NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = F.F.Karpeshin

Found 92 matches.

Back to query form



2023KA12      Phys.Rev. C 107, 045502 (2023)

F.F.Karpeshin, M.B.Trzhaskovskaya

Shake-off in the 164Er neutrinoless double-electron capture and the dark matter puzzle

RADIOACTIVITY 164Er, 152Gd, 180W(2EC); calculated T1/2 for resonance and shake-off double-electron neutrinoless capture, matrix elements, shell contributions (2s, 2p1/2, 3d3/2 and 4f5/2) to the shake-off amplitude. Analysis of experimental capabilities to register nonresonance shake-off double-electron neutrinoless capture.

doi: 10.1103/PhysRevC.107.045502
Citations: PlumX Metrics


2023KA33      JETP Lett. 118, 548 (2023)

F.F.Karpeshin

Measurement of the Energy of the 8.3-eV 229Th Isomer Using the Photoelectric Effect

RADIOACTIVITY 229Th(IT); calculated the probability of the formation of the isomer on the K shell using the Feinberg–Migdal shaking theory; deduced use the photoelectric effect on inner s shells of the 229Th atom for accurate determination of the energy of its 8.3-eV isomer.

doi: 10.1134/S0021364023602890
Citations: PlumX Metrics


2023KR04      JETP Lett. 117, 884 (2023)

M.I.Krivoruchenko, K.S.Tyrin, F.F.Karpeshin

Energy Spectrum of β Electrons in Neutrinoless Double-β Decay Including the Excitation of the Electron Shell of Atoms

RADIOACTIVITY 76Ge(2β-); calculated the mean value and standard deviation of the excitation energy of the electron shell of the daughter atom using the Thomas–Fermi and relativistic Dirac–Hartree–Fock methods, β-spectra.

doi: 10.1134/S0021364023601409
Citations: PlumX Metrics


2023KR11      JETP Lett. 118, 470 (2023)

M.I.Krivoruchenko, K.S.Tyrin, F.F.Karpeshin

Atomic Electron Shell Excitations in Double-β Decay

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe, 150Nd, 238U(2β-); analyzed available data; deduced the transition of electron shells of atoms to excited states in the process of neutrinoless double-β decay, an important role of the Feinberg-Migdal effect in the electron shell excitations.

doi: 10.1134/S0021364023602737
Citations: PlumX Metrics


2022KA09      Phys.Rev. C 105, 024307 (2022)

F.F.Karpeshin, M.B.Trzhaskovskaya, L.F.Vitushkin

Prospects for studying the effect of electronic screening on α decay in storage rings

RADIOACTIVITY 212,213,214,220,221,222,224,226Ra, 221Po, 196,197,198,199,200,201,202At, 222,223Ac, 212,219,220Rn, 213,220,221Fr(α); calculated T1/2 for bare nuclei and He-like ions. Adiabatic approach.

doi: 10.1103/PhysRevC.105.024307
Citations: PlumX Metrics


2022KA55      Phys.Atomic Nuclei 85, 474 (2022)

F.F.Karpeshin, M.B.Trzhaskovskaya

Shakeoff Effect on the Rate of Neutrinoless Double-Electron Capture in 164Er

RADIOACTIVITY 164Er(2EC); calculated probabilities for shakeoff followed by electron-shell ionization occurring; deduced removal of the resonance requirement, leading to an increase in the capture rate.

doi: 10.1134/S1063778822050064
Citations: PlumX Metrics


2022KA59      Phys.Atomic Nuclei 85, 890 (2022)

F.F.Karpeshin

Hidden Variables in Angular Correlations of Fission Products

NUCLEAR REACTIONS 238U(n, F), (n, n), E not given; analyzed available data; deduced angular correlations, each of the analyzed experiments may provide information that does not depend on the results of the other experiments and which is complementary to them, the situation resembles the Einstein-Podolsky-Rosen (EPR) paradox, experimental verification of the theoretical relation between the alignment and polarization of fragment spins in the CORA experiment is of crucial importance.

doi: 10.1134/S1063778823010258
Citations: PlumX Metrics


2021KA18      Nucl.Phys. A1010, 122173 (2021)

F.F.Karpeshin, M.B.Trzhaskovskaya

A proposed solution for the lifetime puzzle of the 229mTh+ isomer

RADIOACTIVITY 229Th(IT); analyzed available data; deduced dependence of the lifetime of the nuclear isomer on the ambient conditions, leveling role of the fragmentation of the single-electron levels, which makes the resonance amplification of the electron-nuclear interaction more likely, these trends lead to a probable decrease of the theoretical lifetime towards agreement with experiment.

doi: 10.1016/j.nuclphysa.2021.122173
Citations: PlumX Metrics


2021KA44      Phys.Atomic Nuclei 84, 418 (2021)

F.F.Karpeshin, M.B.Trzhaskovskaya

Comparison of Methods for Eliminating the Bohr-Weisskopf Effect in Atomic Spectra of 209Bi Heavy Ions

ATOMIC PHYSICS 209Bi; analyzed available data; deduced a relationship between hyperfine splitting in different shells for eliminating the Bohr-Weisskopf effect in hyperfine-splitting theory, refined value the magnetic moment.

doi: 10.1134/S1063778821040165
Citations: PlumX Metrics


2020KA52      Phys.Atomic Nuclei 83, 608 (2020)

