NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.Cui

Found 23 matches.

Back to query form

2024XU03      Phys.Rev. C 109, 024324 (2024)

H.-T.Xue, Q.B.Chen, J.-W.Cui, C.-F.Chen, H.-J.Schulze, X.-R.Zhou

Structure of low-lying states of 12C and 13ΛC in a beyond-mean-field approach

doi: 10.1103/PhysRevC.109.024324
Citations: PlumX Metrics

2023WA23      Chin.Phys.C 47, 084101 (2023)

Y.-Z.Wang, F.-Z.Xing, J.-P.Cui, Y.-H.Gao, J.-Z.Gu

Roles of tensor force and pairing correlation in two-proton radioactivity of halo nuclei

RADIOACTIVITY 18Mg, 20Si(2p); calculated T1/2 using different Skyrme interactions, Q-values; deduced small effect of tensor force. The framework of spherical Skyrme-Hartree-Fock-Bogoliubov theory.

doi: 10.1088/1674-1137/acd680
Citations: PlumX Metrics

2022CH36      Chin.Phys.C 46, 064109 (2022)

C.F.Chen, Q.B.Chen, X.-R.Zhou, Y.Y.Chen, J-W.Cui, H.-J.Schulze

Effects of Λ hyperons on the deformations of even-even nuclei

NUCLEAR STRUCTURE 8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 22,24,26,28Ne, 30,32,34,36Si, 42,44,46,48Ca; calculated potential energy surfaces as functions of quadrupole deformation, hyperon s.p. energy levels as function of quadrupole deformation, density distributions for the occupied s.p. orbits using the deformed Skyrme-Hartree-Fock approach.

doi: 10.1088/1674-1137/ac5b58
Citations: PlumX Metrics

2022CU01      Nucl.Phys. A1017, 122341 (2022)

J.P.Cui, Y.H.Gao, Y.Z.Wang, J.Z.Gu

Improved effective liquid drop model for α-decay half-lives

RADIOACTIVITY 255,256,258,259,261,263Rf, 256,257,258,259Db, 270Db, 259,260,261Sg, 263Sg, 267,269,271Sg, 263Sg, 267,269,271Sg, 260,261Bh, 265,266,267Bh, 270,272,274Bh, 264,265,266Hs, 268,269,270Hs, 273,275Hs, 270Mt, 274,275,276Mt, 278Mt, 267Ds, 269,270,271Ds, 273Ds, 277,279,281Ds, 272Rg, 278,279,280,281,282Rg, 277Cn, 281,283Cn, 284,285Cn, 278Nh, 282,283,284,285,286Nh, 285,286,287,288,289Fl, 287Mc, 289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og(α); calculated T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2021.122341
Citations: PlumX Metrics

2022CU02      Nucl.Phys. A1017, 122341 (2022)

J.P.Cui, Y.H.Gao, Y.Z.Wang, J.Z.Gu

Improved effective liquid drop model for α-decay half-lives

RADIOACTIVITY 255,256,258,259,261,263Rf, 256,257,258,259,270Db, 259,260,261,263,267,269,271Sg, 260,261,265,266,267,270,272,274Bh, 264,265,266,268,269,270,273,275Hs, 270,274,275,276,278Mt, 267,269,270,271,273,277,279,281Ds, 272,278,279,280,281,282Rg, 277,281,283,284,285Cn, 278,282,284,285,286Nh, 285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 278,282,286,290,294,298,302,306Og, 281,285,289,293,297,301,305,309119, 286,290,294,298,302,306,310,289,293,297,301,305,309120(α); calculated T1/2. Comparison with available data.

doi: 10.1016/j.nuclphysa.2021.122341
Citations: PlumX Metrics

2022CU07      Chin.Phys.C 46, 074109 (2022)

J.-W.Cui, R.Wang, X.-R.Zhou

Beyond-mean-field study of 37ΛAr based on the Skyrme-Hartree-Fock model

NUCLEAR STRUCTURE 36,37Ar; calculated hypernuclear states using the Skyrme-Hartree-Fock (SHF) model and a beyond-mean-field approach, including angular momentum projection (AMP) and the generator coordinate method (GCM).

doi: 10.1088/1674-1137/ac6357
Citations: PlumX Metrics

2022XI08      Nucl.Phys. A1028, 122528 (2022)

