ADOPTED LEVELS, GAMMAS for 49Sc

Author: T. W. Burrows |  Citation: Nucl. Data Sheets 109, 1879 (2008) |  Cutoff date: 14-Jul-2008 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=2002 keV 3S(n)= 10129 keV 6S(p)= 9625 keV 3Q(α)= -12370 keV 3
Reference: 2012WA38

References:
  A  49Ca β- decay  B  46Ca(α,p) E=25 MeV
  C  48Ca(p,xγ) IAR: 49Ca GS  D  48Ca(p,xγ): OTHER 49Ca IAR’S
  E  48Ca(p,xγ) RES: NON-IAR’S  F  48Ca(d,n),(3He,d),(α,t),
  G  48Ca(7Li,6He),(14N,13C),  H  48Ca(15N,14C),(16O,15N),
  I  48Ca(48Ca,xγ) E=210 MeV  J  50Ti(d,3He)
  K  48Ca(p,X) RES: GENERAL  L  48Ca(p,X),(d,n),(3He,d),(α,t)

General Comments:

Levels: Resonance parameters: see data cited below in (p,X), (p,Xγ), and (d,n),(3He,d),(α,t)... Tables

Levels: Γpn: from (p,X) and (p,Xγ). By one-channel multilevel and Breit-Wigner analysis for 49Ca g.s. IAS’s and non-IAR resonances (1972Ga09) and by analysis of the average resonance shape for the 49Ca 2023 IAS (1982Si19)

Gammas: See (p,Xγ) IAR: 49Ca g.s. for unplaced gammas

Gammas: B(E|l)(W.u.),B(M|l)(W.u.): calculated using adopted T1/2’s and γ-ray properties for secondary gammas. Primary Γγ’s were used for transitions from the 1974 resonance

Gammas: Γγ’s: from (p,Xγ) IAR: 49Ca g.s., except as noted as a a footnote on Iγ.

Q-value: Note: Current evaluation has used the following Q record 2006 4 10128 6 9627.2 29 -12369 11 2003Au03










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0ABCDEFGHIJ   7/2- 57.18 m 13 
% β- = 100
     
   2228.63 22 A C EFGH J   1/2+ 29.9 ns 11     2228.75 35 
  100
[E3]
      0.0
7/2-
   2371.82 22 A CDEFGH J   3/2+ 1.40 ns 9      143.2 2 
   2371.75 35 
    5.6 6 
  100 3 
(M1,E2)
[M2]
   2228.63
      0.0
1/2+
7/2-
   3084.52 10 ABCD FGH     3/2- 48 fs 29      712.6
    856.1 5 
   3084.4 1 
    0.01
    0.16 1 
  100.00 4 

(E1+(M2))
E2
   2371.82
   2228.63
      0.0
3/2+
1/2+
7/2-
   3300?         J          
   3516.7 4 A C  FGH     3/2-      1144.5 5 
   1288.4 5 
  100 25 
   67 25 


   2371.82
   2228.63
3/2+
1/2+
   3521.7 7         I         3521.8
 

      0.0
7/2-
   3550?         J   (3/2+,5/2+)        
   3581 10      F       7/2-        
   3755 8      F   J   3/2+,5/2+        
   3808.8 5  BC  FGH     7/2- 21 fs 19     3808.6 5 
  100

      0.0
7/2-
   3914.9 8  B   FG I    (9/2-)       393.1
   3914.9
 
 


   3521.7
      0.0

7/2-
   3951 10      F              
   3991.0 9  BC  FG  J   1/2+ ≥ 0.7 ns    1620.0 15 
   1762
 
 


   2371.82
   2228.63
3/2+
1/2+
   4046.5 8      F  I    (9/2-)       525.2
   4046.0
 
 


   3521.7
      0.0

7/2-
   4072.04 10 ABC  FGH     5/2- 28 fs 14      987.3 5 
   4071.9 1 
    0.95 6 
  100.0 3 
D,E2
D,E2
   3084.52
      0.0
3/2-
7/2-
   4192 10      F       (11/2-)        
   4220 8      F              
   4239.6 13         I          324.7
 

   3914.9
(9/2-)
   4267 10      F       (15/2-)        
   4285 8      F       (5/2+)        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   4332.2 10 AB   FG      5/2-      4332.0
  100

