NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = S.Oryu

Found 43 matches.

Back to query form

2024OR01      Few-Body Systems 65, 42 (2024)

Sh.Oryu, T.Watanabe, Y.Hiratsuka, M.Takeda

A New Quantization of Hadron System and Ultra-Low Energy Nuclear Fusion

NUCLEAR REACTIONS 133Cs(2t, γ), 135Cs(2d, γ), 137Cs(2p, γ)139La, E < 300 eV; calculated an energy-dependent particle exchange potential using a new quantization; deduced an ultra-low energy nuclear (ULEN) reaction parameters.

doi: 10.1007/s00601-024-01912-6
Citations: PlumX Metrics

2017OR01      Few-Body Systems 58, 95 (2017)

S.Oryu, T.Watanabe, Y.Hiratsuka, Y.Togawa

A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

doi: 10.1007/s00601-017-1258-6
Citations: PlumX Metrics

2016KA14      Few-Body Systems 57, 255 (2016)

H.Kamada, J.Furuya, M.Yamaguchi, S.Oryu

Neutron Pairing Correlations in an α-n-n Three-Cluster Model of the 6He Nucleus

NUCLEAR STRUCTURE 6He; calculated form factors, binding and resonance energies, J, π, angle density matrix. Comparison with available data.

doi: 10.1007/s00601-016-1050-z
Citations: PlumX Metrics

2013HI01      J.Phys.(London) G40, 025106 (2013)

Y.Hiratsuka, S.Oryu, S.Gojuki

D(p, p)D elastic scattering with rigorous Coulomb treatment

doi: 10.1088/0954-3899/40/2/025106
Citations: PlumX Metrics

2012OR01      J.Phys.(London) G39, 045101 (2012)

S.Oryu, Y.Hiratsuka, S.Nishinohara, S.Chiba

Proton-proton phase shifts calculations in momentum space by a rigorous Coulomb treatment

doi: 10.1088/0954-3899/39/4/045101
Citations: PlumX Metrics

2012OR06      Phys.Rev. C 86, 044001 (2012)


Universal structure of the three-body system

doi: 10.1103/PhysRevC.86.044001
Citations: PlumX Metrics

2011HI07      Few-Body Systems 50, 271 (2011)

Y.Hiratsuka, S.Oryu, S.Gojuki

pd Scattering Using a Rigorous Coulomb Treatment Reliability of the Renormalization Method for Screened-Coulomb Potentials

doi: 10.1007/s00601-010-0212-7
Citations: PlumX Metrics

2008FU01      Prog.Theor.Phys.(Kyoto) 119, 403 (2008)

N.Furutachi, M.Kimura, A.Dote, Y.Kanada-En'yo, S.Oryu

Cluster Structures in Oxygen Isotopes

NUCLEAR STRUCTURE 16,18,20O; calculated level energies, J, π, B(E2) using the AMD plus GCM method. Cluster Structures.

doi: 10.1143/PTP.119.403
Citations: PlumX Metrics

2007NI09      Nucl.Phys. A790, 277c (2007)

S.Nishinohara, S.Chiba, S.Oryu

The Coulomb scattering in momentum space for few-body systems

NUCLEAR REACTIONS 1H(p, X), E(cm)≈0-200 MeV; calculated Coulomb phase shift.

doi: 10.1016/j.nuclphysa.2007.03.044
Citations: PlumX Metrics

2007OR02      Phys.Rev. C 75, 021001 (2007)

S.Oryu, S.Nishinohara, N.Shiiki, S.Chiba

Coulomb phase shift calculation in momentum space

NUCLEAR REACTIONS 1H(p, X), E(cm) ≈ 0-200 MeV; calculated Coulomb phase shift.

doi: 10.1103/PhysRevC.75.021001
Citations: PlumX Metrics

2006OR04      Phys.Rev. C 73, 054001 (2006); Erratum Phys.Rev. C 76, 069901 (2007)