F.F.Karpeshin, M.B.Trzhaskovskaya, L.F.Vitushkin

Nonresonance Shake Mechanism in Neutrinoless Double Electron Capture

RADIOACTIVITY 152Gd(2EC); calculated probability for the shake followed by electron-shell ionization occurring in the course of nucleus transformation; deduced a correction to the decay constant.

doi: 10.1134/S1063778820030126
Citations: PlumX Metrics


2020KA61      Bull.Rus.Acad.Sci.Phys. 84, 1207 (2020)

F.F.Karpeshin, M.B.Trzhaskovskaya, L.F.Vitushkin

Electron Recombination as a Way of Deexciting the 129mSb Isomer

RADIOACTIVITY 129Sb(IT), (EC); calculated Nuclear Excitation via Electron Capture (NEEC) σ, coefficient of internal conversion (ICC) for the electron shell of the nucleus in its final state, radiation width of the excited nuclear levels. Comparison with available data.

doi: 10.3103/S1062873820100135
Citations: PlumX Metrics


2020KA66      Ann.Nucl.Energy 84, 1524 (2020)

F.F.Karpeshin, M.B.Trzhaskovskaya

The Bohr-Weisskopf Effect in the Atomic Spectra of Heavy Ions of 209Bi

ATOMIC PHYSICS 209Bi; analyzed available data; calculated the nuclear moments of the spatial distribution of magnetization currents. Bohr-Weisskopf effect in the theory of hyperfine splitting (HFS)

doi: 10.3103/S1062873820120175
Citations: PlumX Metrics


2020VI10      Phys.Atomic Nuclei 83, 775 (2020)

L.F.Vitushkin, F.F.Karpeshin, M.B.Trzhaskovskaya

Fundamental Problems in Creating a Nuclear Optical Frequency Standard on the Basis of 229Th

RADIOACTIVITY 229Th(IT); analyzed available data; calculated B(E2), B(M1), radiative widths; deduced a probable solution to the thorium puzzle, the first ever observation of the dependence of the nuclear-isomer lifetime on ambient conditions, the smoothing role of single-electron levels, which renders the resonance amplification of the electron-nucleus interaction more probable.

doi: 10.1134/S1063778820050208
Citations: PlumX Metrics


2019GU30      Bull.Rus.Acad.Sci.Phys. 83, 1179 (2019)

Yu.I.Gusev, F.F.Karpeshin, Yu.N.Novikov, A.V.Popov

Measuring the Energy of 229Th Isomer Decay

doi: 10.3103/S1062873819090089
Citations: PlumX Metrics


2019KA37      Phys.Rev. C 100, 024326 (2019)

F.F.Karpeshin, M.B.Trzhaskovskaya

Examination of the solution to the hyperfine structure "puzzle" in H-like and Li-like 209Bi ions

ATOMIC PHYSICS 209Bi; calculated hyperfine splittings of the 1s- and 2s- levels for the H-like and Li-like ions of 209Bi by the application of the surface and volume models of nuclear currents, and consideration of Bohr-Weisskopf effect. Comparison with available experimental data. Relevance to testing QED for hyperfine structure in few electron ions.

doi: 10.1103/PhysRevC.100.024326
Citations: PlumX Metrics


2018KA04      Nucl.Phys. A969, 173 (2018)

F.F.Karpeshin, M.B.Trzhaskovskaya

Impact of the ionization of the atomic shell on the lifetime of the 229mTh isomer

ATOMIC PHYSICS 229mTh; compiled recent T1/2 data for neutral atoms and charged (up to three-fold) ions; calculated ICC value in 7s electronic shell deduced radiative nuclear T1/2 with consideration of resonance conversion (bound internal conversion) and specific (leading) electron configuration. Compared to data.

doi: 10.1016/j.nuclphysa.2017.10.003
Citations: PlumX Metrics


2018KA20      Phys.Atomic Nuclei 81, 1 (2018)

F.F.Karpeshin, M.B.Trzhaskovskaya

Anomalous Internal Conversion as a Clue to Solving the 209Bi Puzzle

ATOMIC PHYSICS 209Bi; calculated hyperfine H-like and Li-like ions hyperfine splitting using specific-difference method; deduced that reported disagreement between theory and data was due to going beyond theoretical accuracy.

doi: 10.1134/S106377881801012X
Citations: PlumX Metrics


2017KA09      Phys.Rev. C 95, 034310 (2017)

F.F.Karpeshin, M.B.Trzhaskovskaya

Bound internal conversion versus nuclear excitation by electron transition: Revision of the theory of optical pumping of the 229mTh isomer

NUCLEAR REACTIONS 229Th(γ, γ')229mTh, E=few eV; calculated and analyzed differences between two mechanisms of optical pumping, nuclear excitation in the electronic transition (NEET) and bound internal conversion (BIC), two-photon optical pumping rate of the 7.6-eV nuclear isomer in singly ionized 229Th. Relevance to nuclear frequency standard and the nuclear clock, and development of new optical-nuclear technologies.

doi: 10.1103/PhysRevC.95.034310
Citations: PlumX Metrics


2017KA61      Bull.Rus.Acad.Sci.Phys. 81, 1207 (2017)

F.F.Karpeshin

True ternary fission and the rotation effect

doi: 10.3103/S1062873817100161
Citations: PlumX Metrics


2017RA27      Phys.Rev. C 96, 065502 (2017)

