NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = M.B.Trzhaskovskaya

Found 118 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2023KA12      Phys.Rev. C 107, 045502 (2023)

F.F.Karpeshin, M.B.Trzhaskovskaya

Shake-off in the 164Er neutrinoless double-electron capture and the dark matter puzzle

RADIOACTIVITY 164Er, 152Gd, 180W(2EC); calculated T1/2 for resonance and shake-off double-electron neutrinoless capture, matrix elements, shell contributions (2s, 2p1/2, 3d3/2 and 4f5/2) to the shake-off amplitude. Analysis of experimental capabilities to register nonresonance shake-off double-electron neutrinoless capture.

doi: 10.1103/PhysRevC.107.045502
Citations: PlumX Metrics


2022KA09      Phys.Rev. C 105, 024307 (2022)

F.F.Karpeshin, M.B.Trzhaskovskaya, L.F.Vitushkin

Prospects for studying the effect of electronic screening on α decay in storage rings

RADIOACTIVITY 212,213,214,220,221,222,224,226Ra, 221Po, 196,197,198,199,200,201,202At, 222,223Ac, 212,219,220Rn, 213,220,221Fr(α); calculated T1/2 for bare nuclei and He-like ions. Adiabatic approach.

doi: 10.1103/PhysRevC.105.024307
Citations: PlumX Metrics


2022KA55      Phys.Atomic Nuclei 85, 474 (2022)

F.F.Karpeshin, M.B.Trzhaskovskaya

Shakeoff Effect on the Rate of Neutrinoless Double-Electron Capture in 164Er

RADIOACTIVITY 164Er(2EC); calculated probabilities for shakeoff followed by electron-shell ionization occurring; deduced removal of the resonance requirement, leading to an increase in the capture rate.

doi: 10.1134/S1063778822050064
Citations: PlumX Metrics


2022TR01      Phys.Atomic Nuclei 85, 50 (2022)

M.B.Trzhaskovskaya, V.K.Nikulin

Internal Conversion Coefficients for Observed Low-Energy Gamma Transitions

NUCLEAR STRUCTURE 93Nb, 103Rh, 109Ag, 111Cd, 117,119Sn, 125,127Te, 154Sm, 160Gd, 164Dy, 174Yb, 193Ir, 230Th, 240Pu; calculated the total internal conversion coefficients using the Dirac-Fock method, and the exchange interaction both between bound electrons and between bound and free electrons. Comparison with experimental data.

doi: 10.1134/S1063778822010136
Citations: PlumX Metrics


2021KA18      Nucl.Phys. A1010, 122173 (2021)

F.F.Karpeshin, M.B.Trzhaskovskaya

A proposed solution for the lifetime puzzle of the 229mTh+ isomer

RADIOACTIVITY 229Th(IT); analyzed available data; deduced dependence of the lifetime of the nuclear isomer on the ambient conditions, leveling role of the fragmentation of the single-electron levels, which makes the resonance amplification of the electron-nuclear interaction more likely, these trends lead to a probable decrease of the theoretical lifetime towards agreement with experiment.

doi: 10.1016/j.nuclphysa.2021.122173
Citations: PlumX Metrics


2021KA44      Phys.Atomic Nuclei 84, 418 (2021)

F.F.Karpeshin, M.B.Trzhaskovskaya

Comparison of Methods for Eliminating the Bohr-Weisskopf Effect in Atomic Spectra of 209Bi Heavy Ions

ATOMIC PHYSICS 209Bi; analyzed available data; deduced a relationship between hyperfine splitting in different shells for eliminating the Bohr-Weisskopf effect in hyperfine-splitting theory, refined value the magnetic moment.

doi: 10.1134/S1063778821040165
Citations: PlumX Metrics


2021TR04      At.Data Nucl.Data Tables 139, 101389 (2021)

M.B.Trzhaskovskaya, V.K.Nikulin, Yu.N.Tsarev

Radiative recombination data for low-charged tungsten ions: IV. W3+-W13+

ATOMIC PHYSICS W; calculated partial photoionization σ using fully relativistic Dirac-Fock method.

doi: 10.1016/j.adt.2020.101389
Citations: PlumX Metrics


2021TR06      At.Data Nucl.Data Tables 140, 101426 (2021)

M.B.Trzhaskovskaya, V.K.Nikulin

Dirac-Fock internal conversion coefficients at low γ-ray energy

ATOMIC PHYSICS Z=10-118; calculated internal conversion coefficients and low-energy γ-ray energies using Dirac-Fock method. Comparison with experimental data.

doi: 10.1016/j.adt.2021.101426
Citations: PlumX Metrics


2021YA11      At.Data Nucl.Data Tables 139, 101387 (2021)

V.G.Yarzhemsky, M.B.Trzhaskovskaya

Spectroscopic factors of atomic subshells for HAXPES applications

ATOMIC PHYSICS Z=2-100; calculated spectroscopic factors for all shells of atoms, photoionization σ. XPS and HAXPES.

doi: 10.1016/j.adt.2020.101387
Citations: PlumX Metrics


2020HO10      Phys.Rev. C 102, 014310 (2020)

V.Horvat, E.E.Tereshatov, J.C.Hardy, N.Nica, C.M.Folden, V.E.Iacob, M.B.Trzhaskovskaya

K-shell internal conversion coefficient for M4 decay of the 30.8 keV isomer in 93Nb

RADIOACTIVITY 93Nb(IT); measured Eγ, Iγ, and K-shell conversion coefficient of the 30.76-keV M4 transition from the 30.76-keV, (1/2-) isomer using a Si(Li) detector for direct IT γ-ray and IC K-shell x-ray detection; deduced precise level energy of the isomer. Comparison with different theoretical models.

doi: 10.1103/PhysRevC.102.014310
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020KA52      Phys.Atomic Nuclei 83, 608 (2020)

F.F.Karpeshin, M.B.Trzhaskovskaya, L.F.Vitushkin

Nonresonance Shake Mechanism in Neutrinoless Double Electron Capture

RADIOACTIVITY 152Gd(2EC); calculated probability for the shake followed by electron-shell ionization occurring in the course of nucleus transformation; deduced a correction to the decay constant.

doi: 10.1134/S1063778820030126
Citations: PlumX Metrics


2020KA61      Bull.Rus.Acad.Sci.Phys. 84, 1207 (2020)

F.F.Karpeshin, M.B.Trzhaskovskaya, L.F.Vitushkin

Electron Recombination as a Way of Deexciting the 129mSb Isomer

RADIOACTIVITY 129Sb(IT), (EC); calculated Nuclear Excitation via Electron Capture (NEEC) σ, coefficient of internal conversion (ICC) for the electron shell of the nucleus in its final state, radiation width of the excited nuclear levels. Comparison with available data.

doi: 10.3103/S1062873820100135
Citations: PlumX Metrics


2020KA66      Ann.Nucl.Energy 84, 1524 (2020)