Two- and three-charged-particle nuclear scattering in momentum space: A two-potential theory and a boundary condition model

doi: 10.1103/PhysRevC.73.054001
Citations: PlumX Metrics

2004OR04      Few-Body Systems 34, 113 (2004)


A New Three-Charged-Particle Faddeev-Type Formalism with a Short-Range Force and a Three-Body Force

doi: 10.1007/s00601-004-0047-1
Citations: PlumX Metrics

2004OR05      Prog.Theor.Phys.(Kyoto), Suppl. 154, 285 (2004)

S.Oryu, S.Gojuki

Polarization Effects on the 3He(pol)(d(pol), p)4He Fusion Reaction in the 3/2+ Resonance Region - A Nuclear, Three-Charged-Particle Faddeev-Type Formalism -

NUCLEAR REACTIONS 3He(d, p), (polarized d, p), E < 1000 keV; calculated σ, polarization effects. Polarized target.

doi: 10.1143/PTPS.154.285
Citations: PlumX Metrics

2003GO43      Mod.Phys.Lett. A 18, 302 (2003)

S.Gojuki, S.Oryu

Polarization effects in the 3He(d, p)4He fusion reaction

NUCLEAR REACTIONS 3He(d, p), E=250-700 keV; calculated polarized and unpolarized total σ, resonance features.

doi: 10.1142/S0217732303010399
Citations: PlumX Metrics

2003WA35      Mod.Phys.Lett. A 18, 182 (2003)

T.Watanabe, Y.Taniguchi, N.Sawado, S.Oryu

Analysis of light nuclei with the AMD method

NUCLEAR STRUCTURE 2,3H, 3,4,5He, 6,7Li, 8Be; calculated binding energies. Antisymmetrized molecular dynamics, Paris potential, comparison with data.

doi: 10.1142/S0217732303010211
Citations: PlumX Metrics

2001GO16      Nucl.Phys. A684, 629c (2001)

S.Gojuki, S.Nemoto, S.Oryu, E.Uzu, H.Kamada

Multi-Channel Faddeev Calculation for 3He-d Scattering

NUCLEAR REACTIONS 3He(d, p), E=140, 200, 270 MeV; calculated σ(θ). Multi-channel Faddeev calculation, comparison with data.

doi: 10.1016/S0375-9474(01)00458-4
Citations: PlumX Metrics

2001NE08      Nucl.Phys. A684, 635c (2001)

S.Nemoto, S.Oryu

Potential Independent Structure on Elastic Nucleon-Deuteron Scattering

NUCLEAR REACTIONS 2H(n, n), (p, p), E=10-135 MeV; calculated scattering amplitude vs spin, parity.

doi: 10.1016/S0375-9474(01)00460-2
Citations: PlumX Metrics

2001OR02      Nucl.Phys. A684, 539c (2001)

S.Oryu, S.Nemoto, H.Yamada

N-d Elastic Scattering with a New-Three-Body Force

NUCLEAR REACTIONS 2H(n, n), (p, p), E=10 MeV; calculated analyzing powers. Three-nucleon force, comparisons with data.

doi: 10.1016/S0375-9474(01)00382-7
Citations: PlumX Metrics

2001OR04      Nucl.Phys. A689, 373c (2001)

S.Oryu, S.Nemoto, H.Yamada

Effects of a New Three-Body Force in N-d Scattering

NUCLEAR REACTIONS 2H(n, n), (p, p), E=5-135 MeV; calculated σ(θ), Ay(θ); deduced three-nucleon force effects. Comparisons with data.

doi: 10.1016/S0375-9474(01)00858-2
Citations: PlumX Metrics

2001SA13      Nucl.Phys. A684, 531c (2001)

P.U.Sauer, K.Chmielewski, S.Nemoto, S.Oryu

Three-Nucleon Force Mediated by Δ-Isobar Excitation: Application to Nucleon-Deuteron Scattering

