NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 21, 2024.

Search: Author = S.Cooper

Found 52 matches.

Back to query form



2003CO08      Nucl.Phys. A723, 45 (2003)

S.G.Cooper, R.S.Mackintosh

Data-to-potential inversion for tensor polarized deuterons scattered from 4He

NUCLEAR REACTIONS 4He(polarized d, d), E=4-13 MeV; analyzed σ(θ), analyzing powers; deduced potential. Iterative perturbative procedure.

doi: 10.1016/S0375-9474(03)01082-0
Citations: PlumX Metrics


2000CO22      Nucl.Phys. A677, 187 (2000)

S.G.Cooper, V.I.Kukulin, R.S.Mackintosh, V.N.Pomerantsev

An Inversion Procedure for Coupled-Channel Scattering: Determining the deuteron-nucleus tensor interaction

NUCLEAR REACTIONS 58Ni(d, d'), E=56 MeV; 4He(d, d'), E=8-13 MeV; 56Fe(d, d'), E=30 MeV; calculated scattering potential. 4He(d, d'), E=10 MeV; calculated σ(θ), analyzing powers. S-matrix to potential inversion procedure, coupled channels approach.

doi: 10.1016/S0375-9474(00)00309-2
Citations: PlumX Metrics


1999CO11      Phys.Rev. C59, 2361 (1999)

S.G.Cooper, V.I.Kukulin, R.S.Mackintosh, V.N.Pomerantsev

Spin 1 Inversion: A Majorana tensor force for deuteron alpha scattering

NUCLEAR REACTIONS 4He(polarized d, d'), E ≈ 10 MeV; analyzed σ(θ), tensor analyzing powers; deduced tensor interaction. S-matrix to potential inversion.

doi: 10.1103/PhysRevC.59.2361
Citations: PlumX Metrics


1999KU21      Yad.Fiz. 62, No 7, 1187 (1999); Phys.Atomic Nuclei 62, 1114 (1999)

V.I.Kukulin, V.N.Pomerantsev, S.G.Cooper, R.S.Mackintosh

Majorana Tensor FOrce for Deuteron-Nucleus Interactions

NUCLEAR REACTIONS 4He(d, d), E not given; analyzed data; deduced parity-dependent tensor component in internucleus interaction. Coupled-channel inversion technique.


1999MA02      Nucl.Phys. A645, 399 (1999)

R.S.Mackintosh, S.G.Cooper, V.I.Kukulin

Determination of 6Li-4He Interaction from Multi-Energy Scattering Data

NUCLEAR REACTIONS 4He(polarized 6Li, 6Li), E=19.6, 27.7, 37.5 MeV; analyzed σ(θ), vector analyzing power vs theta; deduced interaction potential. Energy dependent components, Majorana terms.

doi: 10.1016/S0375-9474(98)00623-X
Citations: PlumX Metrics


1999SH12      Phys.Rev.Lett. 82, 1109 (1999)

R.W.Shaw, J.P.Young, S.P.Cooper, O.F.Webb

Spontaneous Ultraviolet Emission from 233Uranium/229Thorium Samples

RADIOACTIVITY 233U(α); measured photon spectrum; deduced N2 electric discharge origin of ultraviolet emission.

doi: 10.1103/PhysRevLett.82.1109
Citations: PlumX Metrics


1998CO17      Phys.Rev. C58, R31 (1998)

S.G.Cooper, V.I.Kukulin, R.S.Mackintosh, E.V.Kuznetsova

New Technique for Phase Shift Analysis: Multienergy Solution of Inverse Scattering Problem

NUCLEAR REACTIONS 4He(polarized d, d), E=3-12 MeV; analyzed σ(θ), iT11(θ); deduced phase shifts. Direct inversion from multienergy data to potentials.

doi: 10.1103/PhysRevC.58.R31
Citations: PlumX Metrics


1998KU12      Phys.Rev. C57, 2462 (1998)

V.I.Kukulin, V.N.Pomerantsev, S.G.Cooper, S.B.Dubovichenko

Improved d + 4He Potentials by Inversion: The tensor force and validity of the double folding model

NUCLEAR REACTIONS 4He(d, X), E not given; calculated interaction potentials; deduced double folding model validity.

doi: 10.1103/PhysRevC.57.2462
Citations: PlumX Metrics


1998MA48      J.Phys.(London) G24, 1599 (1998)