      0.0
7/2-
   4426 10      F   J          
   4459 10      F   J          
   4493.44 22 ABC  FGH J   1/2- ≤ 23 fs     976.7
   1408.9 2 
   2264.7
    1.25 40 
  100.0 17 
    7.0 12 

D+Q

   3516.7
   3084.52
   2228.63
3/2-
3/2-
1/2+
   4579 8  B   F   J   1/2-,3/2-        
   4714.8 8 A    F       1/2-,3/2-      2486.3
   4714.4
  100 26 
   16 5 


   2228.63
      0.0
1/2+
7/2-
   4738.45 20 ABC  FG      5/2- ≤ 14 fs    4738.2 2 
  100
D,E2
      0.0
7/2-
   4810 8      F       5/2-,7/2-        
   4948 8      F       (1/2-,3/2-)        
   4987 10  B   F   J   (3/2+,5/2+)        
   5015 8  B   F       1/2-,3/2-        
   5022 10 ? B   F H     (1/2+)        
   5030      GH     3/2-        
   5077 8  B   FGH     5/2-        
   5142 10 AB   F              
   5229 10 A    F       (9/2-,11/2-)        
   5230 8 A    F   J   3/2+,5/2+        
   5269 10      F   J          
   5376.3 5  BC  FGH     5/2- 21 fs 10     5376.0 5 
 

      0.0
7/2-
   5438 8      F              
   5460 10      F              
   5562 10      F       (9/2-,11/2-)        
   5578 8      F   J   3/2+,5/2+        
   5632 10  B   F       (17/2+)        
   5663 8  B   FG      3/2-        
   5735 10      F       (15/2-)        
   5815 8  B   FGH     1/2-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   5845 8      F              
   5930?       H            
   5979 10      F              
   6010.7 11 ABC  F       ≤ 50 fs    6010.3 11 
 
(D,E2)
      0.0
7/2-
   6014 20 AB   F              
   6069 20 A    F       (3/2+,5/2+)        
   6180 20      F       3/2+,5/2+        
   6212 10      F   J          
   6250 20      F       (7/2+)        
   6266 20      F   J          
   6306 2   C  F       5/2-      3225
   6307
 
 


   3084.52
      0.0
3/2-
7/2-
   6330 10      F   J          
   6415.5 4   C  FG      7/2- 21 fs 9     6415.4 5 
  100
D,E2
      0.0
7/2-
   6451 10      F   J          
   6504.5 5   C  F   J   3/2      2436
   4275
  100 40 
   53 47 


   4072.04
   2228.63
5/2-
1/2+
   6527 20      F              
   6624 10      F              
   6685 20      F   J          
   6728 2   C  F   J   3/2-      3640
  100

   3084.52
3/2-
   6745 10      F   J          
   6816 20      F   J   1/2-,3/2-        
   6829 10  B   F   J   5/2-,7/2-        
   6867 10  B   F   J          
   6910 20      F       (1/2+)        
   6917 10      F              
   6939 10      F              
   6985.8 4   C  F       5/2- ≤ 14 fs    4614.6 5 
   6984
  100 27 
   26 12 
(E1)

   2371.82
      0.0
3/2+
7/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   7026 20      F   J   1/2-,3/2-        
   7041 10      F   J          
   7059 20      F   J   7/2+,9/2+        
   7062.5 5   C  F   J   1/2-      3978
   4688
   92 43 
  100 43 


   3084.52
   2371.82
3/2-
3/2+
   7151 20      F   J   5/2-,7/2-        
   7172 10      F   J          
   7186 20      F   J   (7/2+,9/2+)        
   7193 2   C      J   5/2        
   7228.8 6   C  F   J   5/2      7224
  100

