NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = F.Osterfeld

Found 54 matches.

Back to query form

1998MO35      Acta Phys.Pol. B29, 3087 (1998)

C.A.Mosbacher, F.Osterfeld

The ΔN-Interaction in Hadronic Reactions on a Deuteron Target

NUCLEAR REACTIONS 2H(π+, p), E=142 MeV; 2H(p, nX), (p, nπ+), E=789 MeV; analyzed σ(θ); deduced Δ excitation role.

1997KO08      Phys.Rev. C55, 1819 (1997)

B.Korfgen, P.Oltmanns, F.Osterfeld, T.Udagawa

Damping Mechanisms of the Δ Resonance in Nuclei

NUCLEAR REACTIONS 12C(π+, π+p), E=245 MeV; analyzed σ(Ep, θp, θ(π)). 12C(π+, 2p), E=165 MeV; analyzed σ(θ(p1), θ(p2)), σ(θ(p1), θ(p2), E1). 12C(3He, tpπ+), (3He, t2p), E=2 GeV; analyzed σ(θ) vs ω; deduced Δ(1232) resonance damping mechanisms related features. Δ-hole model.

doi: 10.1103/PhysRevC.55.1819
Citations: PlumX Metrics

1997MO21      Phys.Rev. C56, 2014 (1997)

C.A.Mosbacher, F.Osterfeld

Δ(1232)-Nucleon Interaction in the 2H(p, n) Charge-Exchange Reaction

NUCLEAR REACTIONS 2H(p, X), E=790 MeV; analyzed Δ++ production associated σ(En, θ); deduced Δ-N interaction effects. Coupled-channels approach.

doi: 10.1103/PhysRevC.56.2014
Citations: PlumX Metrics

1996OS02      Nucl.Phys. A599, 129c (1996)

F.Osterfeld, B.Korfgen

Nucleon Resonances in the Medium

NUCLEAR REACTIONS 12C(p, n), E=800 MeV; compiled, reviewed data, analyses. 12C(3He, tπ+), E=2 GeV; 12C(π-, π-), E=120 MeV; 12C(γ, π0), E not given; analyzed σ(θ), other data; deduced medium role on Δ dynamics.

doi: 10.1016/0375-9474(96)00055-3
Citations: PlumX Metrics

1996PR03      Phys.Rev.Lett. 76, 4488 (1996)

D.L.Prout, S.DeLucia, D.Cooper, B.Luther, E.Sugarbaker, T.N.Taddeucci, L.J.Rybarcyk, J.Rapaport, B.K.Park, C.D.Goodman, G.Edwards, C.Glashausser, T.Sams, T.Udagawa, F.Osterfeld

Spin Decomposition of the Δ Resonance Cross Section using the 12C(p(pol), n(pol)) Reaction at E(p) = 795 MeV

NUCLEAR REACTIONS 12C(polarized p, n), E=795 MeV; measured polarization observables; deduced spin-longitudinal, spin-transverse, spin-independent partial σ, Δ-production related features.

doi: 10.1103/PhysRevLett.76.4488
Citations: PlumX Metrics

1994KO23      Phys.Rev. C50, 1637 (1994)

B.Korfgen, F.Osterfeld, T.Udagawa

Longitudinal and Transverse Spin Response of 12C in the Δ Resonance Region

NUCLEAR REACTIONS 12C(π-, π-), E=120-280 MeV; 12C(γ, π0), E at ≈ 175-450 MeV/c; calculated σ(θ), σ(E). 12C(3He, tπ+), E=2 GeV; calculated σ(θ). Isobar-hole model.

doi: 10.1103/PhysRevC.50.1637
Citations: PlumX Metrics

1994OS02      Nucl.Phys. A577, 237c (1994)

F.Osterfeld, B.Korfgen, P.Oltmanns, T.Udagawa

Δ Excitations in Nuclei and Their Decay Properties

NUCLEAR REACTIONS 12C(3He, t), (3He, 2pt), E=2 GeV; analyzed σ(θ) vs energy transfer. 12C(3He, tπ+), E=2 GeV; 12C(π-, π-), E=120 MeV; 12C(γ, π0), E at 235 MeV/c; analyzed σ(θ(π)). Isobar-hole model.

doi: 10.1016/0375-9474(94)90862-1
Citations: PlumX Metrics

1994UD01      Phys.Rev. C49, 3162 (1994)

T.Udagawa, P.Oltmanns, F.Osterfeld, S.W.Hong

Δ Excitations in Nuclei and Their Decay Properties

NUCLEAR REACTIONS 1H(p, nX), 12C(p, n), E=0.8 GeV; 1H(3He, tX), 12C(3He, t), E=2 GeV; calculated σ(θ, En), σ(θ, Et). 1H(polarized p, nX), E=0.8 GeV; calculated spin transfer coefficient. Formalism for Δ excitation.

doi: 10.1103/PhysRevC.49.3162
Citations: PlumX Metrics

1993OL01      Phys.Lett. 299B, 194 (1993)

P.Oltmanns, F.Osterfeld, T.Udagawa

Coherent Pion Production in Intermediate Energy Charge-Exchange Reactions

NUCLEAR REACTIONS 12C(p, nX), E=800, 822 MeV; calculated inclusive, exclusive, coherent pion production, σ(θ, E); deduced unique signature on nuclear pionic mode.

doi: 10.1016/0370-2693(93)90246-E
Citations: PlumX Metrics

1993OL06      Acta Phys.Pol. B24, 1609 (1993)

P.Oltmanns, B.Korfgen, F.Osterfeld, T.Udagawa

Coherent Pion Production in the Delta Resonance Region

NUCLEAR REACTIONS 12C(3He, tX), E=2 GeV; 12C(γ, π0), E=235, 291 MeV; compiled, reviewed data, model analyses; deduced coherent pion production features.