F.F.Karpeshin, M.B.Trzhaskovskaya

The Bohr-Weisskopf Effect in the Atomic Spectra of Heavy Ions of 209Bi

ATOMIC PHYSICS 209Bi; analyzed available data; calculated the nuclear moments of the spatial distribution of magnetization currents. Bohr-Weisskopf effect in the theory of hyperfine splitting (HFS)

doi: 10.3103/S1062873820120175
Citations: PlumX Metrics


2020NI08      Phys.Atomic Nuclei 83, 673 (2020)

V.K.Nikulin, M.B.Trzhaskovskaya

Atomic Processes Accompanying Alpha Decay of Superheavy Nuclei

RADIOACTIVITY 294Ts, 294Og(α); calculated the ionization of atomic shells and x-ray transitions in daughter nuclei and accompanying alpha decay of superheavy isotopes using Dirac-Fock method.

doi: 10.1134/S106377882004016X
Citations: PlumX Metrics


2020VI10      Phys.Atomic Nuclei 83, 775 (2020)

L.F.Vitushkin, F.F.Karpeshin, M.B.Trzhaskovskaya

Fundamental Problems in Creating a Nuclear Optical Frequency Standard on the Basis of 229Th

RADIOACTIVITY 229Th(IT); analyzed available data; calculated B(E2), B(M1), radiative widths; deduced a probable solution to the thorium puzzle, the first ever observation of the dependence of the nuclear-isomer lifetime on ambient conditions, the smoothing role of single-electron levels, which renders the resonance amplification of the electron-nucleus interaction more probable.

doi: 10.1134/S1063778820050208
Citations: PlumX Metrics


2019KA37      Phys.Rev. C 100, 024326 (2019)

F.F.Karpeshin, M.B.Trzhaskovskaya

Examination of the solution to the hyperfine structure "puzzle" in H-like and Li-like 209Bi ions

ATOMIC PHYSICS 209Bi; calculated hyperfine splittings of the 1s- and 2s- levels for the H-like and Li-like ions of 209Bi by the application of the surface and volume models of nuclear currents, and consideration of Bohr-Weisskopf effect. Comparison with available experimental data. Relevance to testing QED for hyperfine structure in few electron ions.

doi: 10.1103/PhysRevC.100.024326
Citations: PlumX Metrics


2019NI05      Phys.Atomic Nuclei 82, 55 (2019)

V.K.Nikulin, M.B.Trzhaskovskaya

L-Shell Ionization during the Alpha Decay of Superheavy Nuclei from 294117Ts Tennessine Decay Chain and the Alpha Decay of the Polonium Isotope 21084Po

doi: 10.1134/S1063778819010095
Citations: PlumX Metrics


2019NI06      Phys.Rev. C 99, 054328 (2019)

V.K.Nikulin, M.B.Trzhaskovskaya

Inner-shell ionization during α decay of superheavy isotopes from the tennessine 293117Ts and oganesson 294118Og chains

RADIOACTIVITY 285Nh, 286Fl, 289Mc, 290Lv, 293Ts, 294Og(α); calculated probabilities for the K-, L-, and M-shell inner ionization. 210,214,216,218Po, 222Rn(α); calculated ionization probabilities for the K-, L- and M-shells, and compared with experimental data. Quantum mechanical method, with electron wave functions calculated in the framework of the relativistic Dirac-Fock (DF) method with screening and the electron exchange interaction, and the α-particle tunneling through the atomic Coulomb barrier.

doi: 10.1103/PhysRevC.99.054328
Citations: PlumX Metrics


2019TR08      At.Data Nucl.Data Tables 129-130, 101280 (2019)

M.B.Trzhaskovskaya, V.G.Yarzhemsky

Dirac-Fock photoionization parameters for HAXPES applications, Part II: Inner atomic shells

ATOMIC PHYSICS Z=13-100; calculated photoionization σ and parameters of the photoelectron angular distribution for inner atomic subshells with binding energies beyond 1.5 keV in the photon energy range from 2 keV to 12 keV.

doi: 10.1016/j.adt.2019.05.001
Citations: PlumX Metrics


2018HA07      Appl.Radiat.Isot. 134, 406 (2018)

J.C.Hardy, N.Nica, V.E.Iacob, M.B.Trzhaskovskaya

Precise test of internal-conversion theory: αK measurements for transitions in nine nuclei spanning 45 ≤ Z ≤ 78

RADIOACTIVITY 111Cd, 134Cs, 119Sn, 125,127Te, 137Ba, 193Ir, 197Pt(IT); measured decay products, Eγ, Iγ, Eβ, Iβ, X-rays; deduced internal-conversion coefficients. Comparison with theoretical calculations.

doi: 10.1016/j.apradiso.2017.05.021
Citations: PlumX Metrics


2018KA04      Nucl.Phys. A969, 173 (2018)

F.F.Karpeshin, M.B.Trzhaskovskaya

Impact of the ionization of the atomic shell on the lifetime of the 229mTh isomer

ATOMIC PHYSICS 229mTh; compiled recent T1/2 data for neutral atoms and charged (up to three-fold) ions; calculated ICC value in 7s electronic shell deduced radiative nuclear T1/2 with consideration of resonance conversion (bound internal conversion) and specific (leading) electron configuration. Compared to data.

doi: 10.1016/j.nuclphysa.2017.10.003
Citations: PlumX Metrics


2018KA20      Phys.Atomic Nuclei 81, 1 (2018)

F.F.Karpeshin, M.B.Trzhaskovskaya

Anomalous Internal Conversion as a Clue to Solving the 209Bi Puzzle

ATOMIC PHYSICS 209Bi; calculated hyperfine H-like and Li-like ions hyperfine splitting using specific-difference method; deduced that reported disagreement between theory and data was due to going beyond theoretical accuracy.

doi: 10.1134/S106377881801012X
Citations: PlumX Metrics


2018NI14      Phys.Rev. C 98, 054321 (2018)

N.Nica, J.C.Hardy, V.E.Iacob, V.Horvat, H.I.Park, T.A.Werke, K.J.Glennon, C.M.Folden, V.I.Sabla, J.B.Bryant, X.K.James, M.B.Trzhaskovskaya

Precise measurement of αK andαT for the 39.8-keV E3 transition in 103Rh: Test of internal-conversion theory

RADIOACTIVITY 103Rh(IT)[from 103Ru(β-) produced in 102Ru(n, γ), and 103Pd(EC) produced in 102Pd(n, γ) at the TRIGA reactor of Texas A and M]; measured Eγ, Iγ, K-x rays, K-shell and total internal conversion coefficients; deduced M4 admixture and mixing ratio for the 39.8-keV isomeric transition in 103Rh. Comparison with Dirac-Fock calculations, and results disagree with the theory which ignores the K-shell atomic vacancy. 103Ru(β-)[from 102Ru(n, γ), E=thermal]; measured Eγ, Iγ; deduced K-x ray intensity using the known data for multipolarities and mixing ratios of non-isomeric transitions in 103Rh from the decay of 103Ru. Comparison with previous experimental γ-ray intensities in 103Ru decay.