NUCLEAR REACTIONS 2H(n, n), (p, p), E=2-135 MeV; calculated σ(θ), polarization observables; deduced role of Δ-isobar excitation. Comparison with data.

doi: 10.1016/S0375-9474(01)00375-X
Citations: PlumX Metrics

2001SA32      Nucl.Phys. A689, 341c (2001)

P.U.Sauer, K.Chmielewski, S.Nemoto, S.Oryu

Nucleon-Deuteron Scattering with Δ-Isobar Excitation

NUCLEAR REACTIONS 2H(p, p), (n, n), E=135 MeV; calculated Ay(θ), other spin observables. 2H(p, np), (n, np), E=65 MeV; calculated σ(θ), Ay(θ). Comparisons with data.

doi: 10.1016/S0375-9474(01)00850-8
Citations: PlumX Metrics

2001UZ01      Nucl.Phys. A684, 626c (2001)

E.Uzu, S.Oryu, M.Tanifuji

Four-Body Faddeev-Yakubovsky Calculation for 3He(n, n)3He Scattering at Elab = 4.78 MeV

NUCLEAR REACTIONS 3He(n, n), E=4.78 MeV; calculated σ(θ), polarization. Four-body Faddeev-Yakubovsky calculation, comparison with data.

doi: 10.1016/S0375-9474(01)00457-2
Citations: PlumX Metrics

2000KA37      Phys.Rev. C62, 034004 (2000)

H.Kamada, S.Oryu, A.Nogga

Realistic Ghost State: Pauli forbidden state from rigorous solution of the α particle

NUCLEAR STRUCTURE 5He, 5Li; calculated wave functions, Pauli-forbidden state features. Cluster approach, comparison of rigorous and approximate methods.

doi: 10.1103/PhysRevC.62.034004
Citations: PlumX Metrics

2000OR03      Few-Body Systems 28, 103 (2000)

S.Oryu, H.Kamada, H.Sekine, H.Yamashita, M.Nakazawa

Calculation of Λ9Be in an α-α-Λ Three-Body Model using the Faddeev Equations

NUCLEAR STRUCTURE 9Be; calculated hypernucleus binding energy, levels J, π, resonances. Three-body model, Fadeev equations.

doi: 10.1007/s006010070026
Citations: PlumX Metrics

1999MA69      Nucl.Phys. A654, 597 (1999)

S.E.Massen, S.A.Sofianos, S.A.Rakityansky, S.Oryu

Resonances and Off-Shell Characteristics of Effective Interactions

doi: 10.1016/S0375-9474(99)00316-4
Citations: PlumX Metrics

1998NE05      Phys.Rev. C58, 2599 (1998)

S.Nemoto, K.Chmielewski, S.Oryu, P.U.Sauer

Discrepancy in the Cross Section Minimum of Elastic Nucleon-Deuteron Scattering

NUCLEAR REACTIONS 2H(n, n), (p, p), E=2-135 MeV; calculated σ(θ); deduced Δ-isobar excitation contribution. Three-particle scattering equations. Comparison with data.

doi: 10.1103/PhysRevC.58.2599
Citations: PlumX Metrics

1998NE07      Few-Body Systems 24, 213 (1998)

S.Nemoto, K.Chmielewski, N.W.Schellingerhout, J.Haidenbauer, S.Oryu, P.U.Sauer

Nucleon-Deuteron Scattering with Δ-Isobar Excitation, I: Test of separable expansion

NUCLEAR REACTIONS 2H(n, X), (p, X), E not given; calculated scattering matrix elements; deduced Δ-isobar role, separable expansion validity. 2H(n, n), E=10, 67 MeV; calculated σ(θ), spin observables. Coupled-channels approach.

doi: 10.1007/s006010050087
Citations: PlumX Metrics

1998NE08      Few-Body Systems 24, 241 (1998)