S.S.Ratkevich, A.M.Gangapshev, Yu.M.Gavrilyuk, F.F.Karpeshin, V.V.Kazalov, V.V.Kuzminov, S.I.Panasenko, M.B.Trzhaskovskaya, S.P.Yakimenko

Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay

RADIOACTIVITY 81Kr(EC); 78Kr(2EC); measured x rays, satellite- and hypersatellite-line photons in coincidence using pulse waveform from LPC (Large Proportional Counter) at the underground laboratory of the Baksan Neutrino Observatory (BNO); deduced double K-shell vacancy creation probability (PKK), half-life of 2ν-accompanied 2K-capture decay mode; calculated double fluorescence spectra and yields. Comparison with Z-2 dependence of PKK predicted by Primakoff and Porter.

doi: 10.1103/PhysRevC.96.065502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015KA25      Nucl.Phys. A941, 66 (2015)

F.F.Karpeshin, M.B.Trzhaskovskaya

The theory of the Bohr-Weisskopf effect in the hyperfine structure

NUCLEAR STRUCTURE 119Sn, 134Cs, 137Ba, 193Ir, 197Pt, 207Pb, 212Bi; calculated internal conversion coefficients for M1, M4 and E3 γ transitions, hyperfine splitting. 209Bi; calculated hyperfine splitting, Bohr-Weisskopf effect, magnetic radii for different states. Dirac-Fock with surface current and no penetration models. Compared with available data.

doi: 10.1016/j.nuclphysa.2015.06.001
Citations: PlumX Metrics


2015KA36      Phys.Atomic Nuclei 78, 548 (2015); Yad.Fiz. 78, 591 (2015)

F.F.Karpeshin

Ternary fission of nuclei into comparable fragments

doi: 10.1134/S1063778815040080
Citations: PlumX Metrics


2015KA42      Phys.Atomic Nuclei 78, 715 (2015); Yad.Fiz. 78, 765 (2015)

F.F.Karpeshin, M.B.Trzhaskovskaya

Excitation of the 229mTh nuclear isomer via resonance conversion in ionized atoms

RADIOACTIVITY 229Th(IT); analyzed available data; calculated the optical pumping of the 7.6-eV nuclear isomer; deduced dominant contribution for 3.5-eV isomer, from the resonance 8s-7s transition.

doi: 10.1134/S1063778815060125
Citations: PlumX Metrics


2015KA56      Phys.Atomic Nuclei 78, 933 (2015); Yad.Fiz. 78, 1055 (2015)

F.F.Karpeshin, M.B.Trzhaskovskaya

Experimental aspects of the adiabatic approach in estimating the effect of electron screening on alpha decay

RADIOACTIVITY 144Nd, 214,226Rn, 252Cf, 241Es, 294Og(α); calculated T1/2 for bare nuclei. Comparison with available data.

doi: 10.1134/S1063778815090082
Citations: PlumX Metrics


2014KA36      Bull.Rus.Acad.Sci.Phys. 78, 672 (2014); Izv.Akad.Nauk RAS, Ser.Fiz 78, 891 (2014); Erratum Bull.Rus.Acad.Sci.Phys. 78, 1162 (2014)

F.F.Karpeshin, M.B.Trzhaskovskaya, C.Brandau, A.Palffy

Reverse conversion in 161Dy ions as an extension of dielectronic recombination

NUCLEAR REACTIONS 161Dy(E, X), E=3.8-43.8 keV; calculated reverse CE σ. Storage rings applications.

doi: 10.3103/S1062873814070156
Citations: PlumX Metrics


2013KA20      Phys.Rev. C 87, 054319 (2013)

F.F.Karpeshin

Influence of electron screening on α decay

RADIOACTIVITY 144Nd, 214Rn, 226Ra, 241Es, 252Cf, 294Og(α); calculated T1/2 of nuclides with and without electrons. Wave functions and energies of atoms calculated by the use of computer codes RAINE. Adiabatic quasimolecular model. Discussed effect on α-decay half-lives for the presence of a muon in the orbit in muonic atoms.

doi: 10.1103/PhysRevC.87.054319
Citations: PlumX Metrics


2012KA07      Phys.Atomic Nuclei 75, 163 (2012)

F.F.Karpeshin, V.I.Isakov

The muon capture in 16O: the angular and polarization correlations

NUCLEAR REACTIONS 16O(μ, X)16N, E not given; calculated angular distribution of the recoil nuclei, kinematics.

doi: 10.1134/S106377881202010X
Citations: PlumX Metrics


2012KA28      Bull.Rus.Acad.Sci.Phys. 76, 884 (2012); Izv.Akad.Nauk RAS, Ser.Fiz 76, 986 (2012)

F.F.Karpeshin, M.B.Trzhaskovskaya, V.V.Kuzminov

Fluorescence induced by double K capture

RADIOACTIVITY 78Kr(2EC); calculated double fluorescense spectra, yields. Comparison with available data.

doi: 10.3103/S1062873812080187
Citations: PlumX Metrics


2011GA46      Phys.Atomic Nuclei 74, 1665 (2011)

Yu.P.Gangrsky, F.F.Karpeshin, M.B.Trzhaskovskaya

Reaction (n, γα) assisted by internal and resonance conversion

NUCLEAR REACTIONS 143Nd(n, γ), (n, αγ), E not given; calculated ICC, resonance conversion characteristic values, E1, M1 radiative transitions, P-violation effects. Comparison with experimental data.