      0.0
7/2-
   7253 20      F       1/2-,3/2-        
   7293 10      F   J          
   7320 20      F       1/2-,3/2-        
   7342 20      F       5/2-,7/2-        
   7375 20      F       5/2-,7/2-        
   7421 20      F       5/2-,7/2-        
   7442 20      F       1/2-,3/2-        
   7483 20      F       5/2-,7/2-        
   7500 20      F       1/2-,3/2-        
   7529 20      F       (7/2+,9/2+)        
   7583 20      F   J   (3/2+,5/2+)        
   7653 20      F       1/2-,3/2-        
   7678 20      F       (7/2+,9/2+)        
   7723 20      F       1/2-,3/2-        
   7746 20      F       (7/2+,9/2+)        
   7795 20      F       (7/2+,9/2+)        
   7832 20      F       1/2-,3/2-        
   7890 20      F       1/2-,3/2-        
   7940 20      F              
   7998 20      F       1/2-,3/2-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   8029 20      F              
   8094 20      F       1/2-,3/2-        
   8147 20      F       1/2-,3/2-        
   8177 20      F       (7/2+,9/2+)        
   8200 20      F       1/2-,3/2-        
   8246 20      F              
   8289 20      F       1/2-,3/2-        
   8330 20      F       5/2-,7/2-        
   8355 20      F       1/2-,3/2-        
   8434 20      F       1/2-,3/2-        
   8465 20      F       5/2-,7/2-        
   8625 20      F   J          
   8693 20      F   J   3/2+,5/2+        
   8721 20      F       1/2-,3/2-        
   8751 20      F              
   8781 20      F       1/2-,3/2-        
   8813 20      F       1/2-,3/2-        
   8848 20      F       1/2-,3/2-        
   8900 20      F       3/2+,5/2+        
   8929 20      F       5/2-,7/2-        
   8971 20      F       (7/2+,9/2+)        
   9008 20      F       3/2+,5/2+        
   9066 20      F       5/2-,7/2-        
   9117 20      F   J   3/2+,5/2+        
   9145 20      F       (1/2-,3/2-)        
   9185 20      F       (5/2-,7/2-)        
   9218 20      F   J          
   9247 20      F       1/2-,3/2-        
   9295 20      F       1/2-,3/2-        
   9335 20      F   J          
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   9385 20      F       1/2-,3/2-        
   9449 20      F       5/2-,7/2-        
   9514 20      F       5/2-,7/2-        
   9575 20      F       1/2-,3/2-        
   9634 20      F       1/2-,3/2-        
   9675 20      F       1/2-,3/2-        
   9726 20      F       1/2-,3/2-        
   9790 20      F       1/2-,3/2-        
   9843 20      F       1/2-,3/2-        
   9873 20      F       1/2-,3/2-        
   9923 20      F       1/2-,3/2-        
   9956 20      F       5/2-,7/2-        
   9991 20      F       1/2-,3/2-        
  10059 20      F       1/2-,3/2-        
  10155 20      F       5/2-,7/2-        
  10212 20      F              
  10413 20      F       1/2-,3/2-        
  10473 20      F       1/2-,3/2-        
  10569    E             8340
 

   2228.63
1/2+
  10617 20      F       1/2-,3/2-        
  10690 20     EF       1/2-,3/2-      8318
 

   2371.82
3/2+
  10787 20      F       (1/2-,3/2-)        
  10870 20      F       (1/2-,3/2-)        
  10957 20      F       (1/2-,3/2-)        
  11021 20      F       (1/2-,3/2-)        
  11030 20      F       (1/2-,3/2-)        
  11138 20      F       (1/2-,3/2-)        
  11271 20      F       (1/2-,3/2-)        
  11425 20      F       3/2+,5/2+        
  11510 20 ?     F              
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  11525 4     E        1/2-        
  11534 4     E        1/2+        
  11538 3   C          (3/2-)        
  11543 3     E               
  11547 3   C          3/2-      4354
   4484
   4561
   4819
   5042
   5131
   5241
   6808
   7475
   8030
   8462
   9175
   9318
   44 19 
   78 19 
  100 27 
   57 19 
   59 19 
   72 19 
   35 19 
   50 13 
   41 13 
    9 9 
   15 6 
   73 27 
   35 7 













   7193
   7062.5
   6985.8
   6728
   6504.5
   6415.5
   6306
   4738.45
   4072.04
   3516.7
   3084.52
   2371.82
   2228.63
5/2
1/2-
5/2-
3/2-
3/2
7/2-
5/2-
5/2-
5/2-
3/2-
3/2-
3/2+
1/2+
  11548 3     E               
  11552 3   C  F       3/2-      4359
   4489
   4566
   4824
   5047
   5136
   5246
   6813
   7480
   7561
   8035
   8467
   9180
   9323
   43 10 
   57 8 
  100 10 
   67 10 
   50 10 
   67 10 
   29 8 
   21 5 
   35 5 
    9 5 
   12 8 
   16.4 23 
   43 15 
   17.0 23 














