⁵⁰Ti(d,³He) **1979Do12**

History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	T. W. Burrows ^a	NDS 109, 1879 (2008)	14-Jul-2008								

E=52 MeV. Measured $\sigma(\theta)$; Si telescope. FWHM=100-115 keV. DWBA. Others: see 1995Bu23.

⁴⁹Sc Levels

E(level)	$J^{\pi \dagger}$	L	C^2S^{\ddagger}	E(level)	$J^{\pi \dagger}$	L	C^2S^{\ddagger}	E(level)	$J^{\pi \dagger}$	L	C^2S^{\ddagger}
0	7/2-	3	1.91 20	4.50×10^{3}				7.12×10 ³			
2.23×10^{3}	$1/2^{+}$	0	1.40 10	4.86×10^{3}	5/2+ [#]	2	0.43	7.37×10^{3}	5/2+ [#]	2	0.42
2.36×10^{3}	$3/2^{+}$	2	3.62 20	5.28×10^{3}	5/2+ #	2	0.20	7.60×10^3	5/2+ #	2	0.29
3.30×10^{3}				5.60×10^{3}	5/2+#	2	0.20	8.59×10^{3}	5/2+ [#]	2	0.19
3.55×10^{3}	5/2+ [#]	2	0.35	6.32×10^{3}	5/2+#	2	≤0.29	9.20×10 ³ @	5/2+ [#]	2	0.19
3.77×10^{3}	5/2+ #	2	0.30	6.43×10^{3}	5/2+ #	2	≤ 0.50				
4.01×10^{3}	$1/2^{+}$	0	0.22	6.77×10^{3}							

[†] Assumed for DWBA analysis.

[‡] The C²S values derived by 1979Do12 are In good agreement with the more limited results of 1968Ne03. Results from 1967Hi09 disagree; see 1978Ha15 for comparisons.

[#] The $1d_{3/2}$ strength is nearly exhausted by the 2.36-MeV state. Therefore, most of these states, particularly the strongly excited states, must have $J^{\pi}=5/2^+$.

^(a) The high energy tail of the spectra was carefully studied by 1979Do12. The results indicated that additional L=2 strength was located In this energy region but spread over several MeV of excitation energy.