doi: 10.1134/S1063778811070052
Citations: PlumX Metrics


2010KA35      Eur.Phys.J. A 45, 251 (2010)

F.F.Karpeshin

Prompt gamma radiation from fission fragments due to the Strutinsky-Denisov polarisation

NUCLEAR REACTIONS 238U(n, f), E=thermal; calculated Eγ, Iγ(θ), left-right asymmetry using Strutinsky-Denisov polarization mechanism.

doi: 10.1140/epja/i2010-10998-6
Citations: PlumX Metrics


2009KA15      Eur.Phys.J. A 39, 341 (2009)

F.F.Karpeshin, M.B.Trzhaskovskaya, J.Zhang

Prospect of triggering the 178m2Hf isomer and the role of resonance conversion

RADIOACTIVITY 178mHf(IT); calculated decay widths, ICCs, related quantities for resonance conversion; deduced enhancement in photo-induced de-excitation.

doi: 10.1140/epja/i2008-10714-3
Citations: PlumX Metrics


2008GA15      Phys.Atomic Nuclei 71, 951 (2008); Yad.Fiz. 71, 979 (2008)

Yu.P.Gangrsky, F.F.Karpeshin, M.B.Trzhaskovskaya, Yu.E.Penionzhkevich

Effect of beta-electron capture to a bound state on delayed-neutron emission from fission fragments

RADIOACTIVITY 87as, 92,95Se, 87,90,96Br, 98Kr, 99,102Rb, 104,107Sr, 138Sb, 142,146Te, 141,146Cs, 159La(β-); calculated change in decay-rate for decays to bound states and continuum.

doi: 10.1134/S106377880806001X
Citations: PlumX Metrics


2008KA23      Phys.Part. and Nucl.Lett. 5, 379 (2008); Pisma Zh.Fiz.Elem.Chast.Atom.Yadra No.4 [146], 642 (2008)

F.F.Karpeshin

On neutrinoless double e capture problem

doi: 10.1134/S1547477108040080
Citations: PlumX Metrics


2008KA28      Phys.Atomic Nuclei 71, 1384 (2008)

F.F.Karpeshin, M.B.Trzhaskovskaya

Triggering the 178m2Hf isomer via resonance conversion

RADIOACTIVITY 182mHf(IT); calculated decay widths for two-photon resonance conversion; deduced enhancements in photo-induced de-excitation.

doi: 10.1134/S1063778808080073
Citations: PlumX Metrics


2007KA03      J.Phys.(London) G34, 587 (2007)

F.F.Karpeshin, G.La Rana, E.Vardaci, A.Brondi, R.Moro, S.N.Abramovich, V.I.Serov

Resonances in alpha-nuclei interaction

NUCLEAR REACTIONS 131La(α, X), E ≈ 10-15 MeV; calculated α-nucleus potential, resonance features.

doi: 10.1088/0954-3899/34/3/016
Citations: PlumX Metrics


2007KA59      Phys.Rev. C 76, 054313 (2007)

F.F.Karpeshin, M.B.Trzhaskovskaya

Impact of the electron environment on the lifetime of the 229Thm low-lying isomer

RADIOACTIVITY 229mTh(IT); calculated effect of electron shell on lifetime using multiconfiguration Dirac-Fock method.

doi: 10.1103/PhysRevC.76.054313
Citations: PlumX Metrics


2006GA45      Phys.Part. and Nucl.Lett. 3, 395 (2006); Pisma Zh.Fiz.Elem.Chast.Atom.Yadra Vol. 3, No.6 [135], 90 (2006)

Yu.P.Gangrsky, F.F.Karpeshin, Yu.P.Popov, M.B.Trzhaskovskaya

Resonance Conversion of γ-Radiation in the Radiative Transitions between Neutron Resonances

NUCLEAR REACTIONS 147Sm(n, α), E not given; analyzed Eα, resonance features.

doi: 10.1134/S1547477106060094
Citations: PlumX Metrics


2006KA19      Phys.Atomic Nuclei 69, 571 (2006); Yad.Fiz. 69, 596 (2006)

F.F.Karpeshin, M.B.Trzhaskovskaya

Resonance Conversion as a Dominant Decay Mode for the 3.5-eV Isomer in 229mTh

RADIOACTIVITY 229mTh; calculated decay probabilities for resonance conversion and direct radiative decay modes. Relativistic multiconfiguration Dirac-Fock method.

