ADOPTED LEVELS, GAMMAS for 125Sb

Author: J. Katakura |  Citation: Nucl. Data Sheets 112, 495 (2011) |  Cutoff date: 1-Jan-2010 

 Full ENSDF file | Adopted Levels (PDF version) 


Q(β-)=766.7 keV 22S(n)= 8707 keV 3S(p)= 7311 keV 3Q(α)= -4.84×103 keV 3
Reference: 2012WA38

References:
  A  124Sn(pol p,p) IAR  B  124Sn(3He,d)
  C  125Sn β- decay (9.52 M)  D  125Sn β- decay (9.64 d)
  E  126Te(d,3He)  F  126Te(t,α)
  G  238U(12C,xγ)  H  124Sn(7Li,α2nγ)
  I  125Sb IT decay (25 μs) 

General Comments:

Other reaction: 1992NiZZ; heavy ion reaction, but no data are available

Q-value: Note: Current evaluation has used the following Q record 766.7 218706.7 267307.7 26 -4839 28 2009AuZZ










E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
      0.0 BCDEFGHI 7/2+ 2.75856 y 25 
% β- = 100
     
    332.06 3  BCDEF    5/2+ 156 ps 8     331.96 6 
   100 1 
M1+E2
      0.0
7/2+
    642.97 2  BC EF    3/2+,5/2+      310.96 4 
   642.96 2 
    29 3 
   100.0 19 


    332.06
      0.0
5/2+
7/2+
    921.67 3  BC EF    1/2+      278.56 15 
   589.61 2 
    12 3 
   100.0 21 


    642.97
    332.06
3/2+,5/2+
5/2+
   1067.30 3    D   HI 9/2+     1067.10 5 
   100
M1+E2
      0.0
7/2+
   1089.50 3    D  GHI 11/2+     1089.15 10 
   100
E2
      0.0
7/2+
   1349.60 3   CD      7/2+      258.25 10 ?
   282.45 5 
  1017.50 8 
  1349.39 6 
    <6.4
     5.8 6 
   100 4 
    18.7 8 


M1+E2

   1089.50
   1067.30
    332.06
      0.0
11/2+
9/2+
5/2+
7/2+
   1419.85 4    D      9/2+     1087.70 10 
  1419.70 5 
   100 16 
    40.8 8 

D(+Q)
    332.06
      0.0
5/2+
7/2+
   1483.78 2  BC       3/2+,5/2+      840.83 5 
  1151.70 8 
  1483.77 2 
    40.4 17 
    18.0 17 
   100.0 17 



    642.97
    332.06
      0.0
3/2+,5/2+
5/2+
7/2+
   1560 5  B               
   1591.57 5    D      7/2+,9/2+      524.30 5 
  1259.35 10 
  1591.4 2 
    31 3 
   100 6 
    81 6 



   1067.30
    332.06
      0.0
9/2+
5/2+
7/2+
   1660 20  B               
   1700.69 5   C       1/2+,3/2,5/2+      779.5 3 
  1057.77 21 
  1368.61 4 
    13 4 
    18 4 
   100 3 



    921.67
    642.97
    332.06
1/2+
3/2+,5/2+
5/2+
   1736.13 3  BC       (3/2)+      386.52 3 
  1093.27 14 
  1404.06 2 
  1736.07 7 
    14.3 4 
     5.2 4 
   100.0 10 
     4.4 3 




   1349.60
    642.97
    332.06
      0.0
7/2+
3/2+,5/2+
5/2+
7/2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   1800 20  B        1/2+        
   1806.700 16    DEF    (9/2)+      386.6 2 
  1806.690 16 
     3.3 7 
   100.0 20 


   1419.85
      0.0
9/2+
7/2+
   1889.848 15  B D      9/2-,11/2-      469.85 5 
   800.28 5 
   822.48 5 
  1557.3 1 
  1889.884 16 
    34.7 7 
    24.9 5 
   100.0 20 
     0.095 23 
     1.7 1 
E1(+M2)
E1(+M2)
E1