R.S.Mackintosh, S.G.Cooper

Using Inverse Scattering Methods to Study Inter-Nucleus Potentials

NUCLEAR REACTIONS 4He(polarized d, d), E=3-11.5 MeV; calculated σ(θ), iT11(θ). Iterative-perturbative method, applications to exotic nuclei discussed.

doi: 10.1088/0954-3899/24/8/039
Citations: PlumX Metrics


1997CO09      Nucl.Phys. A618, 87 (1997)

S.G.Cooper

Energy-Dependent Inversion of p + 16O Scattering Data

NUCLEAR REACTIONS 16O(polarized p, p), E=27.3-46.1 MeV; analyzed σ(θ), analyzing power data. Iterative procedures, energy-dependent inversion procedures.

doi: 10.1016/S0375-9474(97)00055-9
Citations: PlumX Metrics


1997CO27      Nucl.Phys. A626, 715 (1997)

S.G.Cooper

Antisymmetry and Channel Coupling Contributions to the Absorption for p + α/d + 3He

NUCLEAR REACTIONS 4He(p, p), 3He(d, d), E not given; calculated interaction potentials; deduced channel coupling contributions.

doi: 10.1016/S0375-9474(97)00476-4
Citations: PlumX Metrics


1997MA24      J.Phys.(London) G23, 565 (1997)

R.S.Mackintosh, S.G.Cooper

The Energy Dependence of the Nucleon-Nucleus Potential

NUCLEAR REACTIONS 16O(n, n), E=4-20 MeV; 40Ca(n, n), E=12-20 MeV; calculated nucleon-nucleus potential vs E; deduced energy-dependent inversion procedure related features. Comparison between different approaches.

doi: 10.1088/0954-3899/23/5/009
Citations: PlumX Metrics


1997MA63      Nucl.Phys. A625, 651 (1997)

R.S.Mackintosh, S.G.Cooper

Deuteron-α Interaction by Inversion of RGM S-Matrix: Determination of spin-orbit potential for spin-one projectile

NUCLEAR REACTIONS 4He(d, d), E(cm)=17-55 MeV; calculated potential; deduced spin-orbit role. Iterative-perturbative procedure.

doi: 10.1016/S0375-9474(97)00495-8
Citations: PlumX Metrics


1996CO20      Phys.Rev. C54, 3133 (1996)

S.G.Cooper, R.S.Mackintosh

Energy Dependent Potentials Determined by Inversion: The p + α potential up to 65 MeV

NUCLEAR REACTIONS 16O(p, p), E not given; calculated zero energy potentials. 4He(p, p), E ≤ 65 MeV; calculated phase shifts vs E; deduced zero energy potentials. Inversion of resonating group methods phase shifts.

doi: 10.1103/PhysRevC.54.3133
Citations: PlumX Metrics


1995CO01      Nucl.Phys. A582, 283 (1995)

S.G.Cooper, R.S.Mackintosh

11Li + 28Si and 11Li + 12C Elastic Scattering Studied by Inversion

NUCLEAR REACTIONS 28Si(11Li, 11Li), E=319 MeV; 12C(11Li, 11Li), E=637 MeV; analyzed σ(θ). Inversion technique, two-step phenomenology.

doi: 10.1016/0375-9474(94)00477-5
Citations: PlumX Metrics


1995CO18      Nucl.Phys. A592, 338 (1995)

S.G.Cooper, R.S.Mackintosh

Quantitative Contribution of Antisymmetry to the Nucleon-Nucleus Potential

NUCLEAR REACTIONS 4He(p, p), E(cm)=50 MeV; 3He(p, p), E(cm)=10-40 MeV; 3H(n, n), E(cm)=14.63-17.25 MeV; 6Li(n, n), E(cm)=8.57, 12 MeV; 16O(n, n), E=10-30 MeV; 40Ca(n, n), E=10, 30 MeV; calculated local equivalent potentials to single configuration RGM S-matricies. Iterative-pertubative inversion techniques.

doi: 10.1016/0375-9474(95)00310-W
Citations: PlumX Metrics


1995CO32      Nucl.Instrum.Methods Phys.Res. A354, 408 (1995)

P.Colling, A.Nucciotti, C.Bucci, S.Cooper, P.Ferger, M.Frank, U.Nagel, F.Probst, W.Seidel

Low-Energy X-Ray Detection in Cryogenic Detectors with Tungsten Thermometers

NUCLEAR REACTIONS 27Al, V, Ti(X, X), E=radioactive source; measured fluorescence X-ray spectra; deduced detector resolution, other features. Cryogenic detectors with W thermometers.