F.Xing, H.Qi, J.Cui, Y.Gao, Y.Wang, J.Gu, G.Yong

An improved Gamow-like formula for α-decay half-lives

RADIOACTIVITY 214,215,216,217,218U, 219,220,221,222,223,224Np, 221,222,223,224,225,226,227Pu, 224,225,226,227,228Am, 231,232Cm, 233,234,235,236,237,238,239,240,241,242Bk, 234,235,236Cf, 237,238,239Es, 239,240,241,242,243,244Fm, 241,242,243Md, 246,247,248,249,250No, 249,250,251Lr, 251,252,253,254Rf, 253,254,255Db, 256,257,258Sg, 258,259,260,261,262,263Bh, 261,262Hs, 263,264,265Mt, 261,262,263,264,265,266Ds, 266,267,268,269,270,271,272,273Rg, 270,271,272,273,274,275,276Cn, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Nh, 278,279,280,281,282,283,284,285,286,287,288,289,290,291Fl, 281,282,283,284,285,286,287,288,289,290,291,292Mc, 283,284,285,286,287,288,289Lv, 285,286,287,288,289,290,291,292Ts, 288,289,290,291,292,293Og, 295Og, 290,291,292,293,294,295,296119, 291,292,293,294,295,296,297,298,299,300120, 287,288,289,290,291Og, 283,284Lv, 279,280,281Fl, 275,276Cn, 271,272,273Ds, 294120, 268,269Hs, 264,265Sg, 281Fl(α); calculated T1/2; deduced an improved Gamow-like (IMGL) formula parameters. Comparison with available data.

doi: 10.1016/j.nuclphysa.2022.122528
Citations: PlumX Metrics

2021XI06      Chin.Phys.C 45, 124105 (2021)

F.Xing, J.Cui, Y.Wang, J.Gu

Two-proton radioactivity of ground and excited states within a unified fission model

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); 5Be, 6,7B, 8C, 10N, 11O, 13,14F, 15Ne, 17Na, 22Si, 24P, 26S, 28,29Cl, 29,30Ar, 31,32K, 33,34Ca, 45Sc, 35,37Sc, 37,38,39Ti, 39,40V, 41,42Cr, 43,44Mn, 47Co, 49Ni, 52Cu, 55Zn, 56,57,58Ga, 58,59Ge, 60,61,62As, 63,64Se, 65,66Br, 68Kr, 81Mo, 85Ru, 108Xe(2p); analyzed available data; calculated T1/2. Comparison with the AME2020 table, available data.

doi: 10.1088/1674-1137/ac2425
Citations: PlumX Metrics

2020CU01      Phys.Rev. C 101, 014301 (2020), Erratum Phys.Rev. C 104, 029902 (2021)

J.P.Cui, Y.H.Gao, Y.Z.Wang, J.Z.Gu

Two-proton radioactivity within a generalized liquid drop model

RADIOACTIVITY 6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated half-lives for 2p decay mode using generalized liquid drop model (GLDM) and compared with experimental half-lives, and other theoretical calculations. 22Si, 26S, 34Ca, 38,39Ti, 42Cr, 49Ni, 55Zn, 58,59,60Ge, 64Se(2p); predicted half-lives using GLDM for 2p radioactivity.

doi: 10.1103/PhysRevC.101.014301
Citations: PlumX Metrics

2020FA03      Eur.Phys.J. A 56, 11 (2020)

B.-C.Fang, W.-Y.Li, C.-F.Chen, J.-W.Cui, X.-R.Zhou, Y.-Y.Cheng

Impurity effects of Λ hyperons on pΛorbitals

doi: 10.1140/epja/s10050-019-00006-w
Citations: PlumX Metrics

2019CU01      Nucl.Phys. A987, 99 (2019)

J.P.Cui, Y.Xiao, Y.H.Gao, Y.Z.Wang

α-decay half-lives of neutron-deficient nuclei

RADIOACTIVITY Z=80-118(α); calculated α-decay T1/2 of neutron-deficient nuclei using Effective Liquid Drop Model (ELDM), generalized Liquid Drop Model (GLDM) within fission-like and cluster-like modes and using Royer and Denisov formulae; T1/2 compared to data; deduced that GLDM gives higher values than calculations using other approaches; calculated, predicted T1/2 n-deficient nuclei not measured using GLDM with WS4 Qα values.