   1419.85
   1089.50
   1067.30
    332.06
      0.0
9/2+
11/2+
9/2+
5/2+
7/2+
   1894 10      F           
   1913.77 8   C       3/2+,5/2      430.03 14 
  1581.96 20 
  1913.66 10 
    63 16 
    53 11 
   100 11 



   1483.78
    332.06
      0.0
3/2+,5/2+
5/2+
7/2+
   1947.45 4  BC       (3/2)+     1025.46 22 
  1304.42 10 
  1615.38 3 
  1947.50 13 
    12 5 
    11 3 
   100 3 
    13 3 




    921.67
    642.97
    332.06
      0.0
1/2+
3/2+,5/2+
5/2+
7/2+
   1971.25 20        HI 15/2- 4.1 µs 2     881.8 3 
   904.0 3 
    63.8 8 
   100.0 25 
E3(+M2)
E3
   1089.50
   1067.30
11/2+
9/2+
   1971.25+X 20         I (19/2-) 25 µs 4       
   1982.84 4    D      11/2-      563.0 2 
   893.40 5 
   915.55 5 
  1982.5 2 
     0.38 5 
     7.04 23 
   100.0 21 
     0.077 23 

D+Q
E1+M2

   1419.85
   1089.50
   1067.30
      0.0
9/2+
11/2+
9/2+
7/2+
   1993.64 25       GH  (15/2)+      904.1 3 
   100
E2
   1089.50
11/2+
   2002.140 12    D      9/2,11/2+      652.6 1 
   912.0 5 ?
   934.63 5 
  2002.134 12 
     2.12 5 
     0.35 10 
    10.86 20 
   100.0 20 




   1349.60
   1089.50
   1067.30
      0.0
7/2+
11/2+
9/2+
7/2+
   2112.1 3        H  (19/2-) 28.0 µs 7     140.9 3 
   100
E2
   1971.25
15/2-
   2113.0 10   C EF    1/2-,3/2-     2113 1 
   100

      0.0
7/2+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   2193.4 3       GH  15/2+     1103.7 5 
   100

   1089.50
11/2+
   2201.023 12    D      9/2,11/2+      311.3 1 
  1111.4 1 
  2201.002 12 
    22.5 25 
    35 5 
   100 5 



   1889.848
   1089.50
      0.0
9/2-,11/2-
11/2+
7/2+
   2217.2 3        H  (17/2)-      105.1 3 
   246.1 3 
    28.9 24 
   100 4 

M1
   2112.1
   1971.25
(19/2-)
15/2-
   2227.0 4    D          1137.5 5 
  2227.0 5 
  ≈100
   ≈70


   1089.50
      0.0
11/2+
7/2+
   2240.72 4    D      9/2+      258.25 10 ?
   350.95 5 
   434.13 10 
   890.5 5 ?
  1151.23 5 
  1173.30 5 
    <7.7
   100.0 18 
     9.2 7 
     3.3 7 
    43.4 7 
    68.8 15 

D+Q


M1+E2
M1+E2
   1982.84
   1889.848
   1806.700
   1349.60
   1089.50
   1067.30
11/2-
9/2-,11/2-
(9/2)+
7/2+
11/2+
9/2+
   2253.39 5    D      9/2,11/2,13/2      270.60 5 
   363.5 2 
   903.5 5 ?
  1163.84 5 
   100.0 18 
     2.7 5 
    12 3 
    29.1 18 




   1982.84
   1889.848
   1349.60
   1089.50
11/2-
9/2-,11/2-
7/2+
11/2+
   2275.769 10    D      9/2,11/2+      684.0 2 
  1186.15 15 
  1208.4 2 
  2275.748 10 
     5.9 11 
     4.8 5 
     4.3 11 
   100.0 21 




   1591.57
   1089.50
   1067.30
      0.0
7/2+,9/2+
11/2+
9/2+
7/2+
   2288.21 8    D      (11/2+)      286.2 2 
  1198.70 15 
  1220.88 10 
     2.2 4 
     5.8 4 
   100.0 22 