ATOMIC PHYSICS 27Al, V, Ti(X, X), E=radioactive source; measured fluorescence X-ray spectra; deduced detector resolution, other features. Cryogenic detectors with W thermometers.

doi: 10.1016/0168-9002(94)01080-3
Citations: PlumX Metrics


1995LI07      Phys.Rev. C51, 2268 (1995)

Q.K.K.Liu, S.G.Cooper

Application of an Iterative-Perturbative Inversion Potential Model to Capture and Bremsstrahlung Reactions

NUCLEAR REACTIONS, ICPND 3He(α, γ), E=0.1-4 MeV; calculated dipole capture σ(E), astrophysical S-factor vs E. 4He(α, γ), E ≈ 6-16 MeV; calculated σ(θ1, θ2) vs E. Iterative-perturbative inversion potential model.

doi: 10.1103/PhysRevC.51.2268
Citations: PlumX Metrics


1995MA37      Nucl.Phys. A589, 377 (1995)

R.S.Mackintosh, S.G.Cooper

Exchange Contributions to Nucleus-Nucleus Potentials Deduced from RGM Phase Shifts Using Inversion

NUCLEAR REACTIONS 3He(α, α), E(cm)=60 MeV; 16O(α, α), E(cm)=18 MeV; 3H(α, α), E(cm)=20 MeV; calculated resonating group method phase shifts; deduced potentials.

doi: 10.1016/0375-9474(95)00171-V
Citations: PlumX Metrics


1994CO08      Phys.Rev. C50, 359 (1994)

S.G.Cooper

Potentials by Inversion of 3He + α Phase Shifts and Bound State Energies in 7Be

NUCLEAR REACTIONS 4He(3He, 3He), E=2-12 MeV; calculated phase shifts vs E; deduced potential. Inversion techniques.

NUCLEAR STRUCTURE 7Be; calculated levels. Single channel resonating group method, potential from inversion techniques.

doi: 10.1103/PhysRevC.50.359
Citations: PlumX Metrics


1994CO10      Phys.Rev. C50, 1308 (1994)

S.G.Cooper, R.S.Mackintosh, A.Csoto, R.G.Lovas

Local 4He-p Potentials from Resonating-Group Method Phase Shifts

NUCLEAR REACTIONS 4He(p, p), E ≤ 20 MeV; calculated phase shifts vs E; deduced phase equivalent potentials, local potentials comparison. Multi-channel resonating group method.

doi: 10.1103/PhysRevC.50.1308
Citations: PlumX Metrics


1994CO14      Nucl.Phys. A576, 308 (1994)

S.G.Cooper, R.S.Mackintosh

16O + 16O Elastic Scattering at 350 MeV Studied by Inversion

NUCLEAR REACTIONS 16O(16O, 16O), E=350 MeV; analyzed σ(θ). Two-step method including inversion.

doi: 10.1016/0375-9474(94)90261-5
Citations: PlumX Metrics


1994CR02      Phys.Rev. C49, 1091 (1994)

R.Crespo, R.C.Johnson, J.A.Tostevin, R.S.Mackintosh, S.G.Cooper

Equivalent Local Potentials to Multiple Scattering Calculations of Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 16O(p, p), E=100, 135, 200 MeV; calculated local phase equivalent potentials. Multiple scattering expansion of the optical potential.

doi: 10.1103/PhysRevC.49.1091
Citations: PlumX Metrics


1994FE03      Phys.Lett. 323B, 95 (1994)

P.Ferger, P.Colling, S.Cooper, D.Dummer, M.Frank, U.Nagel, A.Nucciotti, F.Probst, W.Seidel

A Massive Cryogenic Particle Detector with Good Energy Resolution

RADIOACTIVITY 55Fe(EC); measured X-ray spectra; deduced detector energy resolution. Massive cryogenic particle detector.

doi: 10.1016/0370-2693(94)00043-3
Citations: PlumX Metrics


1994RA06      Phys.Rev. C49, 1621 (1994)

