NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.G.Kozlov

Found 13 matches.

Back to query form



2023BL03      Phys. Rev. Res. 5, 013191 (2023)

J.W.Blanchard, D.Budker, D.DeMille, M.G.Kozlov, L.V.Skripnikov

Using parity-nonconserving spin-spin coupling to measure the Tl nuclear anapole moment in a TlF molecular beam

NUCLEAR MOMENTS Tl; analyzed available data; deduced new experiment in search of for a Time Reversal-invariance conserving but Parity-nonconserving (PNC) effect induced by the anapole moment of the Tl nucleus, via a vector coupling of the two nuclear spins in TlF.

doi: 10.1103/PhysRevResearch.5.013191
Citations: PlumX Metrics


2023DE06      Phys.Rev. C 107, 024307 (2023)

Yu.A.Demidov, M.G.Kozlov, A.E.Barzakh, V.A.Yerokhin

Bohr-Weisskopf effect in the potassium isotopes

ATOMIC PHYSICS K; calculated hyperfine structure constants taking into account the Bohr-Weisskopf and Breit-Rosenthal effects. Dirac-Hartree-Fock, Dirac-Hartree-Fock plus second order many-body perturbation theory (MBPT), and Dirac-Hartree-Fock plus linearized single double coupled-clusters methods. Comparison to experimental results obtained for 39K.

NUCLEAR MOMENTS 38,44,46,47,48,49,51K; analyzed experimental data on hyperfine structure constants; deduced nuclear magnetic moments with taking into account corrections caused by relative hyperfine anomaly.

doi: 10.1103/PhysRevC.107.024307
Citations: PlumX Metrics


2021PO12      Phys.Rev.Lett. 127, 253001 (2021)

S.G.Porsev, M.S.Safronova, M.G.Kozlov

Precision Calculation of Hyperfine Constants for Extracting Nuclear Moments of 229Th

NUCLEAR MOMENTS 229Th; calculated the energies and magnetic dipole and electric quadrupole hyperfine structure constants for the low-lying states; deduced the nuclear magnetic dipole and electric quadrupole moments, impact of Bohr-Weisskopf effect on the finite nuclear magnetization. Framework of such a relativistic coupled-cluster single double triple method.

doi: 10.1103/PhysRevLett.127.253001
Citations: PlumX Metrics


2020BA17      Phys.Rev. C 101, 034308 (2020)

A.E.Barzakh, D.Atanasov, A.N.Andreyev, M.Al Monthery, N.A.Althubiti, B.Andel, S.Antalic, K.Blaum, T.E.Cocolios, J.G.Cubiss, P.Van Duppen, T.Day Goodacre, A.de Roubin, Yu.A.Demidov, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, D.A.Fink, L.P.Gaffney, L.Ghys, R.D.Harding, D.T.Joss, F.Herfurth, M.Huyse, N.Imai, M.G.Kozlov, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, B.A.Marsh, Y.Martinez Palenzuela, P.L.Molkanov, D.Neidherr, R.D.Page, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, S.Sels, C.Van Beveren, E.Verstraelen, A.Welker, F.Wienholtz, R.N.Wolf, K.Zuber

Hyperfine anomaly in gold and magnetic moments of Iπ = 11/2- gold isomers

NUCLEAR MOMENTS 177m,191m,193m,195mAu; measured hyperfine structure spectra (hfs), hyperfine splitting, differential hyperfine anomaly, magnetic dipole moments using in-source laser resonance-ionization spectroscopy (RILIS) at CERN-ISOLDE. Mass separated Au beams were produced in U(p, X), E=1.4 GeV reaction, and delivered to either the ISOLTRAP Multi-Reflection Time-of-Flight Mass Spectrometer (MR-ToF MS) or the Windmill (WM) decay station. Comparison to the previously measured magnetic moments. 185,186,187,189,189m,191,193,194Au; re-evaluated previously measured magnetic dipole moments by properly accounting for the hyperfine anomaly.

doi: 10.1103/PhysRevC.101.034308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019VI04      Phys.Rev. C 100, 034318 (2019)

A.V.Viatkina, D.Antypas, M.G.Kozlov, D.Budker, V.V.Flambaum

Dependence of atomic parity-violation effects on neutron skins and new physics

ATOMIC PHYSICS 85,87Rb, 131,134,135,136,137Cs, 130,132,133,134,135,136,137,138Ba, 144,145,146,147,148,149,150,151,152,153,154Sm, 156,158,161,162,163,164Dy, 168,170,171,172,173,174,176Yb, 203,204,205Tl, 202,204,205,206,207,208Pb, 207,208,209,210,211,212,213,220,221,222,223,224,225,226,227,228Fr, 208,209,210,211,212,213,214,220,221,222,223,224,225,226,227,228,229,230,232Ra; calculated mean values of the coefficients as functions of the radius parameter for different elements, assuming Fermi distribution of nuclear density; evaluated relevant coefficients from for the nuclear factor of the Parity-nonconserving (PNC) amplitude in low energy atomic experiments. Relevance to Yb experiment in Mainz and the Fr experiment at TRIUMF.