M1+E2
   2002.140
   1089.50
   1067.30
9/2,11/2+
11/2+
9/2+
   2299 10     EF    1/2-,3/2-        
   2325.0 3       GH  (19/2)+ 31 ns 2     107.9 3 
   131.59 17 
   331.36 24 
    55 3 
    55 3 
   100 5 
[E1]
E2
(E2)
   2217.2
   2193.4
   1993.64
(17/2)-
15/2+
(15/2)+
   2471.0 4       GH  (23/2)+ 272 ns 16     146.02 19 
   100
E2
   2325.0
(19/2)+
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
   2480 20  B               
   2483.8 4       G        490.2 3 
   100

   1993.64
(15/2)+
   2488.5 5       G        295.1 4 
   100

   2193.4
15/2+
   2515 10      F    1/2-,3/2-        
   2570 20  B        1/2+        
   2636.5 5       G        152.7 3 
   100

   2483.8

   2670 20  B        1/2+        
   2678 10      F    5/2-,7/2,9/2+        
   2710 20  B        1/2+        
   2780 20  B               
   2815.4 6       G        331.6
   100

   2483.8

   2820 20  B               
   2890 20  B        3/2+,5/2+        
   2917.3 5       G        446.3 3 
   100

   2471.0
(23/2)+
   3122 10      F    7/2+,9/2+        
   3190 10      F    5/2-,7/2-        
   3399.2 6       G        481.8 3 
   100

   2917.3

   3462 10      F    1/2-,3/2-        
   3941.8 6       G        542.5 3 
  1024.7 5 
   100 33 
    22 8 


   3399.2
   2917.3


   4479.9 6       G        538.1 4 
  1080.5 5 
     1.0E2 3 
    60 20 


   3941.8
   3399.2


   4933.1 7       G        452.9 5 
   991.5 5 
   100 25 
    38 15 


   4479.9
   3941.8


   5365.1 9       G        432.0 5 
   100

   4933.1

  15172 20 A         3/2+        
  15379 20 A         1/2+        
  16417 20 A         (5/2)+        
  16701 20 A         (5/2)+        
  17869 20 A         7/2-        
E(level)
(keV)
XREFJπ(level) T1/2(level)E(γ)
(keV)
I(γ)M(γ)Final Levels
  18468 20 A         (3/2-)        
  18537 20 A         (3/2-)        
  18959 20 A         (1/2)-        
  19118 20 A         (1/2)-        

E(level): From a least-squares fit to adopted Eγ’s for levels connecting with γ’s. Others from (d,3He), unless otherwise noted

E(γ): From 125Sn β- decay (9.64 d), unless otherwise noted

Back to top

Back to top

Additional Gamma Data:















E(level)
(keV)
Jπ(level)T1/2(level)E(γ)
(keV)
MultipolarityMixing
Ratio
Conversion
Coefficient
Additional Data
    332.06 5/2+ 156 ps 8     331.96 6 M1+E2-0.24 40.0242B(E2)(W.u.)=1.3 5, B(M1)(W.u.)=0.00356 20, α=0.0242, α(K)=0.0210 3, α(L)=0.00264 4, α(M)=0.000523 8, α(N)=0.0001008 16, α(O)=9.94E-6 15, α(N+)=0.0001108 17
   1067.30 9/2+     1067.10 5 M1+E2-0.86 180.00134α=0.00134 4, α(K)=0.00117 4, α(L)=0.000142 4, α(M)=2.79×10-5 7, α(N)=5.39E-6 14, α(O)=5.35E-7 14, α(N+)=5.93E-6 15
   1089.50 11/2+     1089.15 10 E2 0.001133α=0.001133 16, α(K)=0.000983 14, α(L)=0.0001211 17, α(M)=2.39×10-5 4, α(N)=4.60E-6 7, α(O)=4.52E-7 7, α(N+)=5.05E-6
   1349.60 7/2+     1017.50 8 M1+E22.1 +5-30.00137α=0.00137 3, α(K)=0.001190 23, α(L)=0.000147 3, α(M)=2.89×10-5 6, α(N)=5.57E-6 10, α(O)=5.48E-7 11, α(N+)=6.11E-6 11
   1419.85 9/2+     1419.70 5 D(+Q)+0.01 30.000830α=0.000830 12, α(K)=0.000680 10, α(L)=8.11×10-5 12, α(M)=1.595E-5 23, α(N)=3.09E-6 5, α(O)=3.09E-7 5, α(N+)=5.30E-5
   1889.848 9/2-,11/2-      469.85 5 E1(+M2)+0.010 240.00292α=0.00292 6, α(K)=0.00254 5, α(L)=0.000307 6, α(M)=6.03×10-5 12, α(N)=1.160E-5 22, α(O)=1.138E-6 22, α(N+)=1.274E-5 25
9/2-,11/2-      800.28 5 E1(+M2)0.18 +11-80.0011α=0.0011 3, α(K)=0.0010 3, α(L)=0.00012 4, α(M)=2.3×10-5 7, α(N)=4.4E-6 13, α(O)=4.4E-7 13, α(N+)=4.8E-6 15
9/2-,11/2-      822.48 5 E1 0.000849α=0.000849 12, α(K)=0.000740 11, α(L)=8.79×10-5 13, α(M)=1.727E-5 25, α(N)=3.33E-6 5, α(O)=3.30E-7 5, α(N+)=3.66E-6
   1971.25 15/2- 4.1 µs 2     881.8 3 E3(+M2)0.75 GE0.0045B(E3)(W.u.)≥0.10, B(M2)(W.u.)≤0.00015, α=0.0045 6, α(K)=0.0039 6, α(L)=0.00053 5, α(M)=0.000104 10, α(N)=2.01E-5 20, α(O)=1.94E-6 22, α(N+)=2.20E-5 22
15/2- 4.1 µs 2     904.0 3 E3 0.00372B(E3)(W.u.)=0.395 23, α=0.00372 6, α(K)=0.00317 5, α(L)=0.000442 7, α(M)=8.80E-5 13, α(N)=1.684E-5 24, α(O)=1.601E-6 23, α(N+)=1.84E-5 3
   1982.84 11/2-      893.40 5 D+Q0.29 170.0011α=0.0011 5, α(K)=0.0010 4, α(L)=0.00012 6, α(M)=2.3×10-5 11, α(N)=4.4E-6 20, α(O)=4.4E-7 20, α(N+)=4.8E-6 22
11/2-      915.55 5 E1+M2-0.02 10.000688α=0.000688 10, α(K)=0.000600 9, α(L)=7.11×10-5 11, α(M)=1.395E-5 21, α(N)=2.69E-6 4, α(O)=2.67E-7 4, α(N+)=2.96E-6 5
   1993.64 (15/2)+      904.1 3 E2 0.001712α=0.001712 24, α(K)=0.001482 21, α(L)=0.000186 3, α(M)=3.67×10-5 6, α(N)=7.06E-6 10, α(O)=6.89E-7 10, α(N+)=7.75E-6 11
   2112.1 (19/2-) 28.0 µs 7     140.9 3 E2 0.490B(E2)(W.u.)=0.00658 19, α=0.490 8, α(K)=0.379 6, α(L)=0.0892 15, α(M)=0.0182 3, α(N)=0.00336 6, α(O)=0.000267 5, α(N+)=0.00363 6
   2217.2 (17/2)-      246.1 3 M1 0.0524α=0.0524, α(K)=0.0453 7, α(L)=0.00570 9, α(M)=0.001128 17, α(N)=0.000218 4, α(O)=2.16×10-5 3, α(N+)=0.000239 4
   2240.72 9/2+      350.95 5 D+Q0.42 3 
9/2+     1151.23 5 M1+E22.1 +12-100.00105α=0.00105 6, α(K)=0.00091 6, α(L)=0.000111 6, α(M)=2.20×10-5 12, α(N)=4.23E-6 22, α(O)=4.19E-7 24, α(N+)=6.92E-6 19
9/2+     1173.30 5 M1+E21.1 GE0.00102α=0.00102 5, α(K)=0.00088 5, α(L)=0.000107 5, α(M)=2.12×10-5 10, α(N)=4.08E-6 19, α(O)=4.04E-7 20, α(N+)=8.37E-6 15
   2288.21 (11/2+)     1220.88 10 M1+E29.9 GE0.000901α=0.000901 13, α(K)=0.000774 11, α(L)=9.44×10-5 14, α(M)=1.86E-5 3, α(N)=3.59E-6 5, α(O)=3.54E-7 5, α(N+)=1.349E-5 1
   2325.0 (19/2)+ 31 ns 2     107.9 3 [E1] 0.152B(E1)(W.u.)=1.50E-6 14, α=0.152
(19/2)+ 31 ns 2     131.59 17 E2 0.624B(E2)(W.u.)=2.68 25, α=0.624, α(K)=0.476 7, α(L)=0.1185 18, α(M)=0.0243 4, α(N)=0.00446 7, α(O)=0.000350 6, α(N+)=0.00481 8
(19/2)+ 31 ns 2     331.36 24 (E2) 0.0269B(E2)(W.u.)=0.048 5, α=0.0269, α(K)=0.0226 4, α(L)=0.00345 5, α(M)=0.000690 10, α(N)=0.0001304 19, α(O)=1.178E-5 17, α(N+)=0.0001422 21
   2471.0 (23/2)+ 272 ns 16     146.02 19 E2 0.432B(E2)(W.u.)=0.59 4, α=0.432, α(K)=0.336 5, α(L)=0.0770 12, α(M)=0.01573 24, α(N)=0.00290 5, α(O)=0.000232 4, α(N+)=0.00313 5