doi: 10.1103/PhysRevC.98.054321
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017KA09      Phys.Rev. C 95, 034310 (2017)

F.F.Karpeshin, M.B.Trzhaskovskaya

Bound internal conversion versus nuclear excitation by electron transition: Revision of the theory of optical pumping of the 229mTh isomer

NUCLEAR REACTIONS 229Th(γ, γ')229mTh, E=few eV; calculated and analyzed differences between two mechanisms of optical pumping, nuclear excitation in the electronic transition (NEET) and bound internal conversion (BIC), two-photon optical pumping rate of the 7.6-eV nuclear isomer in singly ionized 229Th. Relevance to nuclear frequency standard and the nuclear clock, and development of new optical-nuclear technologies.

doi: 10.1103/PhysRevC.95.034310
Citations: PlumX Metrics


2017NI03      Phys.Rev. C 95, 034325 (2017)

N.Nica, J.C.Hardy, V.E.Iacob, H.I.Park, K.Brandenburg, M.B.Trzhaskovskaya

Precise measurement of αK for the 88.2-keV M4 transition in 127Te: Test of internal-conversion theory

RADIOACTIVITY 127Te(β-); 127mTe(IT), (β-)[from 126Te(n, γ), E=thermal]; measured E(x ray), I(x ray), Eγ, Iγ, K-conversion coefficient for the 88.2-keV M4 transition in 127Te and compared with Dirac-Fock theoretical calculations. 127I; deduced levels, β branchings, γ-branching ratios, and compared with previous experimental results.

doi: 10.1103/PhysRevC.95.034325
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017NI10      Phys.Rev. C 95, 064301 (2017)

N.Nica, J.C.Hardy, V.E.Iacob, T.A.Werke, C.M.Folden, K.Ofodile, M.B.Trzhaskovskaya

Precise measurement of αK and αT for the 109.3-keV M4 transition in 125Te: Test of internal-conversion theory

RADIOACTIVITY 125mTe(IT)[from 124Te(n, γ), E=thermal at 1-MW TRIGA reactor of Texas A and M Nuclear Science Center]; measured Eγ, Iγ, E(x ray), I(x ray), K-conversion coefficient, and total conversion coefficient for 109.3-keV M4 transition. Comparison with Dirac-Fock calculations.

doi: 10.1103/PhysRevC.95.064301
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017NI15      Bull.Rus.Acad.Sci.Phys. 81, 1201 (2017)

V.K.Nikulin, M.B.Trzhaskovskaya

K-shell ionization during the α-decay of superheavy nuclei

doi: 10.3103/S1062873817100203
Citations: PlumX Metrics


2017RA27      Phys.Rev. C 96, 065502 (2017)

S.S.Ratkevich, A.M.Gangapshev, Yu.M.Gavrilyuk, F.F.Karpeshin, V.V.Kazalov, V.V.Kuzminov, S.I.Panasenko, M.B.Trzhaskovskaya, S.P.Yakimenko

Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay

RADIOACTIVITY 81Kr(EC); 78Kr(2EC); measured x rays, satellite- and hypersatellite-line photons in coincidence using pulse waveform from LPC (Large Proportional Counter) at the underground laboratory of the Baksan Neutrino Observatory (BNO); deduced double K-shell vacancy creation probability (PKK), half-life of 2ν-accompanied 2K-capture decay mode; calculated double fluorescence spectra and yields. Comparison with Z-2 dependence of PKK predicted by Primakoff and Porter.

doi: 10.1103/PhysRevC.96.065502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017TR12      At.Data Nucl.Data Tables 119, 99 (2017)

M.B.Trzhaskovskaya, V.G.Yarzhemsky

Dirac-Fock photoionization parameters for HAXPES applications

ATOMIC PHYSICS Z=1-100; calculated photoionization σ and parameters of the photoelectron angular distribution for atomic subshells with binding energies lower than 1.5 keV of all elements with in the photon energy range 1.5-10 keV. Hard X-ray photoelectron spectroscopy (HAXPES).

doi: 10.1016/j.adt.2017.04.003
Citations: PlumX Metrics


2016NI05      Phys.Rev. C 93, 034305 (2016)

N.Nica, J.C.Hardy, V.E.Iacob, T.A.Werke, C.M.Folden, L.Pineda, M.B.Trzhaskovskaya

Precise measurement of αK and αT for the 150.8-keV E3 transition in 111Cd: Test of internal-conversion theory

RADIOACTIVITY 111mCd(IT)[from 110Cd(n, γ), E=thermal from TRIGA reactor at Texas A and M]; measured Eγ, Iγ, I(K-x rays); deduced total and K-conversion coefficients for 150.8-keV E3 transition. Comparison with theoretical value from Dirac-Fock theory which includes the atomic vacancy. Possible evidence of penetration effects for this transition.

doi: 10.1103/PhysRevC.93.034305
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016TR02      Phys.Rev. C 93, 034312 (2016)

M.B.Trzhaskovskaya, V.K.Nikulin

K-shell ionization during α decay of polonium isotopes and superheavy nuclei

RADIOACTIVITY 210,212,214,216,218Po, 222Rn, 249Fm, 253No, 272Rg, 272mRg(α); calculated and analyzed probabilities of K-shell ionization during α decay. Comparison with available experimental data for Po isotopes and 222Rn. Comparison with previous theoretical calculations. Calculations based on quantum mechanical treatment developed by Anholt and Amundsen including α-particle tunneling through the atomic Coulomb barrier. Electron wave functions calculated in the framework of relativistic self-consistent Dirac-Fock method.

doi: 10.1103/PhysRevC.93.034312
Citations: PlumX Metrics


2015KA25      Nucl.Phys. A941, 66 (2015)

F.F.Karpeshin, M.B.Trzhaskovskaya

The theory of the Bohr-Weisskopf effect in the hyperfine structure

NUCLEAR STRUCTURE 119Sn, 134Cs, 137Ba, 193Ir, 197Pt, 207Pb, 212Bi; calculated internal conversion coefficients for M1, M4 and E3 γ transitions, hyperfine splitting. 209Bi; calculated hyperfine splitting, Bohr-Weisskopf effect, magnetic radii for different states. Dirac-Fock with surface current and no penetration models. Compared with available data.

doi: 10.1016/j.nuclphysa.2015.06.001
Citations: PlumX Metrics


2015KA42      Phys.Atomic Nuclei 78, 715 (2015); Yad.Fiz. 78, 765 (2015)

F.F.Karpeshin, M.B.Trzhaskovskaya

Excitation of the 229mTh nuclear isomer via resonance conversion in ionized atoms

RADIOACTIVITY 229Th(IT); analyzed available data; calculated the optical pumping of the 7.6-eV nuclear isomer; deduced dominant contribution for 3.5-eV isomer, from the resonance 8s-7s transition.