   7193
   7062.5
   6985.8
   6728
   6504.5
   6415.5
   6306
   4738.45
   4072.04
   3991.0
   3516.7
   3084.52
   2371.82
   2228.63
5/2
1/2-
5/2-
3/2-
3/2
7/2-
5/2-
5/2-
5/2-
1/2+
3/2-
3/2-
3/2+
1/2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  11563.2 4   C  F       3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
   4333.1 5 
   4370.2
   4500.7 5 
   4577.8 5 
   4835.2
   5059.1 5 
   5147.7 5 
   5257.2
   6824.8
   7491.2
   7572.2
   7754.4
   8041.5
   8478.7
   9191.4
   9334.6
  11563.2
   44.4 14 
   41 8 
   55 7 
  100 9 
   72 10 
   90 10 
   48 8 
   11 6 
   30 5 
   43 5 
   24 7 
   24 10 
   10 4 
    5.9 27 
    9.8 27 
   13.7 13 
   20.9 20 
D+Q
D+Q
D+Q
D+Q
D+Q
D+Q
E2(+M3)
D+Q
D+Q
D+Q
(E1(+M2))
E2(+M3)
D+Q
D+Q
(E1(+M2))
(E1+M2)
(E2+M3)
   7228.8
   7193
   7062.5
   6985.8
   6728
   6504.5
   6415.5
   6306
   4738.45
   4072.04
   3991.0
   3808.8
   3521.7
   3084.52
   2371.82
   2228.63
      0.0
5/2
5/2
1/2-
5/2-
3/2-
3/2
7/2-
5/2-
5/2-
5/2-
1/2+
7/2-

3/2-
3/2+
1/2+
7/2-
  11569 3   C  F       (3/2-) % p ≈ 50
% n ≈ 50
     
  11579 3   C          (3/2-) 0.29 keV 14 
% n = 86 13
% p = 14 13
     
  11583 3   C          (3/2-) 0.17 keV 8 
% n = 88 12
% p = 12 12
     
  11665 20      F       1/2-,3/2-        
  11735 20      F              
  11806 20      F              
  11911 20      F       1/2-,3/2-        
  11976 20      F       1/2-,3/2-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  12040 40      F       1/2-,3/2-        
  12098 40      F              
  12160 40      F              
  12216 40      F              
  12281 40      F              
  12340 40      F              
  12390 40      F              
  12497 40      F              
  12607 40      F              
  12732 40      F              
  12829 40      F              
  12893 40      F              
  12992 40      F              
  13119 40      F              
  13204 40      F              
  13308 40      F              
  13358 40      F              
  13412 40      F              
  13487 40      F       (1/2-)        
  13557 40      F       (1/2)-        
  13572 5    D F       (1/2)- 226 keV 3 
% n = 23.0 5
% p = 66.4 12
     
  15108 10    D F       5/2- 12.8 keV 13       
  15481 10    D         (3/2)- 19.3 keV 20    15481
 

      0.0
7/2-
  15544 4     E            15544
 

      0.0
7/2-
  15563 6    D F       5/2- 31 keV 8    12478
  13191
  15563
 
 
 
D,E2
(E1(+M2))
D,E2
   3084.52
   2371.82
      0.0
3/2-
3/2+
7/2-
  15583 4     E            15583
 

      0.0
7/2-
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  15600 4     E            15600
 

      0.0
7/2-
  15622 6    D F       9/2+ 18 keV 5    15622
 
(E1(+M2))
      0.0
7/2-
  15662 4     E            15662
 

      0.0
7/2-
  15878 10    D         3/2+ 19.8 keV 20       
  16025 10    D         5/2+ 25.6 keV 26       
  16509 10    D F       7/2+ 14.8 keV 15       
  16994 10    D F       9/2+ 18.8 keV 19       
  17662 10    D F       5/2+ 108 keV 11       
  18152   D F       3/2+,5/2+        
  18348   D F       3/2+,5/2+        

E(level): From (d,n),(3He,d),(α,t)..., except as noted in the comments, footnotes or XREF column

Jπ(level): From angular momentum transfer in (d,n),(3He,d),(α,t)..., except as noted.