Back to top

Additional Level Data and Comments:

E(level)Jπ(level)T1/2(level)Comments
      0.07/2+ 2.75856 y 25 
% β- = 100
μ=+2.63 4 (1989Ra17)
Configuration=(π 1g7/2).
    332.065/2+ 156 ps 8  Configuration=(π 2d5/2).
    642.973/2+,5/2+   Jπ(level): From L=2 in (3He,d), reaction strength favors 3/2+. Those states are considered to excite by 2d3/2 stripping, because the 332-keV level exhausts essentially all of the 2d5/2 strength in the (3He,d) reaction.
    921.671/2+   Configuration=(π 3s1/2).
   1067.309/2+   Jπ(level): γγ(θ) and (pol γ)γ(θ) in 125Sn β- decay (9.52 min, 9.64 d).
   1089.5011/2+   Jπ(level): γγ(θ) and (pol γ)γ(θ) in 125Sn β- decay (9.52 min, 9.64 d).
   1560   E(level): From (3He,d).
   1660   E(level): From (3He,d).
   1736.13(3/2)+   Jπ(level): From L=2 in (3He,d), reaction strength favors 3/2+. Those states are considered to excite by 2d3/2 stripping, because the 332-keV level exhausts essentially all of the 2d5/2 strength in the (3He,d) reaction.
   18001/2+   E(level): From (3He,d).
   1894   E(level): From (t,α).
   1947.45(3/2)+   Jπ(level): From L=2 in (3He,d), reaction strength favors 3/2+. Those states are considered to excite by 2d3/2 stripping, because the 332-keV level exhausts essentially all of the 2d5/2 strength in the (3He,d) reaction.
   22991/2-,3/2-   E(level): From (t,α).
   2480   E(level): From (3He,d).
   25151/2-,3/2-   E(level): From (t,α).
   25701/2+   E(level): From (3He,d).
   26701/2+   E(level): From (3He,d).
   26785/2-,7/2,9/2+   E(level): From (t,α).
   27101/2+   E(level): From (3He,d).
   2780   E(level): From (3He,d).
   2820   E(level): From (3He,d).
   28903/2+,5/2+   E(level): From (3He,d).
   31227/2+,9/2+   E(level): From (t,α).
   31905/2-,7/2-   E(level): From (t,α).
   34621/2-,3/2-   E(level): From (t,α).
E(level)Jπ(level)T1/2(level)Comments
  151723/2+   IAR of 27.5-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  153791/2+   IAR of 215.1-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  16417(5/2)+   IAR of 1258-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  16701(5/2)+   IAR of 1540-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  178697/2-   IAR of 2676-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  18468(3/2-)   IAR of 3349-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  18537(3/2-)   IAR of 3421-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  18959(1/2)-   IAR of 3830-keV level in 125Sn.
E(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
  19118(1/2)-   The closest level of L=(1) is observed at 4060 keV in 124Sn(d,p). Energy difference is too large.
E(level): The closest level of L=(1) is observed at 4060 keV in 124Sn(d,p). Energy difference is too large. Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.
Jπ(level): Analog resonance, Jπ from analyzing power in 124Sn(pol p,p). The uncertainties in the resonance energies are 5-20 keV.