doi: 10.1134/S1063778815060125
Citations: PlumX Metrics


2015KA56      Phys.Atomic Nuclei 78, 933 (2015); Yad.Fiz. 78, 1055 (2015)

F.F.Karpeshin, M.B.Trzhaskovskaya

Experimental aspects of the adiabatic approach in estimating the effect of electron screening on alpha decay

RADIOACTIVITY 144Nd, 214,226Rn, 252Cf, 241Es, 294Og(α); calculated T1/2 for bare nuclei. Comparison with available data.

doi: 10.1134/S1063778815090082
Citations: PlumX Metrics


2014HA07      Appl.Radiat.Isot. 87, 87 (2014)

J.C.Hardy, N.Nica, V.E.Iacob, S.Miller, M.Maguire, M.B.Trzhaskovskaya

Precise test of internal-conversion theory: Transitions measured in five nuclei spanning 50 ≤ Z ≤ 78

RADIOACTIVITY 197Pt, 193Ir, 137Ba, 134Cs, 119Sn(IT); measured Eγ, Iγ, X-rays; deduced internal conversion coefficients. Comparison with theoretical calculations.

doi: 10.1016/j.apradiso.2013.11.033
Citations: PlumX Metrics


2014KA36      Bull.Rus.Acad.Sci.Phys. 78, 672 (2014); Izv.Akad.Nauk RAS, Ser.Fiz 78, 891 (2014); Erratum Bull.Rus.Acad.Sci.Phys. 78, 1162 (2014)

F.F.Karpeshin, M.B.Trzhaskovskaya, C.Brandau, A.Palffy

Reverse conversion in 161Dy ions as an extension of dielectronic recombination

NUCLEAR REACTIONS 161Dy(E, X), E=3.8-43.8 keV; calculated reverse CE σ. Storage rings applications.

doi: 10.3103/S1062873814070156
Citations: PlumX Metrics


2014NI02      Phys.Rev. C 89, 014303 (2014)

N.Nica, J.C.Hardy, V.E.Iacob, M.Bencomo, V.Horvat, H.I.Park, M.Maguire, S.Miller, M.B.Trzhaskovskaya

Precise measurement of αK for the 65.7-keV M4 transition in 119Sn: Extended test of internal-conversion theory

RADIOACTIVITY 119Sn(IT)[from 118Sn(n, γ)]; measured Eγ, Iγ, E(x rays), I(x rays); deduced K-shell internal conversion coefficient of 65.7-keV M4 transition. Comparisons with theoretical conversion coefficient from Dirac-Fock relativistic calculation with and without K-shell atomic vacancy, and with previous measurements.Evidence of support for inclusion of atomic vacancy from comparison of precisely measured conversion coefficients with theoretical calculations for E2, E3 and M4 isomeric transitions in 20 cases including 119Sn, 134Cs, 137Ba, 193Ir and 197Pt.

doi: 10.1103/PhysRevC.89.014303
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014TR05      At.Data Nucl.Data Tables 100, 986 (2014)

M.B. Trzhaskovskaya, V.K. Nikulin

Radiative recombination data for tungsten ions: II. W47+ - W71+

ATOMIC PHYSICS W; calculated recombination and photoionization σ, radiative recombination rate and power loss coefficients. Dirac-Fock method.

doi: 10.1016/j.adt.2013.11.004
Citations: PlumX Metrics


2014TR07      At.Data Nucl.Data Tables 100, 1156 (2014)

M.B.Trzhaskovskaya, V.K.Nikulin

Radiative recombination data for tungsten ions: III. W14-W23

ATOMIC PHYSICS W; calculated photoionization and recombination σ. Relativistic Maxwell-Juttner distribution.

doi: 10.1016/j.adt.2014.06.001
Citations: PlumX Metrics


2012KA28      Bull.Rus.Acad.Sci.Phys. 76, 884 (2012); Izv.Akad.Nauk RAS, Ser.Fiz 76, 986 (2012)

F.F.Karpeshin, M.B.Trzhaskovskaya, V.V.Kuzminov

Fluorescence induced by double K capture

RADIOACTIVITY 78Kr(2EC); calculated double fluorescense spectra, yields. Comparison with available data.

doi: 10.3103/S1062873812080187
Citations: PlumX Metrics


2012KI04      At.Data Nucl.Data Tables 98, 313 (2012)

T.Kibedi, M.B.Trzhaskovskaya, M.Gupta, A.E.Stuchbery

Conversion coefficients for superheavy elements

NUCLEAR STRUCTURE Z=111-126; calculated conversion coefficients. Relativistic Dirac-Fock calculations.

doi: 10.1016/j.adt.2011.11.001
Citations: PlumX Metrics


2011GA46      Phys.Atomic Nuclei 74, 1665 (2011)

Yu.P.Gangrsky, F.F.Karpeshin, M.B.Trzhaskovskaya

Reaction (n, γα) assisted by internal and resonance conversion

NUCLEAR REACTIONS 143Nd(n, γ), (n, αγ), E not given; calculated ICC, resonance conversion characteristic values, E1, M1 radiative transitions, P-violation effects. Comparison with experimental data.

doi: 10.1134/S1063778811070052
Citations: PlumX Metrics


2011KI29      J.Korean Phys.Soc. 59, 1483s (2011)

T.Kibedi, M.Gupta, M.B.Trzhaskovskaya, A.E.Stuchbery

Conversion Coefficients for Superheavy Elements

ATOMIC PHYSICS Z=111-126(EC); calculated conversion coefficients using relativistic Dirac-Fock model; deduced atomic and nuclear parameters.

RADIOACTIVITY Z=111-126(EC); calculated conversion coefficients using relativistic Dirac-Fock model; deduced atomic and nuclear parameters.

doi: 10.3938/jkps.59.1483
Citations: PlumX Metrics


2010TR02      Phys.Rev. C 81, 024326 (2010)

M.B.Trzhaskovskaya, T.Kibedi, V.K.Nikulin

Resonance behavior of internal conversion coefficients at low γ-ray energy

NUCLEAR STRUCTURE Z=11, 15, 20, 30, 32, 36, 39, 40, 50, 60, 64, 70, 74, 80, 85, 90, 100, 112; calculated resonance behavior of internal conversion coefficients for E1, E2, E3, E4 E5 transitions with Eγ<100 keV, and matrix elements for different shells using Dirac-Fock (DF) model. 105Ag, 142Sm, 152Eu, 167Yb, 170Lu, 191Ir, 195,196Au, 198Hg, 206Bi, 221Fr, 223,224Ra; Comparison of experimental and theoretical L1/L2 ratios and evidence for resonance-like behavior.

doi: 10.1103/PhysRevC.81.024326
Citations: PlumX Metrics


2009KA15      Eur.Phys.J. A 39, 341 (2009)