NUCLEAR STRUCTURE 229mTh; calculated decay probabilities for resonance conversion and direct radiative decay modes. Relativistic multiconfiguration Dirac-Fock method.

doi: 10.1134/S106377880604003X
Citations: PlumX Metrics


2006KA32      Chin.Phys.Lett. 23, 2049 (2006)

F.F.Karpeshin, M.B.Trzhaskovskaya, J.-B.Zhang

Resonance Conversion as the Effective Way of Triggering the 178m2Hf Isomer Energy

RADIOACTIVITY 182mHf; calculated decay widths for resonance conversion; deduced enhancement in photo-induced de-excitation.

doi: 10.1088/0256-307X/23/8/024
Citations: PlumX Metrics


2006KA62      Physics of Part.and Nuclei 37, 284 (2006)

F.F.Karpeshin

Resonance Internal Conversion as a Way of Accelerating Nuclear Processes

doi: 10.1134/S1063779606020055
Citations: PlumX Metrics


2006KA66      Bull.Rus.Acad.Sci.Phys. 70, 867 (2006)

F.F.Karpeshin, J.da Providencia

Electron-ion interaction in atomic clusters in laser radiation field


2006KA67      Hyperfine Interactions 171, 255 (2006)

F.F.Karpeshin, M.B.Trzhaskovskaya

Testing QED with resonance conversion

NUCLEAR MOMENTS 209Bi; calculated hfs for hydrogen-like ion. Other resonance conversion tests of QED discussed.

doi: 10.1007/s10751-006-9506-z
Citations: PlumX Metrics


2005GA63      Bull.Rus.Acad.Sci.Phys. 69, 1857 (2005)

Yu.P.Gangrsky, V.I.Zhemenik, S.G.Zemlyanoi, F.F.Karpeshin, G.V.Myshinsky, M.B.Trzhaskovskaya

Search for light radiation in decay of 229Th isomer with anomalously low excitation energy

NUCLEAR REACTIONS 229Th(γ, γ'), E=8.2 MeV bremsstrahlung; measured prompt and delayed Eγ, Iγ; deduced no light emission from isomer decay.


2005KA60      Hyperfine Interactions 162, 125 (2005)

F.F.Karpeshin, M.B.Trzhaskovskaya

Resonance Conversion as the Predominant Decay Mode of 229mTh

RADIOACTIVITY 229mTh(IT); calculated resonance conversion probability, associated photon spectra. Multiconfiguration Dirac-Fock method.

doi: 10.1007/s10751-005-9213-1
Citations: PlumX Metrics


2004GA56      Bull.Rus.Acad.Sci.Phys. 68, 165 (2004)

Yu.P.Gangrsky, F.F.Karpeshin, M.B.Trzhaskovskaya

De-excitation of nuclear levels in hydrogen-like ions through resonant internal conversion

NUCLEAR STRUCTURE 169Yb; calculated resonant conversion coefficients for hydrogen-like ions.


2004KA02      J.Phys.(London) G30, 1 (2004)

F.F.Karpeshin

The complex trajectory method in muon-induced prompt fission

doi: 10.1088/0954-3899/30/2/001
Citations: PlumX Metrics


2004KA14      Yad.Fiz. 67, 234 (2004); Phys.Atomic Nuclei 67, 217 (2004)

F.F.Karpeshin, Yu.N.Novikov, M.B.Trzhaskovskaya

Internal Conversion in Hydrogen-like Ions

NUCLEAR STRUCTURE Zn, Er, Tl; calculated ICC for hydrogen-like ions.

doi: 10.1134/1.1648912
Citations: PlumX Metrics


2004KA72      Bull.Rus.Acad.Sci.Phys. 68, 1278 (2004)

F.F.Karpeshin, M.B.Trzhaskovskaya

Correction for "shaking" to internal conversion coefficient

NUCLEAR STRUCTURE Zn, Sn, Yb, U; calculated shaking-effect corrections to ICC.


2003KA28      Yad.Fiz. 66, 1209 (2003); Phys.Atomic Nuclei 66, 1173 (2003)

F.F.Karpeshin

The Complex Trajectory Method and Dissipation in Fission

doi: 10.1134/1.1586433
Citations: PlumX Metrics


2003KA70      Bull.Rus.Acad.Sci.Phys. 67, 783 (2003)

F.F.Karpeshin

Method of complex trajectories in nuclear fission


2003KA72      Bull.Rus.Acad.Sci.Phys. 67, 1682 (2003)

F.F.Karpeshin, M.B.Trzhaskovskaya

Effect of multiple atomic ionization on γ-ray internal conversion probability

NUCLEAR STRUCTURE Zn, Er, Ti; calculated internal conversion coefficients for hydrogenlike ions.


2002KA14      Phys.Rev. C65, 034303 (2002)

F.F.Karpeshin, M.B.Trzhaskovskaya, M.R.Harston, J.F.Chemin

Internal Conversion between Bound States and the Pauli Exclusion Principle

NUCLEAR STRUCTURE 197Au; calculated conversion coefficients for Pauli-forbidden bound internal conversion.

doi: 10.1103/PhysRevC.65.034303
Citations: PlumX Metrics


2002KA75      Hyperfine Interactions 143, 79 (2002)

F.F.Karpeshin

Electron Shell as a Resonator

doi: 10.1023/A:1024056828718
Citations: PlumX Metrics


2002SE09      Bull.Rus.Acad.Sci.Phys. 65, 1676 (2002)

V.I.Serov, S.N.Abramovich, F.F.Karpeshin

Neutron Halo in Fissionable Nuclei

NUCLEAR REACTIONS 233,235U(n, F), E=0-6 MeV; 235U(d, F), E ≈ 11.5 MeV; 232Th, 238U(t, F), E=8.6-13.4 MeV; 237Np(n, F), E ≈ 25-200 MeV; 232Th(p, F), E ≈ 8-22 MeV; analyzed fission σ, neutron yields; deduced possible halo state formation.