G.H.Rawitscher, D.Lukaszek, R.S.Mackintosh, S.G.Cooper

Local Representation of the Exchange Nonlocality in n-16O Scattering

NUCLEAR REACTIONS 16O(n, n), E=20, 50 MeV; analyzed σ(θ). Microscopic folding model, exchange nonlocality local representation.

doi: 10.1103/PhysRevC.49.1621
Citations: PlumX Metrics


1993AI02      Nucl.Phys. A561, 285 (1993)

S.Ait-Tahar, R.S.Mackintosh, S.G.Cooper

Local Representation of a Deep Parity and l-Dependent 16O + 20Ne Potential

NUCLEAR REACTIONS 20Ne(16O, 16O), E=24.5 MeV; calculated σ(θ). Interative perturbative inversion method.

doi: 10.1016/0375-9474(93)90154-P
Citations: PlumX Metrics


1993AI03      Nucl.Phys. A562, 101 (1993)

S.Ait-Tahar, R.S.Mackintosh, S.G.Cooper, T.Wada

Energy Dependence of a Local Equivalent Potential for RGM Phase Shifts for 16O + 16O

NUCLEAR REACTIONS 16O(16O, 16O), E=30-500 MeV; calculated σ(θ). Local equivalent potential for resonating group method phase shifts.

doi: 10.1016/0375-9474(93)90034-U
Citations: PlumX Metrics


1993MA09      Phys.Rev. C47, 1716 (1993)

R.S.Mackintosh, S.G.Cooper

Studying the 16O + 12C Dynamic Polarization Potential by Inversion

NUCLEAR REACTIONS 12C(16O, 16O), E=168-311 MeV; calculated σ(θ); deduced dynamic polarization features. Coupled-channels, continuum discretized coupled-channels S-matricies, S(l)-V(r) inversion.

doi: 10.1103/PhysRevC.47.1716
Citations: PlumX Metrics


1993MC01      Nucl.Phys. A552, 401 (1993)

M.A.McEwan, S.G.Cooper, R.S.Mackintosh

Elastic-Scattering Phenomenology by Inversion: (I). 12C + 12C from 140 to 2400 MeV

NUCLEAR REACTIONS 12C(12C, 12C), E=0.14-2.4 GeV; calculated σ(θ); deduced potential parameters. Local internuclear potential, two-step procedure.

doi: 10.1016/0375-9474(93)90501-N
Citations: PlumX Metrics


1992AI01      Nucl.Phys. A542, 499 (1992)

S.Ait-Tahar, S.G.Cooper, R.S.Mackintosh

An l-Independent Representation of Deep l-Dependent 16O + 16O Potential

NUCLEAR REACTIONS 16O(16O, 16O), E=30-150 MeV; calculated l-independent equivalents of l-dependent potentials.

doi: 10.1016/0375-9474(92)90108-V
Citations: PlumX Metrics


1992CO01      Phys.Rev. C45, 770 (1992)

S.G.Cooper, M.A.McEwan, R.S.Mackintosh

Elastic Scattering Phenomenology by Inversion: 16O on 12C at 608 MeV

NUCLEAR REACTIONS 12C(16O, 16O), E=608 MeV; calculated model parameters. Optical model, S-matrix approach, inversion techniques.

doi: 10.1103/PhysRevC.45.770
Citations: PlumX Metrics


1991CO05      Phys.Rev. C43, 1001 (1991)

S.G.Cooper, R.S.Mackintosh

Proton-4He Potential Derived from Phase Shifts

NUCLEAR REACTIONS 4He(p, p), E=0-23 MeV; analyzed phase shifts; deduced parity dependent potential. Iterative-perturbative inversion analysis.

doi: 10.1103/PhysRevC.43.1001
Citations: PlumX Metrics


1990CO11      Nucl.Phys. A511, 29 (1990)

S.G.Cooper, R.S.Mackintosh

Nucleon Wavefunctions for Elastic Scattering in the Presence of Dynamically Induced Non-Locality

NUCLEAR REACTIONS 40Ca(p, p), E=30.3 MeV; 48Ca(p, p), E=65 MeV; calculated dynamic polarization potential.

doi: 10.1016/0375-9474(90)90025-H
Citations: PlumX Metrics


1990CO15      Nucl.Phys. A513, 373 (1990)