F.F.Karpeshin, M.B.Trzhaskovskaya, J.Zhang

Prospect of triggering the 178m2Hf isomer and the role of resonance conversion

RADIOACTIVITY 178mHf(IT); calculated decay widths, ICCs, related quantities for resonance conversion; deduced enhancement in photo-induced de-excitation.

doi: 10.1140/epja/i2008-10714-3
Citations: PlumX Metrics


2009NI13      Phys.Rev. C 80, 064314 (2009)

N.Nica, J.C.Hardy, V.E.Iacob, J.Goodwin, C.Balonek, M.Hernberg, J.Nolan, M.B.Trzhaskovskaya

Further test of internal-conversion theory with a measurement in 197Pt

RADIOACTIVITY 197mPt(IT); measured Eγ, Iγ, x rays; deduced K-shell internal conversion coefficient of 346.5-keV M4 isomeric transition. Comparison with theoretical conversion coefficient from Dirac-Fock calculation.

doi: 10.1103/PhysRevC.80.064314
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2008GA15      Phys.Atomic Nuclei 71, 951 (2008); Yad.Fiz. 71, 979 (2008)

Yu.P.Gangrsky, F.F.Karpeshin, M.B.Trzhaskovskaya, Yu.E.Penionzhkevich

Effect of beta-electron capture to a bound state on delayed-neutron emission from fission fragments

RADIOACTIVITY 87as, 92,95Se, 87,90,96Br, 98Kr, 99,102Rb, 104,107Sr, 138Sb, 142,146Te, 141,146Cs, 159La(β-); calculated change in decay-rate for decays to bound states and continuum.

doi: 10.1134/S106377880806001X
Citations: PlumX Metrics


2008HA11      Appl.Radiat.Isot. 66, 701 (2008)

J.C.Hardy, N.Nica, V.E.Iacob, C.Balonek, M.B.Trzhaskovskaya

Precise tests of internal-conversion theory

RADIOACTIVITY 134Cs, 137Ba(IT); measured Eγ, Iγ, E(X-ray), I(X-ray); deduced ICC. Compared results to existing data and to model calculations.

doi: 10.1016/j.apradiso.2008.02.006
Citations: PlumX Metrics


2008KA28      Phys.Atomic Nuclei 71, 1384 (2008)

F.F.Karpeshin, M.B.Trzhaskovskaya

Triggering the 178m2Hf isomer via resonance conversion

RADIOACTIVITY 182mHf(IT); calculated decay widths for two-photon resonance conversion; deduced enhancements in photo-induced de-excitation.

doi: 10.1134/S1063778808080073
Citations: PlumX Metrics


2008KI07      Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)

T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.

Evaluation of theoretical conversion coefficients using BrIcc

COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.

doi: 10.1016/j.nima.2008.02.051
Citations: PlumX Metrics


2008NI02      Phys.Rev. C 77, 034306 (2008)

N.Nica, J.C.Hardy, V.E.Iacob, C.Balonek, M.B.Trzhaskovskaya

Internal conversion coefficients in 134Cs, 137Ba, and 139La: A precise test of theory

RADIOACTIVITY 139Ba(β-) [from 138Ba(n, γ)]; measured K-shell internal conversion coefficients. 134Cs, 137Ba; analyzed K-shell internal conversion coefficients. 134Cs, 137Ba, 139La; deduced T1/2 of 139Ba decay, experimental αK and compared with theory.

doi: 10.1103/PhysRevC.77.034306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2008TR01      At.Data Nucl.Data Tables 94, 71 (2008)

M.B.Trzhaskovskaya, V.K.Nikulin, R.E.H.Clark

Radiative recombination and photoionization cross sections for heavy element impurities in plasmas

ATOMIC PHYSICS Fe, Ni, Cu, Mo, W; calculated radiative recombination and photoionization cross sections for electron energy range of 4 eV to 50 keV in plasmas using relativistic Dirac-Fock theory.

doi: 10.1016/j.adt.2007.09.002
Citations: PlumX Metrics


2007KA59      Phys.Rev. C 76, 054313 (2007)

F.F.Karpeshin, M.B.Trzhaskovskaya

Impact of the electron environment on the lifetime of the 229Thm low-lying isomer

RADIOACTIVITY 229mTh(IT); calculated effect of electron shell on lifetime using multiconfiguration Dirac-Fock method.

doi: 10.1103/PhysRevC.76.054313
Citations: PlumX Metrics


2007NI04      Phys.Rev. C 75, 024308 (2007)

N.Nica, J.C.Hardy, V.E.Iacob, W.E.Rockwell, M.B.Trzhaskovskaya

Test of internal-conversion theory with measurements in 134Cs and 137Ba

RADIOACTIVITY 137Cs(β-); 134mCs(IT) [from 133Cs(n, γ)]; measured Eγ, Iγ, X-ray spectra. 134Cs, 137Ba transitions deduced ICC. Comparison with model predictions.

doi: 10.1103/PhysRevC.75.024308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2006GA45      Phys.Part. and Nucl.Lett. 3, 395 (2006); Pisma Zh.Fiz.Elem.Chast.Atom.Yadra Vol. 3, No.6 [135], 90 (2006)

Yu.P.Gangrsky, F.F.Karpeshin, Yu.P.Popov, M.B.Trzhaskovskaya

Resonance Conversion of γ-Radiation in the Radiative Transitions between Neutron Resonances

NUCLEAR REACTIONS 147Sm(n, α), E not given; analyzed Eα, resonance features.

doi: 10.1134/S1547477106060094
Citations: PlumX Metrics


2006HA36      Appl.Radiat.Isot. 64, 1392 (2006)

J.C.Hardy, N.Nica, V.E.Iacob, M.B.Trzhaskovskaya, R.G.Helmer

Test of internal-conversion theory with precise γ- and X-ray spectroscopy

RADIOACTIVITY 193mIr(IT); measured Eγ, Iγ, X-ray spectra; deduced conversion coefficient. 134mCs, 137Ba; analyzed ICC ratio. Comparison with model predictions.

doi: 10.1016/j.apradiso.2006.02.093
Citations: PlumX Metrics


2006KA19      Phys.Atomic Nuclei 69, 571 (2006); Yad.Fiz. 69, 596 (2006)

F.F.Karpeshin, M.B.Trzhaskovskaya

Resonance Conversion as a Dominant Decay Mode for the 3.5-eV Isomer in 229mTh

RADIOACTIVITY 229mTh; calculated decay probabilities for resonance conversion and direct radiative decay modes. Relativistic multiconfiguration Dirac-Fock method.