T1/2(level): T1/2’s from DSAM in (p,Xγ) IAR: 49Ca g.s. and Γ’s from (p,X): 49Ca other IAR’s, except as noted.

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
   2228.63 1/2+ 29.9 ns 11     2228.75 35 [E3] 0.000284B(E3)(W.u.)=1.04 4, α=0.000284 4, α(K)=2.85E-5 4, α(L)=2.50E-6 4, α(M)=3.09E-7 5, α(N)=1.740E-8 25, α(N+)=0.000252 4
   2371.82 3/2+ 1.40 ns 9      143.2 2 (M1,E2) 0.04α=0.04 4, α(K)=0.04 4, α(L)=0.003 3, α(M)=0.0004 4, α(N)=2.2×10-5 19, α(N+)=2.2E-5 19
3/2+ 1.40 ns 9     2371.75 35 [M2] 0.000275B(M2)(W.u.)=0.0208 16, α=0.000275 4, α(K)=2.46×10-5 4, α(L)=2.15E-6 3, α(M)=2.67E-7 4, α(N)=1.503E-8 21, α(N+)=0.000248 4
   3084.52 3/2- 48 fs 29      856.1 5 (E1+(M2))0.082 LE0.00016B(E1)(W.u.)=2.3E-5 15, α=0.00016 10, α(K)=0.00014 9, α(L)=1.3E-5 8, α(M)=1.6E-6 10, α(N)=9.E-8 6, α(N+)=9.E-8 6
3/2- 48 fs 29     3084.4 1 E2 0.000831B(E2)(W.u.)=4.0 24, α=0.000831 12, α(K)=1.070E-5 15, α(L)=9.34E-7 13, α(M)=1.159E-7 17, α(N)=6.53E-9 10, α(N+)=0.000820 12
   6985.8 5/2- ≤ 14 fs    4614.6 5 (E1) 0.00190B(E1)(W.u.)>0.00029, α=0.00190 3, α(K)=4.42E-6 7, α(L)=3.85E-7 6, α(M)=4.78E-8 7, α(N)=2.69E-9 4, α(N+)=0.00189 3
  11563.2 3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
   5147.7 5 E2(+M3)0.001534 LE0.0012B(E2)(W.u.)=16.109 18, α=0.0012 3, α(K)=6.6E-6 16, α(L)=5.7E-7 14, α(M)=7.1E-8 17, α(N)=4.0E-9 10, α(N+)=0.0012 3
3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
   7572.2(E1(+M2))0.276 LEB(E1)(W.u.)=0.000169 5
3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
   7754.4E2(+M3) B(E2)(W.u.)=0.308 12
3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
   9191.4(E1(+M2))-0.20 B(E1)(W.u.)>5.025E-5 4 LT 6
3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
   9334.6(E1+M2)+0.07 3B(E1)(W.u.)=0.00010 3, B(M2)(W.u.)=0.026 24
3/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
  11563.2(E2+M3)+0.09 5B(E2)(W.u.)=0.041 13, B(M3)(W.u.)=17 +20-17
  15563 5/2- 31 keV 8    13191(E1(+M2))0.236 LEB(E1)(W.u.)=0.000657 19
  15622 9/2+ 18 keV 5    15622(E1(+M2))0.092 LEB(E1)(W.u.)=0.006 4

