NSR Query Results
Output year order : Descending NSR database version of April 11, 2024. Search: Author = Sangeeta Found 11 matches. 2024GH03 J.Phys.(London) G51, 045105 (2024) T.Ghosh, Sangeeta, B.Maheshwari, G.Saxena, B.K.Agrawal Indispensability of cross-shell contributions in neutron resonance spacing NUCLEAR STRUCTURE ^{24}Na, ^{25,26,27}Mg; calculated J and π dependent nuclear level densities (NLDs) for a configuration interaction shell model using a numerically efficient spectral distribution method; deduced the s-wave neutron resonance spacing (D0).
doi: 10.1088/1361-6471/ad29e9
2024HI02 Chin.Phys.C 48, 024001 (2024) A.Hingu, S.Mukherjee, S.Parashari, A.Sangeeta, A.Gandhi, M.Upadhyay, M.Choudhary, S.Bamal, N.Singh, G.Mishra, S.De, S.Sood, S.Prasad, G.Saxena, A.Kumar, R.G.Thomas, B.K.Agrawal, K.Katovsky, A.Kumar Investigation of ^{58}Ni(n, p)^{58}Co reaction cross-section with covariance analysis NUCLEAR REACTIONS ^{58}Ni(n, p), ^{115}In(n, n'), E=1.7-2.7 MeV; measured reaction products, Eγ, Iγ; deduced σ and correlation matrix. Comparison with EXFOR, ENDF/B-VIII.0, JEFF-3.3, JENDL-4.0, and CENDL-3.2 libraries, TALYS calculations. The Folded Tendem Ion Accelerator (FOTIA) facility at the Bhabha Atomic Research Centre (BARC), Mumbai, India.
doi: 10.1088/1674-1137/ad0e5a
2023GH04 Eur.Phys.J. A 59, 266 (2023) T.Ghosh, Sangeeta, G.Saxena, B.K.Agrawal, U.Datta Impact of density dependence of symmetry energy on astrophysical S-factor for heavy-ion fusion reactions NUCLEAR STRUCTURE ^{16,24}O, ^{40,48,54,60}Ca, ^{78}Ni, ^{124,132}Sn; analyzed available data; deduced Radial density distributions for neutrons and protons from SLy4 and SkO Skyrme effective interactions. NUCLEAR REACTIONS ^{40}Ca(^{40}Ca, X), ^{16}O(^{16}O, X), ^{24}O(^{24}O, X), ^{54}Ca(^{54}Ca, X), ^{60}Ca(^{60}Ca, X), ^{78}Ni(^{78}Ni, X), ^{124}Sn(^{124}Sn, X), ^{132}Sn(^{132}Sn, X), E(cm)=45-50 MeV; analyzed available data; deduced σ, the maximum barrier height and width obtained by DFM potentials M3Y-Paris without density dependence (PDD0), sub-barrier fusion σ and astrophysical S-factor. Comparison with available data.
doi: 10.1140/epja/s10050-023-01173-7
2022GH01 J.Phys.(London) G49, 25103 (2022) T.Ghosh, B.Maheshwari, Sangeeta, G.Saxena, B.K.Agrawal Nuclear level densities away from line of β-stability NUCLEAR STRUCTURE Z=10-80; analyzed available data; deduced nuclear level densities, ground-shell corrections, parameters.
doi: 10.1088/1361-6471/ac44ac
2022SA17 Phys.Rev. C 105, 044320 (2022) Sangeeta, T.Ghosh, B.Maheshwari, G.Saxena, B.K.Agrawal Astrophysical reaction rates with realistic nuclear level densities NUCLEAR STRUCTURE ^{51}V, ^{55}Fe, ^{59}Ni; calculated ground-state energies, nuclear level densities. ^{49,50}Ti, ^{51}V, ^{53}Cr, ^{55,57}Fe, ^{59}Ni; calculated S-wave neutron resonances. Ground state properties calculated by using shell-model with the GXPF1A residual interaction. Nuclear level densities obtained within the spectral distribution method (SDM). Comparison to available experimental data and other theoretical calculations. NUCLEAR REACTIONS ^{50}V, ^{54}Fe, ^{58}Ni(n, γ), E(cm)<8 MeV; calculated σ(E), astrophysical reaction rates. TALYS 1.95 calculations using nuclear level densities obtained within the spectral distribution method (SDM). Comparison to experimental data and recommended values from ENDF and KADONIS V0.3.