NUCLEAR STRUCTURE 229mTh; calculated decay probabilities for resonance conversion and direct radiative decay modes. Relativistic multiconfiguration Dirac-Fock method.

doi: 10.1134/S106377880604003X
Citations: PlumX Metrics


2006KA32      Chin.Phys.Lett. 23, 2049 (2006)

F.F.Karpeshin, M.B.Trzhaskovskaya, J.-B.Zhang

Resonance Conversion as the Effective Way of Triggering the 178m2Hf Isomer Energy

RADIOACTIVITY 182mHf; calculated decay widths for resonance conversion; deduced enhancement in photo-induced de-excitation.

doi: 10.1088/0256-307X/23/8/024
Citations: PlumX Metrics


2006KA67      Hyperfine Interactions 171, 255 (2006)

F.F.Karpeshin, M.B.Trzhaskovskaya

Testing QED with resonance conversion

NUCLEAR MOMENTS 209Bi; calculated hfs for hydrogen-like ion. Other resonance conversion tests of QED discussed.

doi: 10.1007/s10751-006-9506-z
Citations: PlumX Metrics


2006NE11      Doklady Physical Chemistry 408, 149 (2006); Dok.Aka.Nauk 408, 488 (2006)

V.I.Nefedov, M.B.Trzhaskovskaya, V.G.Yarzhemskii

Electronic Configurations and the Periodic Table for Superheavy Elements

COMPILATION Z=119-164; compiled evaluated electronic configurations for superheavy elements.

doi: 10.1134/S0012501606060029
Citations: PlumX Metrics


2006RA03      At.Data Nucl.Data Tables 92, 207 (2006)

S.Raman, M.Ertugrul, C.W.Nestor, Jr., M.B.Trzhaskovskaya

Ratios of internal conversion coefficients

COMPILATION Z=26-100; A=57-254; compiled, analyzed ICC ratios, δ. Comparison of experimental data with several model calculations.

doi: 10.1016/j.adt.2005.12.001
Citations: PlumX Metrics


2005GA63      Bull.Rus.Acad.Sci.Phys. 69, 1857 (2005)

Yu.P.Gangrsky, V.I.Zhemenik, S.G.Zemlyanoi, F.F.Karpeshin, G.V.Myshinsky, M.B.Trzhaskovskaya

Search for light radiation in decay of 229Th isomer with anomalously low excitation energy

NUCLEAR REACTIONS 229Th(γ, γ'), E=8.2 MeV bremsstrahlung; measured prompt and delayed Eγ, Iγ; deduced no light emission from isomer decay.


2005KA60      Hyperfine Interactions 162, 125 (2005)

F.F.Karpeshin, M.B.Trzhaskovskaya

Resonance Conversion as the Predominant Decay Mode of 229mTh

RADIOACTIVITY 229mTh(IT); calculated resonance conversion probability, associated photon spectra. Multiconfiguration Dirac-Fock method.

doi: 10.1007/s10751-005-9213-1
Citations: PlumX Metrics


2005NI12      Phys.Rev. C 71, 054320 (2005)

N.Nica, J.C.Hardy, V.E.Iacob, J.R.Montague, M.B.Trzhaskovskaya

Precise measurement of K-shell fluorescence yield in iridium: An improved test of internal-conversion theory

RADIOACTIVITY 191Os(β-) [from 190Os(n, γ)]; measured Eγ, Iγ, X-ray spectra. 191Ir transition deduced ICC, fluorescence yield. Comparison with model predictions, 193mIr decay data. Need for K-shell hole to be included in calculations discussed.

doi: 10.1103/PhysRevC.71.054320
Citations: PlumX Metrics


2004GA56      Bull.Rus.Acad.Sci.Phys. 68, 165 (2004)

Yu.P.Gangrsky, F.F.Karpeshin, M.B.Trzhaskovskaya

De-excitation of nuclear levels in hydrogen-like ions through resonant internal conversion

NUCLEAR STRUCTURE 169Yb; calculated resonant conversion coefficients for hydrogen-like ions.


2004KA14      Yad.Fiz. 67, 234 (2004); Phys.Atomic Nuclei 67, 217 (2004)

F.F.Karpeshin, Yu.N.Novikov, M.B.Trzhaskovskaya

Internal Conversion in Hydrogen-like Ions

NUCLEAR STRUCTURE Zn, Er, Tl; calculated ICC for hydrogen-like ions.

doi: 10.1134/1.1648912
Citations: PlumX Metrics


2004KA72      Bull.Rus.Acad.Sci.Phys. 68, 1278 (2004)

F.F.Karpeshin, M.B.Trzhaskovskaya

Correction for "shaking" to internal conversion coefficient

NUCLEAR STRUCTURE Zn, Sn, Yb, U; calculated shaking-effect corrections to ICC.


2004NI14      Phys.Rev. C 70, 054305 (2004)

N.Nica, J.C.Hardy, V.E.Iacob, S.Raman, C.W.Nestor, Jr., M.B.Trzhaskovskaya

Precise measurement of αK for the M4 transition from 193Irm: A test of internal-conversion theory

RADIOACTIVITY 193mIr(IT) [from 192Os(n, γ) and subsequent decay]; measured Eγ, Iγ, X-ray spectra; deduced conversion coefficient. Comparison with model predictions.

doi: 10.1103/PhysRevC.70.054305
Citations: PlumX Metrics


2004RA30      Bull.Rus.Acad.Sci.Phys. 68, 172 (2004)

S.Raman, S.U.Nestor, M.B.Trzhaskovskaya

Current status of calculations of internal conversion coefficients. Comparison with experiment

NUCLEAR STRUCTURE Z=50; Z=92; 110Ag, 117Sn, 137Ba, 154Gd, 183W, 193Pt, 197Hg, 207Pb, 212Bi, 235U; calculated internal conversion coefficients. Comparisons with data.


2004SC37      Acta Phys.Hung.N.S. 19, 165 (2004)

C.Scheidenberger, F.Attallah, K.Beckert, P.Beller, F.Bosch, D.Boutin, H.Eickhoff, T.Faestermann, M.Falch, B.Franczak, B.Franzke, H.Geissel, M.Hausmann, M.Hellstrom, E.Kaza, Th.Kerscher, O.Klepper, H.-J.Kluge, R.Koyama, C.Kozhuharov, K.-L.Kratz, Yu.A.Litvinov, K.Lobner, L.Maier, M.Matos, G.Munzenberg, F.Nolden, Yu.N.Novikov, T.Ohtsubo, A.Ostrowski, A.Ozawa, Z.Patyk, B.Pfeiffer, M.Portillo, W.Quint, T.Radon, V.Shishkin, J.Stadlmann, M.Steck, K.Summerer, T.Suzuki, M.B.Trzhaskovskaya, D.J.Vieira, S.Watanabe, H.Weick, M.Winkler, H.Wollnik, T.Yamaguchi

Study of Basic Nuclear Properties of Highly-Charged Unstable Nuclei at the SIS-FRS-ESR Complex

doi: 10.1556/APH.19.2004.1-2.27
Citations: PlumX Metrics


2003KA72      Bull.Rus.Acad.Sci.Phys. 67, 1682 (2003)

F.F.Karpeshin, M.B.Trzhaskovskaya

Effect of multiple atomic ionization on γ-ray internal conversion probability

NUCLEAR STRUCTURE Zn, Er, Ti; calculated internal conversion coefficients for hydrogenlike ions.