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
   2228.631/2+ 29.9 ns 11  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   2371.823/2+ 1.40 ns 9  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. From β- decay.
Jπ(level): From angular momentum transfer in (d,n),(3He,d),(α,t)... And primary γ(θ) in (p,Xγ) IAR: 49Ca g.s.
   3084.523/2- 48 fs 29  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   3300   E(level): Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions.
   3516.73/2-   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. From β- decay.
Jπ(level): From angular momentum transfer in (d,n),(3He,d),(α,t)... And primary γ(θ) in (p,Xγ) IAR: 49Ca g.s.
   3550(3/2+,5/2+)   E(level): Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions.
Jπ(level): From angular momentum transfer in (d,3He). Parentheses added by evaluator due to energy resolution (FWHM=100-115 keV).
   3808.87/2- 21 fs 19  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   3914.9(9/2-)   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   3991.01/2+ ≥ 0.7 ns E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   4046.5(9/2-)   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   4072.045/2- 28 fs 14  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   4192(11/2-)   Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   4267(15/2-)   Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   4285(5/2+)   Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   4332.25/2-   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   4493.441/2- ≤ 23 fs E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   4714.81/2-,3/2-   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   4738.455/2- ≤ 14 fs E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   4987(3/2+,5/2+)   XREF: J(4860).
   52303/2+,5/2+   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   5269   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   5376.35/2- 21 fs 10  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   5632(17/2+)   Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   56633/2-   Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   5735(15/2-)   Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
E(level)Jπ(level)T1/2(level)Comments
   58151/2-   Jπ(level): From angular momentum in transfer (d,n),(3He,d),(α,t)... And characteristic shape of σ(θ) in (7Li,6He). Note that these results sometimes differ from what would Be expected from the dominant no-recoil L transfer in (15N,14C). See comment by evaluator in this table.
   6010.7 ≤ 50 fs E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   6212   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   6250(7/2+)   Jπ(level): Tentative assignment based on coupled-reaction-channel analysis of (α,t). See this dataset for the configurations.
   6266   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   63065/2-   E(level): From β- decay.
Jπ(level): From angular momentum transfer in (d,n),(3He,d),(α,t)... And primary γ(θ) in (p,Xγ) IAR: 49Ca g.s.
   6330   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   6415.57/2- 21 fs 9  E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. From β- decay.
Jπ(level): From angular momentum transfer in (d,n),(3He,d),(α,t)... And primary γ(θ) in (p,Xγ) IAR: 49Ca g.s.
   6451   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   6504.53/2   XREF: F(6476).
E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   67283/2-   E(level): From β- decay. From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
Jπ(level): From angular momentum transfer in (d,n),(3He,d),(α,t)... And primary γ(θ) in (p,Xγ) IAR: 49Ca g.s.
   6985.85/2- ≤ 14 fs E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   7062.51/2-   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively.
   7172   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   7186(7/2+,9/2+)   May correspond to 7193 state if L in (d,n),(3He,d),(α,t),... incorrect.
   71935/2   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   7228.85/2   E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   7293   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   7583(3/2+,5/2+)   Jπ(level): From angular momentum transfer in (d,3He). Parentheses added by evaluator due to energy resolution (FWHM=100-115 keV).
   8625   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   86933/2+,5/2+   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   91173/2+,5/2+   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   9218   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
   9335   E(level): From (48Ca,Xγ).
Jπ(level): L(d,3He)=2 for multiplet.
  10569   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
E(level)Jπ(level)T1/2(level)Comments
  11510   May correspond to 11525 state if L(d,n),(3He,d),(α,t) incorrect.
  115251/2-   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  115341/2+   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  11538(3/2-)   Γp=50 50, Γn=70 70
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  11543   Γp=20 20, Γn=30 30
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  115473/2-   Γp=0.10 5, Γn=0.40 20
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  11548   Γp=30 30, Γn=30 30
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  115523/2-   Γp=0.40 10, Γn=0.22 6
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  11563.23/2- 1.5 keV 3 
% p = 79 6
% IT = 0.31 7
% n = 21 14
Γγ=4.8 5, Γp=1.2 3, Γn=0.32 8
E(level): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  11569(3/2-) % p ≈ 50
% n ≈ 50
Γp=50 eV 50 or 70 eV 70; Γn=50 eV 50 or 100 eV 50.
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  11579(3/2-) 0.29 keV 14 
% n = 86 13
% p = 14 13
Γp=40 40, Γn=0.25 13
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  11583(3/2-) 0.17 keV 8 
% n = 88 12
% p = 12 12
Γp=20 20, Γn=0.15 8
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): From analysis of elastic scattering excitation functions.
  12098   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12160   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12216   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12281   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12340   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12390   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12497   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12607   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12732   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12829   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12893   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  12992   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  13119   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
