 206,214Rn, 232Th; calculated deformation energy surfaces at high angular momenta. Strutinsky approach, rotating liquid-drop model, cranked Saxon-Woods potential.

doi: 10.1016/0375-9474(79)90372-5
Citations: PlumX Metrics


1978FA02      Z.Phys. A285, 77 (1978)

M.Faber, A.Faessler, H.Muther

Can the Renormalization of the Interaction Describe the Effects of (A + 2)Particles-2 Holes Excitations (Question)

NUCLEAR STRUCTURE 48Ti; calculated levels.

doi: 10.1007/BF01410228
Citations: PlumX Metrics


1978FA12      Phys.Lett. 77B, 18 (1978)

M.Faber

Moments of Inertia of Fissioning Isomers

RADIOACTIVITY, Fission 236U, 240Pu, 236mU(SF), 240mPu(SF); calculated moment of inertia.

doi: 10.1016/0370-2693(78)90189-2
Citations: PlumX Metrics


1978FA14      Acta Phys.Aust. 49, 125 (1978)

M.Faber, H.Jasicek, H.Oberhummer

Schalenkorrekturen zur Deformationsenergie fur rotierende Kerne

NUCLEAR STRUCTURE 240Pu; calculated dynamical moment of inertia. Saxon-Woods potential. Compared with geometrical value, Nilsson model.


1977FA08      Phys.Lett. 70B, 399 (1977)

M.Faber, A.Faessler, M.Ploszajczak, H.Toki

The Fission Barrier of Actinide Nuclei at Very High Angular Momentum

NUCLEAR STRUCTURE 240Pu; analyzed double-humped fission barrier at high spins.

doi: 10.1016/0370-2693(77)90397-5
Citations: PlumX Metrics


1977FA10      Acta Phys.Austr. 47, 279 (1977)

M.Faber, G.Eder

The Influence of Single-Particle Levels and Interaction Matrix Elements on the Pairing Energy of Rare-Earth Nuclei

NUCLEAR STRUCTURE 169,163,165,167Er, 181,183,185W, 173,175,171,169Yb, 177,179Hf, 159,155,157,161Gd, 161,165,159,163Dy; calculated pairing energies.


Back to query form


Note: The following list of authors and aliases matches the search parameter M.Faber: , M.E.FABER