Back to top

Additional Gamma Comments:

E(level)E(gamma)Comments
    642.97    310.96E(γ): From 125Sn β- decay (9.52 min)
    642.96E(γ): From 125Sn β- decay (9.52 min)
    921.67    278.56E(γ): From 125Sn β- decay (9.52 min)
    589.61E(γ): From 125Sn β- decay (9.52 min)
   1349.60    258.25E(γ): Multiply placed with undivided intensity
I(γ): Multiply placed with undivided intensity
   1483.78    840.83E(γ): From 125Sn β- decay (9.52 min)
   1151.70E(γ): From 125Sn β- decay (9.52 min)
   1483.77E(γ): From 125Sn β- decay (9.52 min)
   1700.69    779.5E(γ): From 125Sn β- decay (9.52 min)
   1057.77E(γ): From 125Sn β- decay (9.52 min)
   1368.61E(γ): From 125Sn β- decay (9.52 min)
   1736.13    386.52E(γ): From 125Sn β- decay (9.52 min)
   1093.27E(γ): From 125Sn β- decay (9.52 min)
   1404.06E(γ): From 125Sn β- decay (9.52 min)
   1736.07E(γ): From 125Sn β- decay (9.52 min)
   1913.77    430.03E(γ): From 125Sn β- decay (9.52 min)
   1581.96E(γ): From 125Sn β- decay (9.52 min)
   1913.66E(γ): From 125Sn β- decay (9.52 min)
   1947.45   1304.42E(γ): From 125Sn β- decay (9.52 min)
   1615.38E(γ): From 125Sn β- decay (9.52 min)
   1947.50E(γ): From 125Sn β- decay (9.52 min)
   1971.25    904.0M(γ): From 124Sn(7Li,α2nγ)
   1993.64    904.1E(γ): Weighted average of 238U(12C,Xγ) and 124Sn(7Li,α2nγ)
M(γ): From 124Sn(7Li,α2nγ)
   2112.1    140.9M(γ): From 124Sn(7Li,α2nγ)
   2113.0   2113E(γ): From 125Sn β- decay (9.52 min)
E(level)E(gamma)Comments
   2193.4   1103.7E(γ): Weighted average of 238U(12C,Xγ) and 124Sn(7Li,α2nγ)
   2217.2    246.1M(γ): From 124Sn(7Li,α2nγ)
   2240.72    258.25E(γ): Multiply placed with undivided intensity
I(γ): Multiply placed with undivided intensity
   2325.0    107.9E(γ): From 124Sn(7Li,α2nγ)
    131.59E(γ): Weighted average of 238U(12C,Xγ) and 124Sn(7Li,α2nγ)
I(γ): From 124Sn(7Li,α2nγ)
M(γ): From 124Sn(7Li,α2nγ)
    331.36E(γ): Weighted average of 238U(12C,Xγ) and 124Sn(7Li,α2nγ)
I(γ): From 124Sn(7Li,α2nγ)
M(γ): M1 or E2 from 124Sn(7Li,α2nγ). Placement in the level scheme requires ΔJ=2.
   2471.0    146.02E(γ): Weighted average of 238U(12C,Xγ) and 124Sn(7Li,α2nγ)
M(γ): From 124Sn(7Li,α2nγ)

Back to top