S.Nemoto, K.Chmielewski, U.Meyer, J.Haidenbauer, S.Oryu, P.U.Sauer

Nucleon-Deuteron Scattering with Δ-Isobar Excitation, II: Elastic scattering

NUCLEAR REACTIONS 2H(polarized n, n), (polarized p, p), E=10, 67 MeV; calculated σ(θ), analyzing powers, spin transfer coefficients; deduced Δ-isobar excitation role. Comparison with data.

doi: 10.1007/s006010050088
Citations: PlumX Metrics

1998OR02      Nucl.Instrum.Methods Phys.Res. A402, 402 (1998)

S.Oryu, E.Uzu, H.Sunahara, T.Yamada, G.Tabaru, T.Hino, T.Kaneko

3He(d, p)4He Reaction Calculation with Three-Body Faddeev Equations

NUCLEAR REACTIONS 3He(d, p), (polarized d, p), E=270 MeV; calculated σ(θ). Three-body Fadeev equations, microscopic Pauli correct method, resonating group method.

NUCLEAR STRUCTURE 5Li; calculated levels, J, π. Three-body Fadeev equations.

doi: 10.1016/S0168-9002(97)00880-2
Citations: PlumX Metrics

1998SA54      Phys.Rev. C58, R3046 (1998)

N.Sawado, S.Oryu

Axially Symmetric B = 2 Solution in the Chiral Quark Soliton Model

doi: 10.1103/PhysRevC.58.R3046
Citations: PlumX Metrics

1997UZ03      Few-Body Systems 22, 65 (1997)

E.Uzu, H.Kameyama, S.Oryu, M.Tanifuji

Analyses of Cross Sections and Analyzing Powers in Low-Energy 2H(d(pol), n)3He Reactions Based on the Invariant-Amplitude and Faddeev-Yakubovsky Methods

NUCLEAR REACTIONS 2H(polarized d, n), E ≈ 30 keV; analyzed σ(θ), vector, tensor analyzing powers; deduced cross section supression related features. Invariant-Amplitude, Fadeev-Yakubovsky methods.

doi: 10.1007/s006010050054
Citations: PlumX Metrics

1994OR04      Phys.Rev. C49, 2337 (1994)

S.Oryu, H.Yamada

Effects of the Three-Body Force in Three-Nucleon Systems

NUCLEAR STRUCTURE 3H; calculated binding energy. Faddeev equations, phenomenological three-body force.

NUCLEAR REACTIONS 2H(n, n), E=2.5, 5 MeV; analyzed σ(θ). 1H(polarized d, d), E=2.5 MeV; calculated proton polarization vs θ, deuteron analyzing powers T20(θ), T21(θ), T22(θ). Faddeev equations, phenomenological three-body force.

doi: 10.1103/PhysRevC.49.2337
Citations: PlumX Metrics

1994OR10      Few-Body Systems 17, 185 (1994)

S.Oryu, K.Samata, T.Suzuki, S.Nakamura, H.Kamada

Application of the Alt-Grassberger-Sandhas Equations to the Three-Alpha Model

NUCLEAR STRUCTURE 12C; calculated binding energy vs y parameter, forbidden state energy. Three-α model, cluster-cluster potential from resonating group method modified by orthogonality condition model or fish-bone optical model techniques.

doi: 10.1007/BF01074451
Citations: PlumX Metrics

1991OR02      Nucl.Phys. A534, 221 (1991)

S.Oryu, H.Kamada, H.Sekine, T.Nishino

Four-Alpha Model Calculation for the 16O Nucleus by the Four-Body Integral Equation

NUCLEAR STRUCTURE 16O; calculated levels. Four-α model.

doi: 10.1016/0375-9474(91)90496-S
Citations: PlumX Metrics

1989OR05      Nucl.Phys. A493, 91 (1989)

S.Oryu, H.Kamada

Three-Alpha Model Calculation of the 12C Nucleus by the Faddeev Equation and Effects of the Three-Body Force

NUCLEAR STRUCTURE 12C; calculated levels, charge densities. Three-alpha model.