doi: 10.1016/j.nuclphysa.2019.04.008
Citations: PlumX Metrics

2018CU01      Phys.Rev. C 97, 014316 (2018)

J.P.Cui, Y.L.Zhang, S.Zhang, Y.Z.Wang

α-decay half-lives of superheavy nuclei

RADIOACTIVITY 255,256,258,259,261,263Rf, 256,257,258,259,270Db, 259,260,261,263,267,269,271Sg, 260,261,265,266,267,270,272,274Bh, 264,265,266,268,269,270,273,275Hs, 270,274,275,276,278Mt, 267,269,270,271,273,277,279,281Ds, 272,278,279,280,281,282Rg, 277,281,283,284,285Cn, 278,282,283,284,285,286Nh, 285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og(α); calculated α-decay half-lives of superheavy nuclei, and compared with experimental values; deduced hindrance factors. 289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304Og, 290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305119, 291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306120(α); calculated Q(α) and corresponding half-lives using theoretical WS4, FRDM, KTUY and GHFB mass tables. Effective liquid drop model (ELDM).

doi: 10.1103/PhysRevC.97.014316
Citations: PlumX Metrics

2018LI12      Phys.Rev. C 97, 034302 (2018)

W.-Y.Li, J.-W.Cui, X.-R.Zhou

Structure of 9ΛBe and 10ΛΛBe using the beyond-mean-field Skyrme-Hartree-Fock approach

NUCLEAR STRUCTURE 8Be, 9Be, 10Be; calculated potential energy surfaces for 8Be+Λ, angular momentum projected energy curves for 8be and hypernucleus 9Be, density distributions of nuclear matter for low-lying states of 8Be, 9Be hypernucleus, and 10Be double-hypernucleus, levels, J, π, B(E2) of 8Be, hypernucleus 9Be, and double-hypernucleus 10Be. Beyond-mean-field Skyrme-Hartree-Fock (SHF) model with SLy4+SLL4 interactions. Two-α structure reproduced for ground state of 8Be. Comparison with available experimental data, and with results of hypernuclear particle-rotor model.

doi: 10.1103/PhysRevC.97.034302
Citations: PlumX Metrics

2018LU16      Eur.Phys.J. A 54, 193 (2018)

Z.-J.Luo, K.Yu, X.-R.Zhou, J.-W.Cui, H.Sagawa

Effects of deformation, pairing and tensor correlation on the evolution of bubble structure within the Skyrme-Hartree-Fock method

NUCLEAR STRUCTURE 46Ar; calculated energy surface vs quadrupole deformation, proton density distributions, sp energy levels using axially symmetric DSHF (Deformed Skyrme-Hartree-Fock) approach (several Skyrme forces used). 43Cl; calculated partial-wave decomposition of the proton density.

doi: 10.1140/epja/i2018-12620-5
Citations: PlumX Metrics

2017CU01      Phys.Rev. C 95, 024323 (2017)

J.-W.Cui, X.-R.Zhou, L.-X.Guo, H.-J.Schulze

Investigation of single- and double-Λ hypernuclei using a beyond-mean-field approach

NUCLEAR STRUCTURE 13,14C, 21,22Ne; calculated levels, J, π of single- and double-hypernuclei with 12C and 20Ne as core nuclei, potential-energy surfaces as functions of deformation parameter β, core B(E2), rms charge radii. Beyond-mean-field approach with angular momentum projection (AMP) techniques and generator coordinate method (GCM) based on Skyrme-Hartree-Fock (SHF). Comparison with experimental data.

doi: 10.1103/PhysRevC.95.024323
Citations: PlumX Metrics

2017CU04      Prog.Theor.Exp.Phys. 2017, 093D04 (2017)

J.-W.Cui, X.-R.Zhou

A beyond-mean-field model for Λ hypernuclei with Skyrme-type NΛ interaction

NUCLEAR STRUCTURE 12C; calculated hypernuclei properties using beyond-mean-field approach based on the Skyrme-Hartree-Fock model.

doi: 10.1093/ptep/ptx120
Citations: PlumX Metrics

2017WA04      Phys.Rev. C 95, 014302 (2017)