2003LI42      Phys.Lett. B 573, 80 (2003)

Yu.A.Litvinov, F.Attallah, K.Beckert, F.Bosch, D.Boutin, M.Falch, B.Franzke, H.Geissel, M.Hausmann, Th.Kerscher, O.Klepper, H.-J.Kluge, C.Kozhuharov, K.E.G.Lobner, G.Munzenberg, F.Nolden, Yu.N.Novikov, Z.Patyk, T.Radon, C.Scheidenberger, J.Stadlmann, M.Steck, M.B.Trzhaskovskaya, H.Wollnik

Observation of a dramatic hindrance of the nuclear decay of isomeric states for fully ionized atoms

RADIOACTIVITY 144mTb, 149mDy, 151mEr(EC), (IT) [from 209Bi fragmentation]; measured T1/2 of fully ionized atoms; deduced hindrance relative to neutral atom decay. Comparison with model predictions.

doi: 10.1016/j.physletb.2003.08.077
Citations: PlumX Metrics


2002BA85      At.Data Nucl.Data Tables 81, 1 (2002)

I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor, Jr., P.O.Tikkanen, S.Raman

Dirac-Fock Internal Conversion Coefficients

NUCLEAR STRUCTURE Z=10-126; A=20-310; calculated ICC. Relativistic self-consistent-field Dirac-Fock approach.

doi: 10.1006/adnd.2002.0884
Citations: PlumX Metrics


2002KA14      Phys.Rev. C65, 034303 (2002)

F.F.Karpeshin, M.B.Trzhaskovskaya, M.R.Harston, J.F.Chemin

Internal Conversion between Bound States and the Pauli Exclusion Principle

NUCLEAR STRUCTURE 197Au; calculated conversion coefficients for Pauli-forbidden bound internal conversion.

doi: 10.1103/PhysRevC.65.034303
Citations: PlumX Metrics


2002RA45      Phys.Rev. C66, 044312 (2002)

S.Raman, C.W.Nestor, Jr., A.Ichihara, M.B.Trzhaskovskaya

How good are the internal conversion coefficients now?

NUCLEAR STRUCTURE Z=22-94; A=46-240; compiled, analyzed ICC. Comparison of experimental data with several model calculations.

doi: 10.1103/PhysRevC.66.044312
Citations: PlumX Metrics


2000BA84      Bull.Rus.Acad.Sci.Phys. 64, 1 (2000)

I.M.Band, M.B.Trzhaskovskaya, F.F.Karpeshin, M.A.Listengarten

Fragmentation of Discrete (Subthreshold) Internal Conversion Coefficients in Multiconfigurational Calculations of Highly Charged 125Te Ions

RADIOACTIVITY 125mTe(IT); calculated levels ICC, T1/2 for highly charged ion. Fragmentation of discrete internal conversion coefficients.


2000HA42      Nucl.Phys. A676, 143 (2000)

M.R.Harston, T.Carreyre, J.F.Chemin, F.Karpeshin, M.B.Trzhaskovskaya

Internal Conversion to Bound Final States in 125Te

RADIOACTIVITY 125mTe(IT); calculated ICC for subthreshold conversion to bound states in highly ionized atoms, decay widths of atomic transitions, atomic and nuclear T1/2, ratio of x-rays to γ-rays produced in the transition. Comparison with experimental results.

doi: 10.1016/S0375-9474(00)00196-2
Citations: PlumX Metrics


1999KA47      Nucl.Phys. A654, 579 (1999)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya

3.5-eV Isomer of 229mTh: How it can be produced

NUCLEAR REACTIONS 229Th(γ, γ')229mTh, E=low; calculated isomer excitation probability; deduced role of atomic electrons.

doi: 10.1016/S0375-9474(99)00303-6
Citations: PlumX Metrics


1999KA53      Bull.Rus.Acad.Sci.Phys. 63, 30 (1999)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya, A.A.Pastor

Role of the Electron Bridge in De-Excitation of the 3.5-eV 229Th Isomer

NUCLEAR STRUCTURE 229mTh; calculated isomer γ, conversion electron relative decay probabilities. Electron Bridge.


1998AN02      Phys.Scr. 57, 142 (1998)

M.A.Andreeva, I.M.Band, E.B.Karlsson, M.A.Listengarten, M.B.Trzhaskovskaya

Angular Correlation of γ-e Cascades in the Presence of Hyperfine Splitting of Nuclear Levels and Its Possible Influence on CEM Spectra

NUCLEAR REACTIONS 169Tm(γ, γ), E=8.41 keV; 57Fe(γ, γ), E=14.41 keV; 119Sn(γ, γ), E=23.87 keV; 125Te(γ, γ), E=35.46 keV; 181Ta(γ, γ), E=6.24 keV; 161Dy(γ, γ), E=25.66 keV; 153Eu(γ, γ), E=97.4 keV; 73Ge(γ, γ), E=13.26 keV; 166Er(γ, γ), E=80.6 keV; 170Yb(γ, γ), E=84.3 keV; 160Dy(γ, γ), E=86.8 keV; calculated Mossbauer transition (ce)-γ angular correlation parameters.

doi: 10.1088/0031-8949/57/1/016
Citations: PlumX Metrics


1998KA27      Phys.Rev. C57, 3085 (1998)

F.F.Karpeshin, S.Wycech, I.M.Band, M.B.Trzhaskovskaya, M.Pfutzner, J.Zylicz

Rates of Transitions between the Hyperfine-Splitting Components of the Ground-State and the 3.5 eV Isomer in 229Th89+

NUCLEAR STRUCTURE 229Th; calculated nuclear spin mixing due to hyperfine interactions, transition rates in hydrogen-like ion.

doi: 10.1103/PhysRevC.57.3085
Citations: PlumX Metrics


1996KA07      Phys.Rev. C53, 1640 (1996)

F.F.Karpeshin, M.R.Harston, F.Attallah, J.F.Chemin, J.N.Scheurer, I.M.Band, M.B.Trzhaskovskaya

Subthreshold Internal Conversion to Bound States in Highly Ionized 125Te Ions

NUCLEAR STRUCTURE 125Te; calculated ICC for various highly ionized charge states; deduced internal conversion decay continuity across continuum, bound final states energy threshold. New mode of decay.

doi: 10.1103/PhysRevC.53.1640
Citations: PlumX Metrics


1996KA13      Phys.Lett. 372B, 1 (1996)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya, M.A.Listengarten

Optical Pumping 229mTh Through NEET as a New Effective Way of Producing Nuclear Isomers

NUCLEAR STRUCTURE 229Th; calculated nuclear excited electronic transition related features; deduced isomeric state production by optical pumping related features.

doi: 10.1016/0370-2693(96)00036-6
Citations: PlumX Metrics


1994KA37      Bull.Rus.Acad.Sci.Phys. 58, 41 (1994)

F.F.Karpeshin, M.A.Listengarten, I.M.Band, M.B.Trzhaskovskaya

Enhancement of Nuclear Electromagnetic Transitions During Resonant Interaction between Nucleus and Electron Shell in the Laser Field

NUCLEAR STRUCTURE 229Th; analyzed level resonant excitation; deduced laser field induced enhancement features.