E(level)Jπ(level)T1/2(level)Comments
  13204   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  13308   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  13358   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  13412   Jπ(level): See (d,n),(3He,d),(α,t)... For L to states between 12098 and 13412.
  13487(1/2-)   E(level): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
  13557(1/2)-   E(level): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
  13572(1/2)- 226 keV 3 
% n = 23.0 5
% p = 66.4 12
Γp=151 2, Γn=52 1
E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
  151085/2- 12.8 keV 13  E(level): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): L=3 in (d,n),(3He,d),(α,t)... and (p,p). (p,p’) to 48Ca 3832, 2+, indicates πp1/2 component.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  15481(3/2)- 19.3 keV 20  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  15544   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  155635/2- 31 keV 8  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
Jπ(level): L=3 in (d,n),(3He,d),(α,t)... and (p,p). (p,p’) to 48Ca 3832, 2+, indicates πp1/2 component.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  15583   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  15600   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  156229/2+ 18 keV 5  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  15662   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies.
  158783/2+ 19.8 keV 20  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  160255/2+ 25.6 keV 26  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  165097/2+ 14.8 keV 15  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  169949/2+ 18.8 keV 19  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  176625/2+ 108 keV 11  E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
T1/2(level): See (p,Xγ): other 49Ca IAR’s for elastic and inelastic Γp.
  181523/2+,5/2+   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.
  183483/2+,5/2+   E(level): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
   2228.63   2228.75E(γ): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis.. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   2371.82    143.2E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
M(γ): d,E2 from comparison to RUL. Δπ=no from level scheme
   2371.75E(γ): Calculated using least-squares adjustment procedures, assuming ΔE(γ)=1 keV when not given. Only primary γ’s with a known ΔE(γ) were included in the analysis.. Weighted av (int.) of 2228.9 5 from β- decay and 2228.6 5 from (p,Xγ) and 2371.7 5 from β- decay and 2371.8 5 from (p,Xγ), respectively. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   3084.52    712.6E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
    856.1E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   3084.4E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
M(γ): from γγ(θ) in β- decay and comparison to RUL
   3516.7   1144.5E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   1288.4E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   3521.7   3521.8E(γ): From (48Ca,Xγ)
   3914.9    393.1E(γ): From (48Ca,Xγ)
   3914.9E(γ): From (48Ca,Xγ)
   4046.5    525.2E(γ): From (48Ca,Xγ)
   4046.0E(γ): From (48Ca,Xγ)
   4072.04    987.3E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
M(γ): From comparison to RUL
   4071.9E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
M(γ): From comparison to RUL
   4239.6    324.7E(γ): From (48Ca,Xγ)
   4332.2   4332.0E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   4493.44    976.7E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   1408.9E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   2264.7E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   4714.8   2486.3E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   4714.4E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
   4738.45   4738.2E(γ): From β- decay.. Existence considered doubtful due to energy resolution (FWHM=100-115 keV) in (d,3He) and lack of observance in other reactions
I(γ): From β- decay.
M(γ): From comparison to RUL
   6010.7   6010.3M(γ): from comparison to RUL if Iγ(6010γ)>17%
   6415.5   6415.4M(γ): From comparison to RUL
E(level)E(gamma)Comments
   6985.8   4614.6M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
  10569   8340E(γ): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies
  10690   8318E(γ): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies
  11563.2   7572.2M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
   9191.4M(γ): d(+Q) from γ(θ). Δπ=yes from level scheme
   9334.6M(γ): D+Q from γ(θ). Δπ=no from level scheme
  11563.2M(γ): Q+O from γ(θ). Δπ=no from level scheme
  15481  15481E(γ): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
  15544  15544E(γ): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies
  15563  12478E(γ): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
I(γ): From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
  13191E(γ): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
I(γ): From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
  15563E(γ): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
I(γ): From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
  15583  15583E(γ): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies
  15600  15600E(γ): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies
  15622  15622E(γ): Isobaric analog states of 49Ca. See (p,X),(d,n),(3He,d),(α,t) for correspondence with parent states. From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
I(γ): From (p,Xγ): other 49Ca IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies. Γγ’s from (p,Xγ): other 49Ca IAR’s
M(γ): d,E2 from comparison to RUL. Δπ=yes from level scheme
  15662  15662E(γ): From (p,X) and (p,Xγ) data. Resonance E(level)=(0.9798419 15)E(p)+S(p) with S(p)=9627.2 keV 29 (2003Au03). From (p,Xγ) res: non-IAR’s. Nominal energies calculated by the evaluator from the adopted excitation energies

Back to top