2000BA84      Bull.Rus.Acad.Sci.Phys. 64, 1 (2000)

I.M.Band, M.B.Trzhaskovskaya, F.F.Karpeshin, M.A.Listengarten

Fragmentation of Discrete (Subthreshold) Internal Conversion Coefficients in Multiconfigurational Calculations of Highly Charged 125Te Ions

RADIOACTIVITY 125mTe(IT); calculated levels ICC, T1/2 for highly charged ion. Fragmentation of discrete internal conversion coefficients.


2000KA26      Yad.Fiz. 63, No 5, 799 (2000); Phys.Atomic Nuclei 63, 729 (2000)

F.F.Karpeshin

Born-Oppenheimer Expansion: From muon distribution to dissipation in fission

doi: 10.1134/1.855699
Citations: PlumX Metrics


1999KA06      Yad.Fiz. 62, No 1, 37 (1999); Phys.Atomic Nuclei 62, 32 (1999)

F.F.Karpeshin, G.Ye.Belovitsky, V.N.Baranov, O.M.Shteingrad

Nonstatistical Effects in the Angular Distribution of Light Charged Particles and Fragments from Uranium Fission Induced by 153-MeV Protons

NUCLEAR REACTIONS U(p, F), E=153 MeV; measured light charged particles, fission fragments angular distributions, angular correlations; deduced fission mechanism features.


1999KA47      Nucl.Phys. A654, 579 (1999)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya

3.5-eV Isomer of 229mTh: How it can be produced

NUCLEAR REACTIONS 229Th(γ, γ')229mTh, E=low; calculated isomer excitation probability; deduced role of atomic electrons.

doi: 10.1016/S0375-9474(99)00303-6
Citations: PlumX Metrics


1999KA53      Bull.Rus.Acad.Sci.Phys. 63, 30 (1999)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya, A.A.Pastor

Role of the Electron Bridge in De-Excitation of the 3.5-eV 229Th Isomer

NUCLEAR STRUCTURE 229mTh; calculated isomer γ, conversion electron relative decay probabilities. Electron Bridge.


1998KA27      Phys.Rev. C57, 3085 (1998)

F.F.Karpeshin, S.Wycech, I.M.Band, M.B.Trzhaskovskaya, M.Pfutzner, J.Zylicz

Rates of Transitions between the Hyperfine-Splitting Components of the Ground-State and the 3.5 eV Isomer in 229Th89+

NUCLEAR STRUCTURE 229Th; calculated nuclear spin mixing due to hyperfine interactions, transition rates in hydrogen-like ion.

doi: 10.1103/PhysRevC.57.3085
Citations: PlumX Metrics


1998KA51      Bull.Rus.Acad.Sci.Phys. 62, 20 (1998)

F.F.Karpeshin, M.A.Listengarten, L.I.Mileshina

Calculation of the Matrix Element for 8Li β Decay within an Intermediate Coupling Model

RADIOACTIVITY 8Li(β-); calculated Gamow-Teller matrix element, log ft. Intermediate coupling model.


1997KA18      Nucl.Phys. A617, 211 (1997)

F.F.Karpeshin

Angular Asymmetries in Emission of Muons from Prompt Fission Fragments

doi: 10.1016/S0375-9474(97)00035-3
Citations: PlumX Metrics


1996KA07      Phys.Rev. C53, 1640 (1996)

F.F.Karpeshin, M.R.Harston, F.Attallah, J.F.Chemin, J.N.Scheurer, I.M.Band, M.B.Trzhaskovskaya

Subthreshold Internal Conversion to Bound States in Highly Ionized 125Te Ions

NUCLEAR STRUCTURE 125Te; calculated ICC for various highly ionized charge states; deduced internal conversion decay continuity across continuum, bound final states energy threshold. New mode of decay.

doi: 10.1103/PhysRevC.53.1640
Citations: PlumX Metrics


1996KA13      Phys.Lett. 372B, 1 (1996)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya, M.A.Listengarten

Optical Pumping 229mTh Through NEET as a New Effective Way of Producing Nuclear Isomers

NUCLEAR STRUCTURE 229Th; calculated nuclear excited electronic transition related features; deduced isomeric state production by optical pumping related features.

doi: 10.1016/0370-2693(96)00036-6
Citations: PlumX Metrics


1995DI11      Bull.Rus.Acad.Sci.Phys. 59, 876 (1995)

A.T.Diachenko, F.F.Karpeshin

Collective Mechanism for Enhancing Subbarier Fusion of Heavy Ions in Synthesis of Superheavy Elements

NUCLEAR REACTIONS, ICPND 64Ni(64Ni, X), E(cm) ≈ 90-105 MeV; 100Mo(64Ni, X), E(cm) ≈ 130-160 MeV; 248Cm(52Ca, X), (48Ca, X), E(cm) ≈ 190-230 MeV; 248Cm(64Fe, X), E(cm) ≈ 245-280 MeV; analyzed fusion σ(E); deduced sub-barrier fusion enhancement related features.


