NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = K.Godbey

Found 18 matches.

Back to query form



2023UM01      Phys.Rev. C 107, 064605 (2023)

A.S.Umar, K.Godbey, C.Simenel

Cluster model of 12C in the density functional theory framework

NUCLEAR STRUCTURE 12C; calculated 3-α energy surface, total density for the ground state configuration of the 3 α particles, angular momentum projection of the 12C ground state configuration, total density for the bent-arm state configuration of the 3 α particles, localization function of the bent-arm state configuration. Framework to study the cluster structures based on density constrained Hartree-Fock approach. Showed that the 12C ground state is an equilateral triangle, which has a molecular type configuration.

doi: 10.1103/PhysRevC.107.064605
Citations: PlumX Metrics


2022BO18      Phys.Rev. C 106, 054322 (2022)

E.Bonilla, P.Giuliani, K.Godbey, D.Lee

Training and projecting: A reduced basis method emulator for many-body physics

doi: 10.1103/PhysRevC.106.054322
Citations: PlumX Metrics


2022BU05      Phys.Rev.Lett. 128, 022501 (2022)

A.Bulgac, I.Abdurrahman, K.Godbey, I.Stetcu

Fragment Intrinsic Spins and Fragments' Relative Orbital Angular Momentum in Nuclear Fission

NUCLEAR REACTIONS 235U, 239Pu(n, F), E not given; analyzed available data. 236U, 240Pu; calculated of the primary fission fragment intrinsic spins and of the fission fragments relative orbital angular momentum using the time-dependent density functional theory framework.

RADIOACTIVITY 252Cf(SF); analyzed available data; calculated of the primary fission fragment intrinsic spins and of the fission fragments relative orbital angular momentum using the time-dependent density functional theory framework.

doi: 10.1103/PhysRevLett.128.022501
Citations: PlumX Metrics


2022FL03      Phys.Rev. C 105, 054302 (2022)

E.Flynn, D.Lay, S.Agbemava, P.Giuliani, K.Godbey, W.Nazarewicz, J.Sadhukhan

Nudged elastic band approach to nuclear fission pathways

RADIOACTIVITY 240Pu, 235U(SF); calculated potential energy surfaces in (Q20, Q30) coordinates, action integrals, fission paths. Nudged elastic band method (NEB), grid-based methods, and the Euler-Lagrange approach.

doi: 10.1103/PhysRevC.105.054302
Citations: PlumX Metrics


2022GO12      Phys.Rev. C 106, L051602 (2022)

K.Godbey, A.S.Umar, C.Simenel

Theoretical uncertainty quantification for heavy-ion fusion

NUCLEAR REACTIONS 48Ca(48Ca, X), E(cm)=45-61 MeV; 40Ca(40Ca, X), E(cm)=49-67 MeV; 48Ca(40Ca, X), E(cm)=46-67 MeV; 16O(208Pb, X), E(cm)=67-95 MeV; calculated fusion σ(E), theoretical model uncertainties. Quantified the uncertainties arising from uncertainties of the calculations input parameters. Density constrained time-dependent Hartree-Fock TDHF method (DC-TDHF). Comparison to experimental data.

doi: 10.1103/PhysRevC.106.L051602
Citations: PlumX Metrics


2021BU03      Phys.Rev.Lett. 126, 142502 (2021)

A.Bulgac, I.Abdurrahman, S.Jin, K.Godbey, N.Schunck, I.Stetcu

Fission Fragment Intrinsic Spins and Their Correlations

RADIOACTIVITY 236U, 240Pu(SF); calculated fission fragment intrinsic spins and their correlations using two nuclear energy density functionals.

doi: 10.1103/PhysRevLett.126.142502
Citations: PlumX Metrics


2021UM01      Phys.Rev. C 104, 034619 (2021)

A.S.Umar, C.Simenel, K.Godbey

Pauli energy contribution to the nucleus-nucleus interaction

NUCLEAR REACTIONS 40,48Ca(40Ca, X), 48Ca(48Ca, X), E not given; 208Pb(16O, X), E not given; calculated frozen neutron and proton HF density contours, nucleus-nucleus potentials from FHF, DCFHF, and DC-TDHF methods, neutron and proton contributions to the Pauli repulsion in the frozen approximation, dynamical contributions to the Pauli repulsion, proton and neutron Pauli energy and Pauli repulsion in 40Ca+40Ca system, effect of dynamical rearrangement on Pauli energy, Pauli kinetic energy (PKE) spatial distributions. Frozen Hartree Fock (FHF), density constrained frozen Hartree-Fock (DCFHF) and in the density constrained time-dependent Hartree-Fock (DC-TDHF) microscopic methods. Relevance to impact of Pauli exclusion principle on various models and approaches of calculating the interaction of two nuclei.