doi: 10.1103/PhysRevC.105.044320
2020MO33 Phys.Rev. C 102, 044610 (2020) G.Mohanto, S.De, A.Parihari, P.C.Rout, K.Ramachandran, K.Mahata, E.T.Mirgule, R.Gandhi, Sangeeta, M.Kushwaha, B.Srinivasan, S.Santra, A.Shrivastava, S.P.Behera, B.J.Roy, A.Jhingan, B.K.Nayak, A.Saxena Effect of nuclear structure and fissility on quasifission NUCLEAR REACTIONS ^{206,208}Pb(^{35}Cl, X), (^{37}Cl, X), E(cm)/V_{B}=0.95-1.05; measured fission fragments and time-of-flight of fragments using two position sensitive multiwire proportional counters (MWPCs); deduced fission fragment velocities, mass ratio and center-of-mass angle, mass-angle distributions (MAD spectra), absence of mass-angle correlations and that of fast quasifission (QF); analyzed mass widths of the mass distributions as function of excitation energy for the reactions studied in this work, and compared with previous experimental results for ^{208}Pb(^{34}S, X) and ^{208}Pb(^{30}Si, X) reactions. ^{208}Pb, ^{238}U(^{12}C, X), E not given; ^{182}W(^{13}C, X), E not given; ^{175}Lu, ^{186}W, ^{186,192}Os, ^{196}Pt, ^{200}Hg, ^{208}Pb, ^{238}U(^{16}O, X), E not given; ^{232}Th(^{18}O, X), E not given; ^{178}Hf, ^{238}U(^{24}Mg, X), E not given; ^{170}Yb, ^{238}U(^{28}Si, X), E not given; ^{208}Pb, ^{232}Th(^{30}Si, X), E not given; ^{178}Hf, ^{194}Pt, ^{202}Hg, ^{208}Pb(^{34}S, X), E not given; ^{168}Er, ^{186}W, ^{208}Pb, ^{232}Th(^{34}S, X), E not given; ^{154}Sm, ^{206,208}Pb(^{35}Cl, X), (^{37}Cl, X), E not given; ^{144}Sm(^{35}Cl, X), E not given; ^{142}Nd, ^{154}Sm, ^{198}Pt, ^{208}Pb, ^{232}Th, ^{238}U(^{40}Ca, X), E not given; ^{144}Sm, ^{162}Dy, ^{170}Er, ^{174}Yb, ^{178}Hf, ^{186}W, ^{192}Os, ^{196}Pt, ^{200}Hg, ^{208}Pb, ^{238}U(^{48}Ti, X), E not given; ^{144,154}Sm(^{48}Ca, X), E not given; ^{154}Sm, ^{170}Er, ^{184}W, ^{192}Os, ^{198}Pt, ^{208}Pb(^{64}Ni, X), E not given; analyzed measured cross sections and mass-angle distributions (MADs) by including deformation parameter β_{2}; deduced effect on quasifission (QF) process.
doi: 10.1103/PhysRevC.102.044610
2019MO25 Phys.Rev. C 100, 011602 (2019) G.Mohanto, A.Parihari, P.C.Rout, S.De, E.T.Mirgule, B.Srinivasan, K.Mahata, S.P.Behera, M.Kushwaha, D.Sarkar, B.K.Nayak, A.Saxena, A.K.R.Kumar, A.Gandhi, Sangeeta, N.K.Deb, P.Arumugam Collective enhancement in nuclear level density NUCLEAR REACTIONS ^{181}Ta, ^{197}Au(^{11}B, X)^{192}Pt^{*}/^{208}Pb^{*}, E=61.5, 63.0 MeV; measured Eα, Iα, neutron time of flight, E(n), I(n), and αn-coin from the compound nuclei using ΔE-E telescopes for charged particle detection and liquid scintillator array for neutron detection at the BARC-TIFR LINAC-Pelletron facility. ^{188}Os, ^{204}Pb; deduced inverse level density parameters as a function of excitation energy, and energy-dependent collective enhancement factor obtained from simultaneous fitting of the neutron spectra. ^{169}Tm, ^{181}Ta(α, X), E=26-40 MeV; analyzed previous experimental yields with model calculations. ^{187}Os, ^{203}Pb; calculated temperature dependent free energy surfaces. Comparison with statistical model calculations.