1995KA26      Bull.Rus.Acad.Sci.Phys. 59, 1 (1995)

F.F.Karpeshin, M.A.Listengarten, S.N.Manida

Effect of Laser Radiation on β-Decay


1995KA31      Nucl.Phys. A595, 209 (1995)

F.F.Karpeshin, C.G.Koutroulos, M.E.Grypeos

The Attachment Probability for a Λ Particle to Fragments

doi: 10.1016/0375-9474(95)00371-X
Citations: PlumX Metrics


1994KA17      Yad.Fiz. 57, No 4, 594 (1994); Phys.Atomic Nuclei 57, 631 (1994)

F.F.Karpeshin

Probability of the (Lambda) Hyperon Attachment to Fission Fragments of Hypernuclei


1994KA37      Bull.Rus.Acad.Sci.Phys. 58, 41 (1994)

F.F.Karpeshin, M.A.Listengarten, I.M.Band, M.B.Trzhaskovskaya

Enhancement of Nuclear Electromagnetic Transitions During Resonant Interaction between Nucleus and Electron Shell in the Laser Field

NUCLEAR STRUCTURE 229Th; analyzed level resonant excitation; deduced laser field induced enhancement features.


1993KA39      Bull.Rus.Acad.Sci.Phys. 57, 1673 (1993)

F.F.Karpeshin, M.A.Listengarten, I.M.Band, M.B.Trzhaskovskaya

Anomalous E1-Conversion and Polarization Induced Electric Moment of a Nucleus

NUCLEAR STRUCTURE Z=88; calculated nucleus region contribution to subshell E1 transition conversion matrix element, ICC.


1993RO14      Z.Phys. A345, 425 (1993)

C.Rosel, F.F.Karpeshin, P.David, H.Hanscheid, J.Konijn, C.T.A.M.de Laat, H.Paganetti, F.Risse, B.Sabirov, L.A.Schaller, L.Schellenberg, W.Schrieder, A.Taal

Experimental Evidence for Muonic X-Rays from Fission Fragments

NUCLEAR REACTIONS 238U(μ-, F), E at rest; analyzed fission fragment decay γ(X-ray)-coin data; deduced structure associated with transitions of muon attached to fragment.

ATOMIC PHYSICS, Mesic-Atoms 238U(μ-, F), E at rest; analyzed fission fragment decay γ(X-ray)-coin data; deduced structure associated with transitions of muon attached to fragment.


1992DE42      Bull.Rus.Acad.Sci.Phys. 56, 108 (1992)

Yu.N.Demkov, F.F.Karpeshin

Harmonic Scattering of Electrons and Quadrupole Moment of Nucleus

NUCLEAR REACTIONS 9Be, 153Eu(e, e), E=fast; calculated relative quadrupole scattering contribution, small θ. Harmonic scattering theory, deformed, nonaxial nuclei, intrinsic quadrupole moment.


1992KA13      Yad.Fiz. 55, 29 (1992); Sov.J.Nucl.Phys. 55, 18 (1992)

F.F.Karpeshin

Study of Fission Dynamics in Muonic Atoms by Means of the Distribution of Muons between Fragments

NUCLEAR STRUCTURE 238U, 237Np; analyzed fission data; deduced muonic atom fission dynamics.


1992KA18      Phys.Lett. 282B, 267 (1992)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya, B.A.Zon

Study of 229Th Through Laser-Induced Resonance Internal Conversion

NUCLEAR STRUCTURE 229Th; calculated transition acceleration factor. Laser induced resonance internal conversion.

doi: 10.1016/0370-2693(92)90636-I
Citations: PlumX Metrics


1992KA40      Can.J.Phys. 70, 623 (1992)

F.F.Karpeshin, M.A.Listengarten, B.A.Zon, I.M.Band, M.B.Trzhaskovskaya

Stimulation of Nuclear Transitions via Resonance Conversion in Electromagnetic Fields

RADIOACTIVITY 235mU(IT); calculated nuclear, electronic transition energy difference; deduced externally applied radiation frequency dependence.

doi: 10.1139/p92-099
Citations: PlumX Metrics


1992KA45      Z.Phys. A344, 55 (1992)

F.F.Karpeshin

Anomalous E1 Conversion in Octupole-Deformed Nuclei and Muon Shake-Off in Prompt Fission

NUCLEAR REACTIONS 238U(μ-, F), E not given; calculated muon shake-off probability for 140Xe fragment. Anomalous E1 conversion in octupole deformed nuclei.

doi: 10.1007/BF01291020
Citations: PlumX Metrics


1992KA47      Yad.Fiz. 55, 2893 (1992); Sov.J.Nucl.Phys. 55, 1618 (1992)

F.F.Karpeshin

Muon Shaking as the Result of Anomalous E1 Conversion in Prompt-Fission Fragments


1991BA64      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2135 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.11, 53 (1991)

I.M.Band, F.F.Karpeshin, M.A.Listengarten, M.B.Trzhaskovskaya

Resonant Internal Conversion in Electron Plasma

RADIOACTIVITY 235mU(IT); analyzed role of ionization in electron shells on transition matrix elements for internal conversion. Laser stimulated 235mU decay acceleration, refined Hartree-Fock calculations.


1991KA07      J.Phys.(London) G17, 705 (1991)

F.F.Karpeshin, V.O.Nesterenko

The Microscopic Description of the Collective E1, E2 and E3 Nuclear Excitation through Radiationless Transitions in Actinoid Muonic Atoms

NUCLEAR REACTIONS 238U(μ-, γ), E at rest; calculated muonic atom transition γ-multipolarity, Γγ, radiationless transition probabilities.

