NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.D.Usang

Found 6 matches.

Back to query form



2020IS01      Phys.Rev. C 101, 011601 (2020)

C.Ishizuka, X.Zhang, M.D.Usang, F.A.Ivanyuk, S.Chiba

Effect of the doubly magic shell closures in 132Sn and 208Pb on the mass distributions of fission fragments of superheavy nuclei

NUCLEAR STRUCTURE 274Hs, 280Ds, 286Cn, 292Fl, 296Lv, 294Og, 302120, 306122; calculated fission fragment mass distributions for the excitation energy 10 and 30 MeV as a function of fragment mass number; deduced effect of doubly magic nuclei 132Sn and 208Pb on the mass distributions of fission fragments of superheavy nuclei 236U, 240Pu, 244Cm, 252Cf, 256,257,258,259,264Fm, 260Md, 259Lr, 274Hs, 286Cn, 292Fl, 296Lv, 294Og, 302120, 306122; calculated distribution of quadrupole deformation Q20 as function of fission fragment mass number. Calculations used dynamical four-dimensional Langevin approach.

doi: 10.1103/PhysRevC.101.011601
Citations: PlumX Metrics


2018HA31      Phys.Rev.Lett. 121, 102701 (2018)

T.Hayakawa, H.Ko, M.-K.Cheoun, M.Kusakabe, T.Kajino, M.D.Usang, S.Chiba, K.Nakamura, A.Tolstov, K.Nomoto, M.-a.Hashimoto, M.Ono, T.Kawano, G.J.Mathews

Short-Lived Radioisotope 98Tc Synthesized by the Supernova Neutrino Process

NUCLEAR REACTIONS 98Mo(ν, E)98Tc, 99Tc(ν, ν'n)98Tc, 99Ru(ν, ν'p)98Tc, E=1-9 MeV; calculated yields, abundances as a function of interior mass from the Supernova; deduced dominance the charged current reaction on 98Mo reaction.

doi: 10.1103/PhysRevLett.121.102701
Citations: PlumX Metrics


2018IV04      Phys.Rev. C 97, 054331 (2018)

F.A.Ivanyuk, C.Ishizuka, M.D.Usang, S.Chiba

Temperature dependence of shell corrections

NUCLEAR STRUCTURE 236U; calculated temperature dependence of shell corrections and averaged in deformation to the energy, entropy and free energy for protons and neutrons of 236U g.s. with and without pairing effects using mean-field approximation; deduced more accurate approximation for the shell corrections to energy and free energy. A=50-250; calculated pairing critical temperature for protons and neutrons along the β-stability line.

NUCLEAR REACTIONS 232Th, 238U(n, F), E=32.8, 45.3, 59.9 MeV; calculated fission fragment mass distributions using new shell corrections to the liquid drop energy and deformed Woods-Saxon potential. Comparison with experimental values and predictions from previous shell corrections.

doi: 10.1103/PhysRevC.97.054331
Citations: PlumX Metrics


2017IS16      Phys.Rev. C 96, 064616 (2017)

C.Ishizuka, M.D.Usang, F.A.Ivanyuk, J.A.Maruhn, K.Nishio, S.Chiba

Four-dimensional Langevin approach to low-energy nuclear fission of 236U

NUCLEAR REACTIONS 235U(n, F), E=14 MeV; 257Fm(n, F), E=thermal; calculated mass distribution of fission fragments, fission events on the mass-TKE plane, TKE distributions. 235U(n, F), E=0.5, 3.5, 5.5, 8.5, 13.5 MeV; calculated TKE of fission fragments, contour map of prescission kinetic energy as a function of mass number of fission fragments, distribution of deformation parameter in its dependence on the mass number. Four-dimensional (4D) Langevin model with infinite-depth two-center shell-model (TCSM) potential and the finite-depth two-center Woods-Saxon (TCWS) potential. Comparison with experimental data in JENDL/FPY-2011 data library.

doi: 10.1103/PhysRevC.96.064616
Citations: PlumX Metrics


2017US02      Phys.Rev. C 96, 064617 (2017)

M.D.Usang, F.A.Ivanyuk, C.Ishizuka, S.Chiba

Analysis of the total kinetic energy of fission fragments with the Langevin equation

NUCLEAR REACTIONS 235U(n, F), E=14 MeV; 257Fm(n, F), E=thermal; 231Pa, 238U, 239Pu(n, F), E<45 MeV; calculated mass distribution and the total kinetic energy (TKE) of fission fragments at various excitation energies within the three-dimensional Langevin approach with microscopic transport coefficients; deduced systematic trends of TKE with Z2/A1/3 of the fissioning system. Comparison with evaluated post-neutron distributions data stored in JENDL library.

doi: 10.1103/PhysRevC.96.064617
Citations: PlumX Metrics


2016US04      Phys.Rev. C 94, 044602 (2016)

M.D.Usang, F.A.Ivanyuk, C.Ishizuka, S.Chiba

Effects of microscopic transport coefficients on fission observables calculated by the Langevin equation

NUCLEAR STRUCTURE 234,236U, 240Pu; calculated fission fragment mass distribution, total kinetic energy, microscopic transport coefficients for fission of compound nuclei at an excitation energy of 20 MeV. Three-dimensional Langevin model. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.044602
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter M.D.Usang: , M.D.USANG