doi: 10.1103/PhysRevC.100.011602
2017SA11 Acta Phys.Pol. B48, 623 (2017) Structural Effects Through Nuclear Charge Radius in Mass Asymmetric Collisions NUCLEAR REACTIONS ^{50}Ca(^{50}Ca, x), E=100 MeV/nucleon;^{86}Kr(^{14}N, x), E=100 MeV/nucleon; calculated free proton, neutron multiplicity vs relative impact parameter, light-mass fragment multiplicity vs different nuclear charge radius parameter using IQMD (Isospin-dependent QMD).
doi: 10.5506/APhysPolB.48.623
2017SA43 Nucl.Phys. A966, 20 (2017) Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations NUCLEAR STRUCTURE ^{80}Cu, ^{80}Zr; calculated neutron, proton density profile, mass and charge radius using IQMD (Isospin-dependent QMD) NUCLEAR REACTIONS ^{50}Ca(^{50}Ca, x), E=30-200 MeV/nucleon;^{197}Au(^{197}Au, x), E=30-200 MeV/nucleon;^{80}Cu(^{80}Cu, x), E=40-350 MeV/nucleon;^{80}Zr(^{80}Zr, x), E=40-350 MeV/nucleon; calculated reduced flow, elliptical flow of Z=1 particles. COMPILATION ^{80}Cu(^{80}Cu, x), ^{50}Ca(^{50}Ca, x), ^{80}Zn(^{80}Zn, x), ^{80}Ge(^{80}Ge, x), ^{80}Kr(^{80}Kr, x), ^{90}Kr(^{90}Kr, x), ^{80}Zr(^{80}Zr, x), ^{124}Sn(^{124}Sn, x), ^{150}Nd(^{150}Nd, x), ^{197}Au(^{197}Au, x), E not given; compiled balance energy for Z=1 particles, transition energy vs nuclear radius (separately for nuclei of N/Z=1.5 and for A_{tot}=160); deduced simple power trend of dependence of energies vs radius.
doi: 10.1016/j.nuclphysa.2017.05.096
2016SA09 Acta Phys.Pol. B47, 991 (2016) Initialization Effects via Nuclear Charge Radii Parameterizations on the Nuclear Stopping and Its Relation to Distribution and Production of Light Mass Fragments NUCLEAR REACTIONS ^{50}Ca(^{50}Ca, X), ^{90}Kr(^{90}Kr, X), ^{100}Zr(^{100}Zr, X), ^{124}Sn(^{124}Sn, X), ^{150}Nd(^{150}Nd, X), ^{197}Au(^{197}Au, X), E=50 MeV/nucleon; calculated rapidity distribution, nuclear stopping observables using IQMD model with isospin-dependent N-N σ.
doi: 10.5506/APhysPolB.47.991
2014SA34 Nucl.Phys. A927, 220 (2014) Influence of isospin dependent nuclear charge radii on fragmentation in heavy ion collisions NUCLEAR REACTIONS ^{50}Ca(^{50}Ca, x), E=50, 400 MeV/nucleon;^{124}Sn(^{124}Sn, x), E=50, 400 MeV/nucleon; ^{197}Au(^{197}Au, x), E=50, 400 MeV/nucleon; calculated nucleonic density time development using different parameterization of nuclear radii, fragment multiplicity, fragment mass distribution using IQMD (isospin-dependent QMD). Calculated also other reactions, their results not presented.
doi: 10.1016/j.nuclphysa.2014.04.032
Back to query form Note: The following list of authors and aliases matches the search parameter Sangeeta: , |