S.G.Cooper, R.S.Mackintosh

The O + Pb Interaction Near the Coulomb Barrier

NUCLEAR REACTIONS 208Pb(16O, 16O), E=80-102 MeV; calculated interaction potential parameters. Inversion procedure.

doi: 10.1016/0375-9474(90)90103-S
Citations: PlumX Metrics


1990CO29      Nucl.Phys. A517, 285 (1990)

S.G.Cooper, R.S.Mackintosh

S-Matrix to Potential Inversion of Low-Energy α-12C Phase Shifts

NUCLEAR REACTIONS 12C(α, α), E < inelastic threshold; calculated phase shift vs E.

doi: 10.1016/0375-9474(90)90036-L
Citations: PlumX Metrics


1990CO38      Z.Phys. A337, 357 (1990)

S.G.Cooper, R.S.Mackintosh

An l-Independent Representation of a Majorana Potential

NUCLEAR REACTIONS 20Ne(α, α), E=54.1 MeV; calculated σ(θ). S-matrix equivalent to parity dependent potential.


1989CO11      Phys.Rev. C40, 502 (1989)

S.G.Cooper, R.S.Mackintosh

p-4He Scattering: Inversion of phase shifts at 64.9 MeV

NUCLEAR REACTIONS 4He(p, p), E=64.9 MeV; analyzed phase shift; deduced Schrodinger, Dirac potentials parameters.

doi: 10.1103/PhysRevC.40.502
Citations: PlumX Metrics


1989MA25      Nucl.Phys. A494, 123 (1989)

R.S.Mackintosh, S.G.Cooper

Studing the Heavy-Ion Dynamic Polarization Potential

NUCLEAR REACTIONS 12C(16O, 16O), E=139.2 MeV; calculated potential parameters. Dynamic polarization potential.

doi: 10.1016/0375-9474(89)90201-7
Citations: PlumX Metrics


1988KE06      Phys.Rev. C38, 2461 (1988)

M.W.Kermode, S.G.Cooper

Comment on ' Model Wave Functions for the Deuteron '

NUCLEAR STRUCTURE 2H; analyzed deuteron wave function model; deduced tensor potential role.

doi: 10.1103/PhysRevC.38.2461
Citations: PlumX Metrics


1988MA05      Nucl.Phys. A476, 287 (1988)

R.S.Mackintosh, S.G.Cooper, A.A.Ioannides

Apparent Emissive Effects in Local Optical Potentials

NUCLEAR REACTIONS 16O(p, p), E=34.1 MeV; calculated real, imaginary potentials; deduced emissive effect role.

doi: 10.1016/0375-9474(88)90485-X
Citations: PlumX Metrics


1988MA30      Nucl.Phys. A483, 173 (1988)

R.S.Mackintosh, A.A.Ioannides, S.G.Cooper

Stationary State Currents in Nuclear Reactions: Rotational coupling in alpha-particle scattering

NUCLEAR REACTIONS 20Ne(α, α), E=104 MeV; calculated potentials. Stationary state currents.

doi: 10.1016/0375-9474(88)90530-1
Citations: PlumX Metrics


1988MA31      Nucl.Phys. A483, 195 (1988)

R.S.Mackintosh, A.A.Ioannides, S.G.Cooper

Stationary State Currents in Proton Scattering: Alternative representation of ' emissive ' potentials

NUCLEAR REACTIONS 16O, 40Ca(p, p), E=34.1 MeV; calculated potentials. Stationary state currents.

doi: 10.1016/0375-9474(88)90531-3
Citations: PlumX Metrics


1987CO27      Nucl.Phys. A472, 101 (1987)

S.G.Cooper, R.S.Mackintosh, A.A.Ioannides

Systematics of the Pickup Contribution to the Nucleon-Nucleus Interaction

NUCLEAR REACTIONS 40Ca(p, p), (n, n), E=30.3-65 MeV; 48Ca(p, p), (n, n), E=65 MeV; calculated potential parameters. 48Ca(polarized p, p), E=65 MeV; calculated σ(θ), analyzing power vs θ. Finite-range coupled reaction channel model.

doi: 10.1016/0375-9474(87)90222-3
Citations: PlumX Metrics


1987MA39      Nucl.Phys. A472, 85 (1987)