Y.Z.Wang, J.P.Cui, Y.L.Zhang, S.Zhang, J.Z.Gu

Competition between α decay and proton radioactivity of neutron-deficient nuclei

RADIOACTIVITY 109I, 112Cs, 157Ta, 160,161,161m,162,163Re, 164m,165,165m,166,166m,167,167mIr, 169,170,170m,171m,173Au, 177,177m,178,179Tl, 185,185mBi(p), (α); calculated half-lives, and compared with available experimental values, penetration probabilities. 105Sb, 108I, 113Cs, 117La, 121Pr, 130,131,132Eu, 135,136Tb, 140,141,141mHo, 144,145,146,147,147mTm, 150,150m,151,151mLu, 155,156,156mTa, 159Re, 164Ir, 171,172,172mAu, 176Tl(α); calculated α-decay half-lives, and compared with experimental proton-decay half-lives. 116La, 157mTa, 159mRe, 168,169,169mIr, 184,186,187Bi(p); calculated proton-decay half-lives, and compared with experimental α-decay half-lives. 155,156Ta, 159,160,161Re, 164,165Ir, 169,170,171Au, 176Tl, 185Bi; predicted dominant proton decay mode. 157Ta, 162,163Re, 165,166,167,168,169Ir, 172,173Au, 177,178,179Tl, 184,186,187Bi; predicted dominant α decay mode. Effective liquid drop model (ELDM). Comparison with predictions of microscopic model (MM) and with available experimental values.

doi: 10.1103/PhysRevC.95.014302
Citations: PlumX Metrics

2017ZH03      Phys.Rev. C 95, 014311 (2017)

S.Zhang, Y.Zhang, J.Cui, Y.Wang

Improved semi-empirical relationship for α-decay half-lives

RADIOACTIVITY 106,108Te, 112Xe, 114Ba, 146,148Sm, 148,150,152Gd, 150,152,154Dy, 152,154Er, 154,156,158Yb, 156,158,160Hf, 158,160,162,166W, 162,166,170,174Os, 168,170,174,176,178,180,182,184,188,190Pt, 174,176,180,182,184,188Hg, 186,188,190,210Pb, 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202,206,208,210,212,218,220,222Rn, 204,206,208,210,212,214,220,222,224,226Ra, 210,216,218,222,224,226,228,230,232Th, 224,226,228,230,232,234,236,238U, 230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,256No, 256,258Rf, 260,262Sg, 264,266,270Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og(α); 105,107Te, 109Xe, 147Sm, 151Gd, 151,153Dy, 153,155Er, 155,157Yb, 157Hf, 159,165W, 161,167,169,173Os, 167,169,171,173,175,177,181,182Pt, 173,175,177,179,183,185Hg, 191Pb, 187,189,191,195,197,199,201,205,207,209,211,213Po, 195,197,199,201,203,207,209,211,213,215,219,221Rn, 203,205,209,211,213,215,217,219,221Ra, 211,213,215,217,219,221,223,225,227Th, 217,219,223,225,235U, 239,241Pu, 241,243,245,247Cm, 249,251Cf, 251,253,255,257Fm, 263Rf, 259,261,269,271Sg, 265,267,273Hs, 267,269,271,273,277,281Ds, 281,285Cn, 287,289Fl, 291,293Lv(α); 111I, 147Eu, 149,151Tb, 153Tm, 169,177Ir, 173,181,183,185Au, 177,179Tl, 187,189,193,195,211,213Bi, 197,199,201,203,205,207,209,211,213,215,217,219At, 201,203,205,207,209,211,213,215,217,219,221,223Fr, 209,211,213,215,217,219,221,223,225,227Ac, 213,215,217,219,225,227,231Pa, 235,237,239,241,243Np, 239,241,243Am, 243,245,249Bk, 243,244Es, 255,257Lr, 257,259,263Db, 261,267Bh, 275Mt, 279Rg, 283,285Nh, 287,289Mc, 293Ts(α); 110,112I, 114Cs, 148Eu, 152,154Ho, 154,156Tm, 158Lu, 162Ta, 160,162Re, 166Ir, 170,172,174,182Au, 182Tl, 212,214Bi, 196,198,200,202,204,208,210,212,214,216,218At, 200,202,204,206,208,210,212,214,216,218,220Fr, 206,208,210,212,214,216,218,222,224Ac, 212,216,226,230Pa, 254Es, 256Md, 256,258Db, 260,264,266,270,272,274Bh, 268,274,276,278Mt, 272,274,278,280Rg, 278,282,284,286Nh, 288,290Mc, 294Ts(α); calculated α-decay half-lives, and preformation probabilities using improved semi-empirical formulation by introducing a precise radius formula and an analytic expression for preformation probability. Comparison with experimental half-lives. 278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308Og, 280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309119, 283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310120, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311121(α); predicted α-decay half-lives for the superheavy nuclides using ImSahu, SemFIS2, and UNIV2 formulas.

