NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = E.A.Kolganova

Found 31 matches.

Back to query form



2023JO09      Int.J.Mod.Phys. E32, 2350042 (2023)

R.V.Jolos, E.A.Kolganova, G.Nikoghosyan

Collective alpha-mode in the structure of heavy and superheavy nuclei

NUCLEAR STRUCTURE 220,222,224,226Rn, 224,226Ra, 228,230Th, 232,234U, 236,238Pu, 240,242Cm, 244,246Cf, 248,250Fm, 252,254No, 256,258Rf, 260,262Sg, 264,266Hs, 268,270Ds; calculated binding energies, α-clusters, α-decay probabilities. Comparison with available data.

doi: 10.1142/S0218301323500428
Citations: PlumX Metrics


2023JO11      Int.J.Mod.Phys. E32, 2340002 (2023)

R.V.Jolos, E.A.Kolganova, E.V.Mardyban, T.M.Shneidman

Reflection-asymmetric mode in the structure of heavy nuclei

NUCLEAR STRUCTURE 238,240Pu, 220,222,224,226,228Ra, 152,156Gd, 224,226,228,230,232,234Th, 238U, 144Ba; calculated values of parity splitting as a function of angular momentum, parity splitting in the alternating parity bands; deduced parameters.

doi: 10.1142/S0218301323400025
Citations: PlumX Metrics


2022MA10      Phys.Rev. C 105, 024321 (2022)

E.V.Mardyban, E.A.Kolganova, T.M.Shneidman, R.V.Jolos

Evolution of the phenomenologically determined collective potential along the chain of Zr isotopes

NUCLEAR STRUCTURE 92,94,96,98,100,102Zn; calculated low-ling collective levels, J, π, B(E2), collective potentials, potential-energy surfaces. Calculations using quadrupole-collective Bohr Hamiltonian. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.024321
Citations: PlumX Metrics


2022MA66      Phys.Part. and Nucl.Lett. 19, 463 (2022)

E.V.Mardyban, T.M.Shneidman, E.A.Kolganova, R.V.Jolos

Influence of Triaxiality on the Description of Low-Energy Excitation Spectrum of 96Zr

NUCLEAR STRUCTURE 96Zr; calculated potential energies, B(E2); deduced influence of nonaxiality on the description of experimental data, impact of the probabilities of quadrupole transitions by the relative weights of the components with different value of projection K of angular momentum on the symmetry axis.

doi: 10.1134/S1547477122050272
Citations: PlumX Metrics


2022MA70      Phys.Part. and Nucl.Lett. 19, 646 (2022)

E.V.Mardyban, T.M.Shneidman, E.A.Kolganova, R.V.Jolos

Manifestation of Reflection-Asymmetric Deformation in the Structure of Superheavy Nuclei

NUCLEAR STRUCTURE 250,252,254,256,258,260,262No, 254,256,258,260,262,264,266Rf, 258,260,262,264,266,268,270Sg, 264,266,268,270,272,274Hs, 268,270,272,274,276,278,280,282Ds; calculated negative parity energy levels, initial parity splitting, transition dipole, quadrupole and octupole moments using the cluster model of a dinuclear system; deduced assessments of the critical angular momenta at which the transition from oscillatory motion to stable reflection-asymmetric deformation.

doi: 10.1134/S1547477122060152
Citations: PlumX Metrics


2022SH07      Phys.Rev. C 105, 024309 (2022)

N.Yu.Shirikova, A.V.Sushkov, L.A.Malov, E.A.Kolganova, R.V.Jolos

Prediction of the excitation energies of the 2+1 states for superheavy nuclei based on the microscopically derived Grodzins relation

NUCLEAR STRUCTURE 256Fm, 260No, 264Rf, 268Sg, 272Hs, 276Ds, 280Cn, 284Fl, 288Lv, 292Og, 296120; calculated J, π, energies of first 2+ states, quadrupole deformation parameters. Grodzins relation derived using the Bohr collective Hamiltonian and the microscopical model of nuclear structure.

doi: 10.1103/PhysRevC.105.024309
Citations: PlumX Metrics


2022SH49      Physics of Part.and Nuclei 53, 1138 (2022)

N.Y.Shirikova, A.V.Sushkov, L.A.Malov, E.A.Kolganova, R.V.Jolos

Microscopically Derived Grodzins Relation and Prediction of the Excitation Energies of the 2+1 States for Some Superheavy Nuclei

NUCLEAR STRUCTURE 258Fm, 262No, 266Rf, 270Sg, 274Hs, 278Ds, 282Cn, 286Fl, 290Lv, 294Og, 298120; calculated lowest 2+ syte energies using the microscopic variants of the Grodzins relation.

doi: 10.1134/S1063779622060089
Citations: PlumX Metrics


2021JO02      Phys.-Usp. 64, 325 (2021)

R.V.Jolos, E.A.Kolganova

Phase transitions in atomic nuclei

NUCLEAR STRUCTURE 96Zr; calculated energy levels, J, π, B(E2), B(M1). Comparison with experimental data.

