NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 8, 2024.

Search: Author = M.E.Faber

Found 9 matches.

Back to query form



1984FA13      Acta Phys.Pol. B15, 949 (1984)

M.E.Faber, M.Ploszajczak, K.Junker

Shape and Fission Instability of Rotating Nuclei at Finite Temperatures

NUCLEAR STRUCTURE 238U; calculated fission barrier, deformation, isentropic energy surfaces, shell energy, thermal particle-hole excitation energy vs deformation. 210Po; calculated first, second fission barriers. Rotating liquid drop model.


1983FA10      Phys.Lett. 127B, 5 (1983)

M.E.Faber, J.L.Egido, P.Ring

The Giant Resonance in Hot Rotating Nuclei

NUCLEAR REACTIONS 158,164Er(γ, X), E=10-20 MeV; calculated dipole absorption σ(E). Linear response theory, hot rotating nuclei.

NUCLEAR STRUCTURE 158,164Er; calculated GDR energy, splitting vs angular momentum, temperature. Linear response theory, hot rotating nuclei.

doi: 10.1016/0370-2693(83)91618-0
Citations: PlumX Metrics


1982MA32      Nuovo Cim. 70A, 62 (1982)

H.Markum, M.E.Faber, A.Ansari, G.Eder, A.Faessler

Investigation of Pairing Correlations in High-Spin States by HBF and BCS Approach

NUCLEAR STRUCTURE 150Gd; calculated total energy, deformation energy vs total angular momentum. HFB, modified BCS formalisms.


1982PL01      Phys.Rev. C25, 1538 (1982)

M.Ploszajczak, M.E.Faber

Competition between Fission and Neutron Emission at High Spins and Excitation Energies

NUCLEAR STRUCTURE 210Po, 232U; analyzed Γf/Γn; deduced shell effects, angular momentum, saddle point deformation. Statistical theory.

doi: 10.1103/PhysRevC.25.1538
Citations: PlumX Metrics


1981BE41      Phys.Scr. 24, 200 (1981)

T.Bengtsson, M.E.Faber, G.Leander, P.Moller, M.Ploszajczak, I.Ragnarsson, S.Aberg

Some Properties of Superdeformed Nuclei

NUCLEAR STRUCTURE 152Dy; calculated potential, shell energy surfaces; 90,92Zr, 96Ru; calculated potential energy vs deformation; 96Ru; calculated liquid drop model energy. Anisotropic harmonic oscillator potential. A ≈ 100; deduced superdeformed properties. A ≈ 150; deduced superdeformed properties.

doi: 10.1088/0031-8949/24/1B/016
Citations: PlumX Metrics


1981BO12      J.Phys.(London) G7, 321 (1981)

N.Bottges, A.Faessler, M.E.Faber

Collective Transitions in Nuclei with 'Rotations' around the Symmetry Axis

NUCLEAR STRUCTURE 154Er; calculated yrast line, B(E2); 150,152Gd, 152,154Dy, 152,156Er; calculated B(E2); deduced γ-vibrations around axially symmetric equilibruim deformation. BCS, number projection before variation.

doi: 10.1088/0305-4616/7/3/008
Citations: PlumX Metrics


1981FA04      Phys.Rev. C24, 1047 (1981)

M.E.Faber

Influence of Angular Momentum on the Mass Distribution of Heavy-Ion-Induced Fission

NUCLEAR STRUCTURE 205At; calculated deformation energy surfaces; deduced fusion-fission event mass distribution width. Heated rotating nuclei, Strutinsky method.

doi: 10.1103/PhysRevC.24.1047
Citations: PlumX Metrics


1981FA05      Phys.Scr. 24, 189 (1981)

M.E.Faber, M.Ploszajczak

Shell Structure in Superdeformed Light Nuclei (A < 40) at High Rotational Frequencies

NUCLEAR STRUCTURE 24Mg, 26,27Al, 28,30Si; calculated deformation, superdeformation energy surfaces. Cranking Strutinsky model, Saxon-Woods potential.

doi: 10.1088/0031-8949/24/1B/015
Citations: PlumX Metrics


1980FA15      Z.Phys. A297, 277 (1980)

M.E.Faber

The Mass Distribution Width of Heavy-Ion Fission for Various Composite Systems

NUCLEAR STRUCTURE 205At, 221Pa; caculated rotating liquid drop energy; deduced fission barrier height, mass distribution width correlation.

doi: 10.1007/BF01892810
Citations: PlumX Metrics


Back to query form