doi: 10.1103/PhysRevC.95.014311
Citations: PlumX Metrics

2016CU01      Int.J.Mod.Phys. E25, 1650056(2016)

J.P.Cui, Y.L.Zhang, S.Zhang, Y.Z.Wang

Systematic study on α-decay half-lives of Bi isotopes

RADIOACTIVITY 184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Bi(α); calculated T1/2. The generalized liquid drop model (GLDM) and several sets of Royer's analytic formulas, comparison with experimental data.

doi: 10.1142/S0218301316500567
Citations: PlumX Metrics

2016KU02      Int.J.Mod.Phys. E25, 1650012 (2016)

Y.Kun, X.Zhou, J.Cui

Shape evolution and energy spectra of Pt isotopes

NUCLEAR STRUCTURE 178,180,182,184,186,188,190,192,194Pt; calculated Potential energy curves of as a function of the axial quadrupole deformation parameter, angular momentum projected deformation energy curves, J, π, level energies, B(E2). Nonrelativistic Skyrme-Hartree-Fock (SHF) approach plus a density-dependent pairing in the BCS approximation.

doi: 10.1142/S0218301316500129
Citations: PlumX Metrics

2015CU01      Phys.Rev. C 91, 054306 (2015)

J.-W.Cui, X.-R.Zhou, H.-J.Schulze

Shape and energy spectra of Λ hypernuclei from a Skyrme-Hartree-Fock model and a beyond-mean-field calculation

NUCLEAR STRUCTURE 12,13C, 20,21Ne, 24,25,26,27Mg, 26,27,28,29Si; calculated levels, J, π, B(E2), potential energy surface (PES) contours in (β, γ) plane, root-mean-square (rms) radii and deformation β of core nuclei 12C, 20Ne, 24,26Mg, 26,28Si, and hypernuclei 13C, 21Ne, 25,27Mg, 27,29Si. Triaxial shape-constrained Skyrme-Hartree-Fock mean-field model with a density-dependent pairing interaction and NSC89NΛ interaction. Comparison with available experimental data.

doi: 10.1103/PhysRevC.91.054306
Citations: PlumX Metrics

2014CU01      Phys.Rev. C 90, 014321 (2014)

J.-W.Cui, X.-R.Zhou, F.-Q.Chen, Y.Sun, C.-L.Wu, Z.-C.Gao

Description of collective and quasiparticle excitations in deformed actinide nuclei: The first application of the multishell shell model for heavy nuclei

NUCLEAR STRUCTURE 230,232Th, 232,234,236U, 240Pu; calculated levels, J, π, ground-, β-, γ-, and K=0 to K=7 bands, 2-quasiparticle configurations, B(E2), staggering parameter. Heavy shell model (HSM), an extension of projected shell model (PSM). Comparison with experimental data.

doi: 10.1103/PhysRevC.90.014321
Citations: PlumX Metrics

2012CU01      Chin.Phys.Lett. 29, 022101 (2012)

J.-W.Cui, X.-R.Zhou, F.-Q.Chen, Y.Sun, C.-L.Wu

Analyses of β-Bands of 230, 232Th and 232, 234U by the Projected Shell Model

NUCLEAR STRUCTURE 230,232Th, 232,234U; calculated ground and β-bands, deformation parameters, energy schemes. Projected shell model, comparison with experimental data.

doi: 10.1088/0256-307X/29/2/022101
Citations: PlumX Metrics

Back to query form

Note: The following list of authors and aliases matches the search parameter J.Cui: , J.P.CUI, J.W.CUI