doi: 10.3367/UFNe.2020.06.038787
Citations: PlumX Metrics


2021JO04      Phys.Lett. B 820, 136581 (2021)

R.V.Jolos, E.A.Kolganova

Derivation of the Grodzins relation in collective nuclear model

NUCLEAR STRUCTURE 156,158,160,162,164,166,168,170,172,174,176,178Yb; analyzed available data; deduced the proportionality coefficient for the Grodzins relation using the Bohr collective quadrupole Hamiltonian and a microscopic approach.

doi: 10.1016/j.physletb.2021.136581
Citations: PlumX Metrics


2021JO06      Int.J.Mod.Phys. E30, 2150083 (2021)

R.V.Jolos, E.A.Kolganova, D.A.Sazonov

Collective model with isovector pair and alpha-particle-type correlations

NUCLEAR STRUCTURE 56Ni, 52Fe, 60Zn, 48Cr, 64Ge; analyzed available data; deduced relative energies of the ground states of even-even nuclei, relative σ for α-transfer, collective Hamiltonian including isovector pairing and α-particle-type correlation degrees of freedom.

doi: 10.1142/S021830132150083X
Citations: PlumX Metrics


2020JO08      Phys.Atomic Nuclei 83, 550 (2020)

R.V.Jolos, E.A.Kolganova, L.A.Malov, E.V.Mardyban, D.A.Sazonov, T.M.Shneidman

Phase Transitions and Shape Coexistence in Atomic Nuclei

NUCLEAR STRUCTURE 96Zr, 150,152Sm, 152,156Gd, 222Ra, 240Pu, 286Fl; calculated energy levels, J, π, angular momenta, bands, potential energy surfaces.

doi: 10.1134/S1063778820040092
Citations: PlumX Metrics


2020MA32      Phys.Atomic Nuclei 83, 53 (2020)

E.V.Mardyban, T.M.Shneidman, E.A.Kolganova, R.V.Jolos

Description of Stabilization of Octupole Deformation in Alternating-Parity Bands of Heavy Nuclei

doi: 10.1134/S1063778820010093
Citations: PlumX Metrics


2020MA44      Phys.Rev. C 102, 034308 (2020)

E.V.Mardyban, E.A.Kolganova, T.M.Shneidman, R.V.Jolos, N.Pietralla

Description of the low-lying collective states of 96Zr based on the collective Bohr Hamiltonian including the triaxiality degree of freedom

NUCLEAR STRUCTURE 96Zr; calculated levels, J, π, B(E2), B(M1), quadrupole moment, ρ2 for E0 transitions, potential energy surfaces in (β, γ) planes using geometrical collective model for low-lying positive-parity states. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034308
Citations: PlumX Metrics


2019JO05      Phys.Atomic Nuclei 82, 117 (2019)

R.V.Jolos, E.A.Kolganova, D.A.Sazonov

Decoupling Parameter for Rotational Bands Based on Mixed-Symmetry States

doi: 10.1134/S1063778819020078
Citations: PlumX Metrics


2019NI13      Eur.Phys.J. A 55, 189 (2019)

G.Nikoghosyan, E.A.Kolganova, D.A.Sazonov, R.V.Jolos

Collective treatment of the isovector pair correlations: Boson representation

doi: 10.1140/epja/i2019-12897-8
Citations: PlumX Metrics


2019SA20      Phys.Rev. C 99, 031304 (2019)

D.A.Sazonov, E.A.Kolganova, T.M.Shneidman, R.V.Jolos, N.Pietralla, W.Witt

Description of shape coexistence in 96Zr based on the quadrupole-collective Bohr Hamiltonian

NUCLEAR STRUCTURE 96Zr; calculated low-lying levels, J, π, B(E2), B(M1), ρ2 for E0 transitions, quadrupole moment for 2+, wave functions of the first and second 0+ and 2+ states, and shape coexistent potential using quadrupole-collective Bohr Hamiltonian with the potential having two minima corresponding to spherical and deformed shapes. Comparison with experimental values.

doi: 10.1103/PhysRevC.99.031304
Citations: PlumX Metrics


2018JO03      Physics of Part.and Nuclei 49, 125 (2018)

R.V.Jolos, V.G.Kartavenko, E.A.Kolganova

Nucleon Isovector Pairing in Nuclei: Microscopic Approach, Boson Representation, and Collective Model

NUCLEAR STRUCTURE 56Ni; calculated spectroscopic factors, level energies, J, π. Comparison with available data.

doi: 10.1134/S1063779618020028
Citations: PlumX Metrics


2018MA67      Chin.Phys.C 42, 124104 (2018)

E.V.Mardyban, T.M.Shneidman, E.A.Kolganova, R.V.Jolos, S.-G.Zhou

Analytical description of shape transition in nuclear alternating parity bands

NUCLEAR STRUCTURE 222,224,226,228Ra, 224,226,228,230,232,234,236Th, 230,232,234,236,238,240U, 238,240,242,244Pu; calculated parity splitting as a function of angular momentum, transitional dipole moments, E1 matrix element. Comparison with available data.