R.S.Mackintosh, S.G.Cooper, A.A.Ioannides

Do We Understand Deuteron Scattering at all ( Question ): The polarization potential due to mass-three channels

NUCLEAR REACTIONS 40Ca(d, d), E=52, 80, 200 MeV; calculated potential parameters, S-matrix elements. Effective local polarization potential.

doi: 10.1016/0375-9474(87)90221-1
Citations: PlumX Metrics


1986CO11      J.Phys.(London) G12, 869 (1986)

S.G.Cooper

A DWBA Analysis for 14N(7Li, t)18F(*) to Study α Clustering in 18F

NUCLEAR REACTIONS 14N(7Li, t), E=36 MeV; calculated σ(θ). 18F levels deduced spectroscopic factors. DWBA, Merchant-Rowley structure model.

doi: 10.1088/0305-4616/12/9/011
Citations: PlumX Metrics


1986CO15      J.Phys.(London) G12, 371 (1986)

S.G.Cooper

Analysis of the DWBA for (7Li, t) Reactions Producing α-Cluster States in 16O and 20Ne

NUCLEAR REACTIONS 16O, 20Ne(7Li, t), E=34, 38 MeV; calculated σ(θ); 16O, 20Ne deduced α-cluster level spectroscopic factors. DWBA analysis.

doi: 10.1088/0305-4616/12/5/004
Citations: PlumX Metrics


1986CO17      J.Phys.(London) G12, L291 (1986)

S.G.Cooper, M.W.Kermode, L.J.Allen

Optical Potential for 12 - 12C Scattering at 1016 MeV Obtained by Inversion

NUCLEAR REACTIONS 12C(12C, 12C), E=1016 MeV; calculated potential parameters vs ion-ion separation distance. Inverse scattering method, WKB approximation.

doi: 10.1088/0305-4616/12/12/005
Citations: PlumX Metrics


1986KE11      Phys.Lett. 174B, 357 (1986)

M.W.Kermode, S.G.Cooper, S.Klarsfeld

A Positive Short Range Tensor Model for the Deuteron

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, rms radius. Positive short range tensor model.

doi: 10.1016/0370-2693(86)91015-4
Citations: PlumX Metrics


1982CO20      J.Phys.(London) G8, 1689 (1982)

S.G.Cooper, R.Huby, D.Kelvin, J.R.Mines

Test of a Theory for Stripping to Unbound Levels with More than One Open Channel

NUCLEAR REACTIONS 12C(3He, d), E=36 MeV; calculated σ(θ, Ed). Multi-channel continuum, DWBA.

doi: 10.1088/0305-4616/8/12/011
Citations: PlumX Metrics


1976BI05      Phys.Rev.Lett. 36, 942 (1976)

J.A.Bistirlich, S.Cooper, K.M.Crowe, F.T.Shively, E.R.Grilly, J.P.Perroud, R.H.Sherman, H.W.Baer, P.Truol

Photon Spectrum in Pion Capture on Tritium

NUCLEAR REACTIONS 3H(π-, 3nγ), E=200 MeV/c; measured pair spectra; deduced no evidence for bound trineutron. 3H deduced relative capture branching ratio.

doi: 10.1103/PhysRevLett.36.942
Citations: PlumX Metrics


1975BA52      Phys.Rev. C12, 921 (1975)

H.W.Baer, J.A.Bistirlich, N.de Botton, S.Cooper, K.M.Crowe, P.Truol, J.D.Vergados

Excitation of Giant Magnetic and Spin-Isospin Dipole States in Radiative π Capture on 14N and 10B

NUCLEAR REACTIONS 10B, 14N(π-, γ); measured γ-spectrum. 10Be, 14C levels deduced γ-branching.

doi: 10.1103/PhysRevC.12.921
Citations: PlumX Metrics


1974BA44      Phys.Rev. C10, 1140 (1974)

H.W.Baer, J.A.Bistirlich, N.de Botton, S.Cooper, K.M.Crowe, P.Truol, J.D.Vergados

Radiative Pion Capture in 209Bi

NUCLEAR REACTIONS 209Bi(π-, γ); measured σ(E, Eγ). 209Pb deduced levels, γ-width.

doi: 10.1103/PhysRevC.10.1140
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter S.Cooper: , S.G.COOPER, S.P.COOPER