doi: 10.1103/PhysRevC.104.034619
Citations: PlumX Metrics


2020GO03      Phys.Rev. C 101, 034602 (2020)

K.Godbey, C.Simenel, A.S.Umar

Microscopic predictions for the production of neutron-rich nuclei in the reaction 176Yb + 176Yb

NUCLEAR REACTIONS 176Yb(176Yb, X), E(cm)=660, 880 MeV; calculated scattering angles, total kinetic energies of the outgoing fragments, particle number fluctuations and correlations, mass-angle and mass-energy distributions, primary fragments production σ(E), production σ(E) of NZ, ZZ and NN nuclei using time-dependent Hartree-Fock (TDHF) calculations and its time-dependent random-phase approximation (TDRPA) extension for scattering and multi-nucleon transfer (MNT) characteristics. Relevance to r process in nuclear astrophysical models.

doi: 10.1103/PhysRevC.101.034602
Citations: PlumX Metrics


2020SI08      Phys.Rev.Lett. 124, 212504 (2020)

C.Simenel, K.Godbey, A.S.Umar

Timescales of Quantum Equilibration, Dissipation and Fluctuation in Nuclear Collisions

NUCLEAR REACTIONS 238U(40Ca, X), 249Bk(48Ca, X), (50Ti, X), 186W(54Cr, X), E not given; analyzed available data; calculated timescales in collisions of atomic nuclei using fully microscopic approaches using time-dependent Hartree-Fock and time-dependent random-phase approximation.

doi: 10.1103/PhysRevLett.124.212504
Citations: PlumX Metrics


2019GO17      Phys.Rev. C 100, 024610 (2019)

K.Godbey, A.S.Umar, C.Simenel

Deformed shell effects in 48Ca + 249Bk quasifission fragments

NUCLEAR REACTIONS 249Bk(48Ca, X), E(cm)=234 MeV; calculated total kinetic energies of quasifission fragments as a function of their mass ratio and compared to Viola systematics, mass-angle correlations, yields of fragments by mass, proton and neutron numbers, distribution of scattering angle as function of mass ratio, proton and neutron numbers using time-dependent Hartree-Fock simulations. Influence of shell effects, and orientation of the deformed target in the entrance channel in the formation of the fragments. Relevance to optimization of entrance channels for the formation of superheavy nuclei (SHN).

doi: 10.1103/PhysRevC.100.024610
Citations: PlumX Metrics


2019GO18      Phys.Rev. C 100, 024619 (2019)

K.Godbey, C.Simenel, A.S.Umar

Absence of hindrance in a microscopic 12C + 12C fusion study

NUCLEAR REACTIONS 12C(12C, X), E(cm)=2-12 MeV; calculated fusion σ(E) and astrophysical S(E) factors using a static Hartree-Fock and time-dependent Hartree-Fock mean-field method; no S factor maximum observed, and no extreme sub-barrier hindrance predicted at low energies. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.024619
Citations: PlumX Metrics


2019GO28      Phys.Rev. C 100, 054612 (2019)

K.Godbey, L.Guo, A.S.Umar

Influence of the tensor interaction on heavy-ion fusion cross sections

NUCLEAR REACTIONS 12C(12C, X), (13C, X), E(cm)=1-7 MeV; 40Ca(40Ca, X), (48Ca, X), 48Ca(48Ca, X), E(cm)=46-59 MeV; 48Ca(48Ca, X), E(cm)=45-63 MeV; 48Ca(110Sn, X), (116Sn, X), (120Sn, X), E(cm)=106-130 MeV; 208Pb(16O, X), E(cm)=69-84 MeV; calculated fusion σ(E), and S factors for 12C reactions using the fully microscopic density constrained time-dependent Hartree-Fock (DC-TDHF) method with the Skyrme SLy5 and SLy5t tensor interactions; deduced that inclusion of tensor interaction has measurable effect on the fusion cross sections.

doi: 10.1103/PhysRevC.100.054612
Citations: PlumX Metrics


2018GU20      Phys.Rev. C 98, 064607 (2018)