doi: 10.1103/PhysRevC.100.034318
Citations: PlumX Metrics


2018SA48      Phys.Rev.Lett. 121, 213001 (2018)

M.S.Safronova, S.G.Porsev, M.G.Kozlov, J.Thielking, M.V.Okhapkin, P.Glowacki, D.M.Meier, E.Peik

Nuclear Charge Radii of 229Th from Isotope and Isomer Shifts

NUCLEAR MOMENTS 229Th, 232Th; measured frequencies; deduced hyperfine structure, isotopic shift, r.m.s. radii, mean-square radius change between 229Th and its low-lying isomer 229mTh. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.121.213001
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2009SA52      Nucl.Phys. A827, 411c (2009)

M.S.Safronova, R.Pal, D.Jiang, M.G.Kozlov, W.R.Johnson, U.I.Safronova

New directions in atomic PNC

doi: 10.1016/j.nuclphysa.2009.05.088
Citations: PlumX Metrics


2002DZ01      Phys.Rev. A66, 012111 (2002)

V.A.Dzuba, V.V.Flambaum, J.S.M.Ginges, M.G.Kozlov

Electric Dipole Moments of Hg, Xe, Rn, Ra, Pu, and TIF Induced by the Nuclear Schiff Moment and Limits on Time-Reversal Violating Interactions

ATOMIC PHYSICS 199Hg, 129Xe, 223Rn, 225Ra, 239Pu; calculated atomic electric dipole moments induced by nuclear Schiff moments. Role of parity and time-reversal violating interactions discussed.

NUCLEAR MOMENTS 199Hg, 129Xe, 223Rn, 225Ra, 239Pu; calculated atomic electric dipole moments induced by nuclear Schiff moments. Role of parity and time-reversal violating interactions discussed.

doi: 10.1103/PhysRevA.66.012111
Citations: PlumX Metrics


2002KO42      Pisma Zh.Eksp.Teor.Fiz. 75, 651 (2002); JETP Lett. 75, 534 (2002)

M.G.Kozlov

Manifestation of the Nuclear Anapole Moment in the Thallium M1 Transitions

ATOMIC PHYSICS 205Tl; analyzed transition amplitudes, hfs; deduced nuclear anapole moment.

NUCLEAR MOMENTS 205Tl; analyzed transition amplitudes, hfs; deduced nuclear anapole moment.

doi: 10.1134/1.1500715
Citations: PlumX Metrics


2001PO28      Phys.Rev. A64, 064101 (2001)

S.G.Porsev, M.G.Kozlov

Calculation of the Nuclear Spin-Dependent Parity-Nonconserving Amplitude for the (7s, F = 4) → (7s, F = 5) Transition in Fr

ATOMIC PHYSICS 211Fr; calculated nuclear spin-dependent transition amplitude.

doi: 10.1103/PhysRevA.64.064101
Citations: PlumX Metrics


1999KO08      Eur.Phys.J. D 5, 59 (1999)

M.G.Kozlov, S.G.Porsev

Polarizabilities and Hyperfine Structure Constants of the Low-Lying Levels of Barium

NUCLEAR MOMENTS Ba; calculated hfs, polarizabilities. Configuration interaction method.

doi: 10.1007/s100530050229
Citations: PlumX Metrics


1998DZ02      Zh.Eksp.Teor.Fiz. 114, 1636 (1998); J.Exper.Theo.Phys. 87, 885 (1998)

V.A.Dzuba, V.V.Flambaum, M.G.Kozlov, S.G.Porsev

Using Effective Operators in Calculating the Hyperfine Structure of Atoms

NUCLEAR MOMENTS 205Tl; calculated hfs. Multielectron atoms, effective Hamiltonian for valence electrons.

doi: 10.1134/1.558736
Citations: PlumX Metrics


1995PO21      Pisma Zh.Eksp.Teor.Fiz. 61, 449 (1995); JETP Lett. 61, 459 (1995)

S.G.Porsev, Yu.G.Rakhlina, M.G.Kozlov

Parity Violation in Atomic Ytterbium

NUCLEAR STRUCTURE 168,170,171,172,173,174,176Yb; calculated weak nuclear charge.

ATOMIC PHYSICS Yb; calculated P-odd impurity amplitude; deduced stronger parity-nonconservation effects than in Cs, Tl.


Back to query form