NUCLEAR REACTIONS 12C(e, e), E not given; calculated form factor. Three-alpha model.

doi: 10.1016/0375-9474(89)90534-4
Citations: PlumX Metrics

1987KA05      Nucl.Phys. A463, 347c (1987)

H.Kamada, S.Oryu

3-Alpha Cluster Faddeev Calculation and Effects of Three-Body Force

NUCLEAR STRUCTURE 12C; calculated levels. Faddeev formalism, 3-α model.

doi: 10.1016/0375-9474(87)90677-4
Citations: PlumX Metrics

1986KA51      Prog.Theor.Phys.(Kyoto) 76, 1260 (1986)

H.Kamada, S.Oryu

The Three-Alpha Faddeev Calculation on 12C Bound States with a Pauli Correct Alpha-Alpha Potential

NUCLEAR STRUCTURE 12C; calculated levels. Three-alpha Faddeev calculations.

doi: 10.1143/PTP.76.1260
Citations: PlumX Metrics

1985KI11      Prog.Theor.Phys.(Kyoto) 73, 1442 (1985)

R.Kircher, H.Kamada, S.Oryu

A Comparison of the Off-Shell α-α and α-N Scattering Amplitudes of Different Separable Potentials

NUCLEAR REACTIONS 4He(α, α), (p, p), E(cm)=0-20 MeV; calculated phase shifts vs E. Separable potentials, Pauli correction, momentum representation.

doi: 10.1143/PTP.73.1442
Citations: PlumX Metrics

1977OR01      Progr.Theor.Phys.Suppl., No.61, 180 (1977)


An Analytic Solution of the Three-Body Amado-Lovelace Equation at Positive Energies

NUCLEAR REACTIONS 2H(n, n), E=14.1 MeV; calculated σ(θ).

1976SH20      Nucl.Phys. A267, 157 (1976)

S.Shirato, Y.Suda, S.Tsuruta, S.Oryu

Differential Cross Sections for the Reactions 3H(n, n)3H and 3H(n, d)2N at 14.1 MeV

NUCLEAR REACTIONS 3H(n, n), (n, d), E=14.1 MeV, average θ=4-40°; measured absolute σ(θ), σ(Ed). Optical model, Faddeev model calculations. 3H-Ti-Cu target.

doi: 10.1016/0375-9474(76)90650-3
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset20714.

1972SA25      Phys.Lett. 40B, 546 (1972)

J.Sanada, S.Seki, S.Oryu

The D(p, 2p)n Reaction at 51.8 MeV

NUCLEAR REACTIONS 2H(p, 2p), E=51.8 MeV; measured σ(E(p1), E(p2), θ(p1)=-θ(p2)).

doi: 10.1016/0370-2693(72)90478-9
Citations: PlumX Metrics

1971OR05      Progr.Theor.Phys. 45, 386 (1971)


Analysis of D(p, 2p)n Reaction by the Faddeev Equation with the Off-Shell Two-Body Amplitudes. I

NUCLEAR REACTIONS 2H(p, 2p), E=38-50 MeV; calculated σ(E(p1), θ(p1), θ(p2)). Faddeev equation, off-shell two-body amplitudes.

doi: 10.1143/PTP.45.386
Citations: PlumX Metrics

1970OR07      Progr.Theoret.Phys. 44, 1208 (1970)


Analysis of D(p, n)2p Reaction at 45.5 MeV by the Faddeev Formalism with Coulomb Force

NUCLEAR REACTIONS 2H(p, n), E=45.5 MeV; calculated σ(En, θ). Faddeev formalism, Coulomb force.

doi: 10.1143/PTP.44.1208
Citations: PlumX Metrics

Back to query form