doi: 10.1088/1674-1137/42/12/124104
Citations: PlumX Metrics


2017KO28      Few-Body Systems 58, 35 (2017)

E.A.Kolganova, A.K.Motovilov, W.Sandhas

The 4He Trimer as an Efimov System: Latest Developments

ATOMIC PHYSICS 4He; compiled, reviewed calculations (using different potentials) and data on 2-atomic and 3-atomic entities, namely binding energy, Q, excited state energy of 3-atomic entity, bond length, scatering length.

doi: 10.1007/s00601-016-1181-2
Citations: PlumX Metrics


2017KO41      Physics of Part.and Nuclei 48, 892 (2017)

E.A.Kolganova

Efimov states in asymmetric three-body atomic clusters

ATOMIC PHYSICS 15N; calculated weakly-bound three-body atomic cluster 7Li4He2 binding energy; Q for both gs and the excited states using differential Faddeev equations; deduced Efimov nature of the excited state. Results compared with other calculations.

doi: 10.1134/S1063779617060260
Citations: PlumX Metrics


2014KO37      Few-Body Systems 55, 957 (2014)

E.A.Kolganova

Ultracold Scattering and Universal Correlations

doi: 10.1007/s00601-014-0812-8
Citations: PlumX Metrics


2010KO34      Physics of Part.and Nuclei 41, 1108 (2010)

E.A.Kolganova

Helium trimer in the framework of Faddeev approach

NUCLEAR STRUCTURE 4He; calculated binding energies, wave functions, scattering lengths. Faddeev approach.

doi: 10.1134/S1063779610070282
Citations: PlumX Metrics


2007KO56      Nucl.Phys. A790, 752c (2007)

E.A.Kolganova, A.K.Motovilov, W.Sandhas

Ultracold scattering processes in three-atomic helium systems

doi: 10.1016/j.nuclphysa.2007.03.120
Citations: PlumX Metrics


2001KO26      Nucl.Phys. A684, 623c (2001)

E.A.Kolganova, A.K.Motovilov, Y.K.Ho

Complex Scaling of the Faddeev Operator

doi: 10.1016/S0375-9474(01)00456-0
Citations: PlumX Metrics


2001MO11      Nucl.Phys. A684, 646c (2001)

A.K.Motovilov, W.Sandhas, S.A.Sofianos, E.A.Kolganova

Binding Energies and Scattering Observables in the 4He3 Atomic System

doi: 10.1016/S0375-9474(01)00462-6
Citations: PlumX Metrics


1997KO10      Yad.Fiz. 60, No 2, 235 (1997); Phys.Atomic Nuclei 60, 177 (1997)

E.A.Kolganova, A.K.Motovilov

Using Faddeev Differential Equations to Calculate Three-Body Resonances

NUCLEAR STRUCTURE A=3; calculated nnp system virtual level energy convergence. Analytic continuation of Faddeev components of the three-body T-matrix.


1993GO22      Bull.Rus.Acad.Sci.Phys. 57, 810 (1993)

A.M.Gorbatov, E.A.Kolganova

Distribution of Substance Density in 6He, 6Li, and 11Li Nuclei

NUCLEAR STRUCTURE 6He, 6,11Li; calculated rms radius, density. Microscopic approach.


1991GO12      Yad.Fiz. 53, 680 (1991); Sov.J.Nucl.Phys. 53, 425 (1991)

A.M.Gorbatov, V.L.Skopich, E.A.Kolganova, P.V.Komarov, Yu.N.Krylov, V.A.Luchkov, M.I.Marinov, A.V.Bursak

The Method of Multiple Interactions. Realistic NN Potential

NUCLEAR STRUCTURE 16O; calculated binding energy, radius. Different forces, multiple interactions.


1991GO27      Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 971 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.5, 85 (1991)

A.M.Gorbatov, P.V.Komarov, Yu.N.Krylov, V.L.Skopich, E.A.Kolganova

Self-Consistent Pair-Correlation Operators in Light Nuclei

NUCLEAR STRUCTURE 4He, 16O; calculated pair correlation operator radii. Self-consistent criteria.


1989GO18      Yad.Fiz. 50, 347 (1989)

A.M.Gorbatov, P.V.Komarov, Yu.N.Krylov, A.V.Bursak, V.L.Skopich, P.Yu.Nikishov, E.A.Kolganova

Multineutron Systems in Hyperspherical Basis

NUCLEAR STRUCTURE 3,4,6,8n; calculated bound state nonexistence. Hyperspherical basis.


1988GO27      Yad.Fiz. 48, 1255 (1988)

A.M.Gorbatov, Yu.N.Krylov, P.Yu.Nikishov, A.V.Bursak, E.A.Kolganova, P.V.Komarov, V.L.Skopich

Multineutron System 4H in Hyperspherical Basis

NUCLEAR STRUCTURE 4H; calculated levels, rms radius. Hyperspherical basis.


Back to query form