1993BA28      Yad.Fiz. 56, No 5, 1 (1993); Phys.At.Nuclei 56, 573 (1993)

I.M.Band, M.B.Trzhaskovskaya

Interpretation of the Nuclear Transition with E(γ) = 72 keV in 187Re75

NUCLEAR STRUCTURE 187Re; calculated ICC for transition; deduced M2 component admixture. Dirac-Fock wave functions.


1993BA60      At.Data Nucl.Data Tables 55, 43 (1993)

I.M.Band, M.B.Trzhaskovskaya

Internal Conversion Coefficients for Low-Energy Nuclear Transitions

NUCLEAR STRUCTURE A=75-193; calculated ICC. Dirac-Fock electron wave functions.

doi: 10.1006/adnd.1993.1015
Citations: PlumX Metrics


1993KA39      Bull.Rus.Acad.Sci.Phys. 57, 1673 (1993)

F.F.Karpeshin, M.A.Listengarten, I.M.Band, M.B.Trzhaskovskaya

Anomalous E1-Conversion and Polarization Induced Electric Moment of a Nucleus

NUCLEAR STRUCTURE Z=88; calculated nucleus region contribution to subshell E1 transition conversion matrix element, ICC.


1993VE11      At.Data Nucl.Data Tables 55, 233 (1993)

D.A.Verner, D.G.Yakovlev, I.M.Band, M.B.Trzhaskovskaya

Subshell Photoionization Cross Sections and Ionization Energies of Atoms and Ions from He to Zn

ATOMIC PHYSICS Z=4-30; calculated subshell partial photoionization σ.

doi: 10.1006/adnd.1993.1022
Citations: PlumX Metrics


1992BA73      Bull.Rus.Acad.Sci.Phys. 56, 1745 (1992)

I.M.Band, M.B.Trzhaskovskaya

On Reliability of Internal Conversion Coefficients in Commonly Used Tables

NUCLEAR STRUCTURE Z=92; calculated ICC; deduced reliability of earlier predictions.


1992BA74      Bull.Rus.Acad.Sci.Phys. 56, 1749 (1992)

I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya

Calculation of Conversion Coefficients for Parity Doublet in 229Pa

NUCLEAR STRUCTURE 229Pa; calculated low energy transitions ICC. Dirac equation, exchange taken into account.


1992KA18      Phys.Lett. 282B, 267 (1992)

F.F.Karpeshin, I.M.Band, M.B.Trzhaskovskaya, B.A.Zon

Study of 229Th Through Laser-Induced Resonance Internal Conversion

NUCLEAR STRUCTURE 229Th; calculated transition acceleration factor. Laser induced resonance internal conversion.

doi: 10.1016/0370-2693(92)90636-I
Citations: PlumX Metrics


1992KA40      Can.J.Phys. 70, 623 (1992)

F.F.Karpeshin, M.A.Listengarten, B.A.Zon, I.M.Band, M.B.Trzhaskovskaya

Stimulation of Nuclear Transitions via Resonance Conversion in Electromagnetic Fields

RADIOACTIVITY 235mU(IT); calculated nuclear, electronic transition energy difference; deduced externally applied radiation frequency dependence.

doi: 10.1139/p92-099
Citations: PlumX Metrics


1991BA63      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2121 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.11, 39 (1991)

I.M.Band, M.B.Trzhaskovskaya

Tables of Internal Conversion Coefficients for a Series of Low-Energy Nuclear Transitions

NUCLEAR STRUCTURE 90Nb, 99Tc, 110Ag, 140,142Pr, 153,159Gd, 160Tb, 171Lu, 183W, 188Re, 193Pt, 201Hg, 205Pb, 236Pa, 236U, 250Bk; calculated subshell ICC. Dirac-Fock electron wave function.


1991BA64      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2135 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.11, 53 (1991)

I.M.Band, F.F.Karpeshin, M.A.Listengarten, M.B.Trzhaskovskaya

Resonant Internal Conversion in Electron Plasma

RADIOACTIVITY 235mU(IT); analyzed role of ionization in electron shells on transition matrix elements for internal conversion. Laser stimulated 235mU decay acceleration, refined Hartree-Fock calculations.


1991BA65      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2141 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.11, 59 (1991)

I.M.Band, M.B.Trzhaskovskaya

Taking Account of Holes in Calculating Internal Conversion Coefficients

NUCLEAR STRUCTURE A=137-197; calculated K-shell ICC for different multipole transitions. Different models.


1990BA48      Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 15 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, 14 (1990)

I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya

Internal-Conversion Coefficients in the Dirac-Fock Atomic Field

NUCLEAR STRUCTURE 103Rh, 193Ir, 109Ag, 123,125Te, 117Sn, 197Hg, 93Mo, 85Kr, 115,117In, 87Sr, 113In, 90Y, 137Ba; calculated total ICC. Dirac-Fock atom model.


1990DR09      Nucl.Phys. A518, 513 (1990)

E.G.Drukarev, M.B.Trzhaskovskaya

The Role of the Final-State Interaction in the Ionization of the K-Shell During β-Decay of Nuclei

RADIOACTIVITY 45Cr; calculated secondary electron spectra following β-decay; deduced final state interaction role K-shell ionization.

doi: 10.1016/0375-9474(90)90143-A
Citations: PlumX Metrics


1989BA76      Zh.Eksp.Teor.Fiz. 96, 525 (1989); Sov.Phys.JETP 69, 297 (1989)

I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya

On the Decay of 193mIr

RADIOACTIVITY 193mIr; calculated K-shell ICC; deduced hole effect.


1989BA84      Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 910 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.5, 85 (1989)

I.M.Band, M.A.Listengarten, M.B.Trzhaskovskaya

Internal Conversion Coefficients Calculated with Complete Exchange Analysis

NUCLEAR STRUCTURE 103Rh, 94Nb, 119Sn, 109,107Ag, 127,129,125Te, 134Ce, 111Cd, 131Xe, 197Hg, 114,115,113In, 75As, 85Kr, 197Pt, 87,90Y, 87Sr, 137Ba; calculated ICC. Dirac-Fock method.


1989DR04      Yad.Fiz. 49, 1607 (1989)

E.G.Drukarev, M.B.Trzhaskovskaya

Ionization following the Internal Conversion. Account of Deep Shells

NUCLEAR STRUCTURE 169Tm; calculated ionization following internal conversion. Deep shell contributions.

ATOMIC PHYSICS 169Tm; calculated ionization following internal conversion. Deep shell contributions.


Back to query form    [Next]