L.Guo, K.Godbey, A.S.Umar

Influence of the tensor force on the microscopic heavy-ion interaction potential

NUCLEAR REACTIONS 12C(12C, X), E(cm)=8 MeV; 16O(16O, X), E(cm)=12 MeV; 40Ca(40Ca, X), E(cm)=55 MeV; 40,48Ca(48Ca, X), E(cm)=55 MeV; 56Ni(56Ni, X), E(cm)=105 MeV; 56Ni(48Ca, X), E(cm)=75; 100,116,120Sn(48Ca, X), E(cm)=125 MeV; calculated internuclear potentials with and without Skyrme tensor force using static Hartree-Fock and dynamic density-constrained time-dependent Hartree-Fock (DC-TDHF) theory. Discussed role of tensor force in the fusion of nuclei.

doi: 10.1103/PhysRevC.98.064607
Citations: PlumX Metrics


2018UM02      Nuovo Cim. C 41, 173 (2018)

A.S.Umar, C.Simenel, K.Godbey

Equilibration dynamics and isospin effects in nuclear reactions

NUCLEAR REACTIONS 249Bk(48Ca, X), E(cm)=234 MeV; 186W(54Cr, X), E(cm)=218.6 MeV; 208Pb(78Kr, X), E=8.5 MeV/nucleon; analyzed available data; calculated equilibration times for mass, isospin, and TKE (total kinetic energy). TDFHF approach.

doi: 10.1393/ncc/i2018-18173-9
Citations: PlumX Metrics


2017GO03      Phys.Rev. C 95, 011601 (2017)

K.Godbey, A.S.Umar, C.Simenel

Dependence of fusion on isospin dynamics

NUCLEAR REACTIONS 48Ca(40Ca, X), E(cm)=55 MeV; 208Pb(16O, X), E(cm)=75, 90, 120 MeV; 208Pb(48Ca, X), (50Ti, X), E(cm)/VB=1.065; 40,48Ca(132Sn, X), E(cm)=75 MeV; calculated total and isoscalar density-constrained time-dependent Hartree-Fock (DC-TDHF) potentials. 40Ca(132Sn, X), E(cm)=108-140 MeV; calculated fusion σ(E). Time-dependent Hartree-Fock theory and isoscalar and isovector properties of energy density functional (EDF).

doi: 10.1103/PhysRevC.95.011601
Citations: PlumX Metrics


2017SI06      Phys.Rev. C 95, 031601 (2017)

C.Simenel, A.S.Umar, K.Godbey, M.Dasgupta, D.J.Hinde

How the Pauli exclusion principle affects fusion of atomic nuclei

NUCLEAR REACTIONS 40Ca(40Ca, X), E(cm)=48-64 MeV; 48Ca(48Ca, X), E(cm)=45-61 MeV; 208Pb(16O, X), E(cm)=65-90 MeV; calculated nucleus-nucleus potentials with and without Pauli exclusion principle, fusion σ(E), FHF and DCFHF σ(E) without couplings. 16O(16O, X), 40Ca(40Ca, X), 48Ca(40Ca, X), 208Pb(48Ca, X); calculated nucleus-nucleus potentials without (FHF) and with (DCFHF) Pauli exclusion principle. Coupled-channel calculations using CCFULL code, and Woods-Saxon fits of the Frozen Hartree-Fock (FHF) and density-constrained frozen Hartree-Fock (DCFHF) potentials. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.031601
Citations: PlumX Metrics


2015TA15      Int.J.Mod.Phys. E24, 1550057 (2015)

V.N.Tarasov, K.A.Gridnev, S.Schramm, V.I.Kuprikov, D.K.Gridnev, D.V.Tarasov, K.S.Godbey, X.Vinas, W.Greiner

Light exotic nuclei with extreme neutron excess and 2 ≤ Z ≤ 8

NUCLEAR STRUCTURE 18He, 40C; calculated neutron and proton rms radii, density distributions. HF + BCS method.

doi: 10.1142/S0218301315500573
Citations: PlumX Metrics


2015TA19      Bull.Rus.Acad.Sci.Phys. 79, 819 (2015); Izv.Akad.Nauk RAS, Ser.Fiz 79, 910 (2015)

V.N.Tarasov, K.A.Gridnev, W.Greiner, V.I.Kuprikov, D.K.Gridnev, D.V.Tarasov, X.Vinas, K.S.Godbey

Investigating the properties of nuclei with extreme neutron excess and 2 ≤ Z ≤ 8

NUCLEAR STRUCTURE 18He, 40Ca; calculated neutron-separation energies; deduced neutron drip line. Hartree-Fock (HF) method with Skyrme forces (SkI2) and allowance for axial deformation and the Bardeen-Cooper-Schrieffer (BCS) pairing approximation.

doi: 10.3103/S1062873815070242
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter K.Godbey: , K.S.GODBEY