ATOMIC PHYSICS, Mesic-Atoms 238U(μ-, γ), E at rest; calculated muonic atom transition γ-multipolarity, Γγ, radiationless transition probabilities.

doi: 10.1088/0954-3899/17/5/016
Citations: PlumX Metrics


1990DE42      Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 109 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, 111 (1990)

Yu.N.Demkov, F.F.Karpeshin

Thomas Scattering in Nuclear Reactions


1990KA23      J.Phys.(London) G16, 1195 (1990)

F.F.Karpeshin

Muonic Conversion as a Multipole Meter of γ Rays and Muon Distribution of Fragments from Prompt Nuclear Fission of U and Pu

ATOMIC PHYSICS, Mesic-Atoms U, Pu; calculated muonic conversion probabilities following fission. Fission induced by radiationless transitions in mesic atoms.

doi: 10.1088/0954-3899/16/8/014
Citations: PlumX Metrics


1990ZO01      Zh.Eksp.Teor.Fiz. 70, 401 (1990); Sov.Phys.JETP 70, 224 (1990)

B.A.Zon, F.F.Karpeshin

Acceleration of the Decay of 235mU by Laser-Induced Resonant Internal Conversion

RADIOACTIVITY 235mU; calculated decay rate; deduced electron transition induced excitation probability. Laser radiation acceleration of transitions.


1989ZA10      Yad.Fiz. 50, 1546 (1989); Sov.J.Nucl.Phys. 50, 959 (1989)

D.F.Zaretsky, F.F.Karpeshin

Doorway States for Fission

NUCLEAR STRUCTURE 238U; calculated phonon levels fission decay widths. Doorway model.


1987KA27      Yad.Fiz. 45, 1556 (1987)

F.F.Karpeshin, M.S.Kaschiev, V.A.Kaschieva

The Muon Fate after Prompt Nuclear Fission in Muonic Atoms in View of a Prospect to Study Nuclear Fission Dynamics

NUCLEAR REACTIONS 238U(μ-, F), E=150-200 MeV; calculated light fragment muon capture probabilites following fission. Fission dynamics.


1986BE28      Phys.Lett. 177B, 260 (1986)

E.E.Berlovich, F.F.Karpeshin

On the Nature of the Phase Transition in Nuclei with Neutron Number N = 88-90

NUCLEAR STRUCTURE 147,149,151,153,155Eu, 147,149,151,153,155Sm; calculated intrinsic quadrupole moments. Mottelson-Nilsson method without pairing mode.

doi: 10.1016/0370-2693(86)90749-5
Citations: PlumX Metrics


1983KA05      Izv.Akad.Nauk SSSR, Ser.Fiz. 47, 188 (1983)

F.F.Karpeshin

Conversion Processes in μ-Mesic Atoms

NUCLEAR STRUCTURE 90Zr, 208Pb; calculated muon conversion coefficients.


1983ZA05      Yad.Fiz. 38, 292 (1983)

D.F.Zaretsky, F.F.Karpeshin

Polarization of Nuclei at Radiationless Excitation in Muonic Atoms

ATOMIC PHYSICS, Mesic-Atoms 238U(μ, γ), E at rest; calculated nucleus polarizability in muonic atom radiationless transition.


1982KA19      Yad.Fiz. 35, 1365 (1982)

F.F.Karpeshin, V.E.Starodubsky

The Microscopic Description of Muonic Conversion in Magic Nuclei

ATOMIC PHYSICS, Mesic-Atoms 208Pb, 90Zr; calculated ICC for muonic conversion, conversion widths for giant multipole resonance decay. RPA transition densities, Skyrme interactions.


1982KA31      Yad.Fiz. 36, 336 (1982)

F.F.Karpeshin, M.S.Kaschiev, V.A.Kaschieva

Distribution of Muons among the Prompt Fission Fragments from Mesoplutonium

NUCLEAR REACTIONS 239Pu(μ-, F), E at rest; calculated light fission fragment muon entrainment probability.


1980KA38      Yad.Fiz. 32, 55 (1980); Sov.J.Nucl.Phys. 32, 29 (1980)

F.F.Karpeshin

Probability of Conversion in Fragments of Prompt Fission in Mesic Atoms

NUCLEAR REACTIONS, Fission 236U(μ-, F), E at rest; calculated conversion γ-spectra, conversion probability for light, heavy fragments; deduced muon conversion coefficient, fragment transition γ-multipolarity.


1980ZA06      Yad.Fiz. 31, 47 (1980); Sov.J.Nucl.Phys. 31, 24 (1980)

D.F.Zaretsky, F.F.Karpeshin, M.A.Listengarten, V.N.Ostrovsky

Probability of Entrainment of a Muon by Prompt Fission Fragments

NUCLEAR REACTIONS, Fission 236U(μ-, F), E at rest; calculated muon entrainment by light fragment. Prompt fission, radiationless transition.


1976KA35      Izv.Akad.Nauk SSSR, Ser.Fiz. 40, 1164 (1976); Bull.Acad.Sci.USSR, Phys.Ser. 40, No.6, 58 (1976)

F.F.Karpeshin, I.M.Band, M.A.Listengarten, L.A.Sliv

μ-Mesic Conversion of Nuclear γ-Rays

NUCLEAR STRUCTURE, Mesic-Atoms 96Sr, 140Xe; calculated ICC for muonic atoms, one muon in K-shell. E1, M1, E2 transitions for Z=10, 20, 30, 40, 50, 60, 70, 80, 90.


Back to query form