1993OS02      Phys.Scr. 48, 95 (1993)

F.Osterfeld, B.Korfgen, P.Oltmanns, T.Udagawa

Δ Excitations in Nuclei and the Coherent Pion Decay

NUCLEAR REACTIONS 12C(γ, X), (π, X), E=200-400 MeV; calculated total σ(E). 1H(polarized p, X), E=800 MeV; calculated spin transfer coefficients vs energy transfer for neutron. 12C(polarized p, n), E=800, 822 MeV; calculated σ(θ), spin transfer coefficient vs energy transfer. Isobar-hole model.

doi: 10.1088/0031-8949/48/1/016
Citations: PlumX Metrics

1993WY01      Nucl.Phys. A553, 599c (1993)

P.Wyborny, K.Holinde, F.Osterfeld, J.Speth

Meson Exchange K+-N Interaction and K+-Nucleus Cross Sections

NUCLEAR REACTIONS 2H, 12C(K+, X), E at ≈ 0.45-0.8 GeV/c; calculated σ(ratio). Meson exchange model, coupled-channel treatment.

doi: 10.1016/0375-9474(93)90666-L
Citations: PlumX Metrics

1992OS03      Phys.Rev. C45, 2854 (1992)

F.Osterfeld, N.Anantaraman, S.M.Austin, J.A.Carr, J.S.Winfield

Heavy-Ion Charge-Exchange Reactions and the Measurement of Gamow-Teller Strength

NUCLEAR REACTIONS 26Mg(12C, 12B), E=70 MeV/nucleon; analyzed σ(θ). 26Al deduced Gamow-Teller strength. Strong absorption model, heavy-ion induced charge-exchange reactions.

doi: 10.1103/PhysRevC.45.2854
Citations: PlumX Metrics

1991OS02      Nucl.Phys. A527, 405c (1991)

F.Osterfeld, S.-W.Hong, T.Udagawa

Spin-Isospin Response of Nuclei in the Δ Resonance Region

NUCLEAR REACTIONS 12C(p, n), E=800 MeV; 12C(3He, t), E=2 GeV; calculated ejectile spectra, σ(θ, E); deduced isobar peak shift features.

doi: 10.1016/0375-9474(91)90130-X
Citations: PlumX Metrics

1990UD01      Phys.Lett. 245B, 1 (1990)

T.Udagawa, S.-W.Hong, F.Osterfeld

Δ Excitations in Nuclei

NUCLEAR REACTIONS 1H, 12C(p, nX), E=0.8 GeV; 1H, 12C(3He, tX), E=2 GeV; calculated σ(θ, E); deduced Δ excitations role. TDA, DWIA.

doi: 10.1016/0370-2693(90)90154-X
Citations: PlumX Metrics

1989AU02      Phys.Lett. 219B, 184 (1989)

N.Auerbach, F.Osterfeld, T.Udagawa

The Spin Isovector Monopole Strength and the (3He, t) Reaction

NUCLEAR REACTIONS 90Zr(p, n), E=200 MeV; 90Zr(3He, t), E=600 MeV; calculated σ(θ), energy integrated σ; deduced spin-flip isovector monopole resonance role.

doi: 10.1016/0370-2693(89)90374-2
Citations: PlumX Metrics

1989CH02      Phys.Rev. C39, 694 (1989)

D.Cha, F.Osterfeld

Theoretical Analysis of 208Pb(p, n) Spectra at 200 MeV

NUCLEAR REACTIONS 208Pb(p, n), E=200 MeV; analyzed forward angle neutron spectra. 208Bi deduced Gamow-Teller transition strength. RPA, DWBA analyses.

doi: 10.1103/PhysRevC.39.694
Citations: PlumX Metrics

1989MA14      Phys.Rev. C39, 1215 (1989)

V.A.Madsen, F.Osterfeld

Angular Momentum Dependence of the Absorptive Optical Potential

NUCLEAR REACTIONS 40Ca(p, p), E not given; calculated potential parameters; deduced nonlocality projectile l dependence.

doi: 10.1103/PhysRevC.39.1215
Citations: PlumX Metrics

1988UD03      Nucl.Phys. A482, 391c (1988)

T.Udagawa, F.Osterfeld

Delta Excitations in Nuclei

NUCLEAR REACTIONS 40Ca, 12C(p, n), E=800 MeV; 40Ca, 12C(3He, t), E=2 GeV; calculated σ(θ, En), σ(θ, Et). Isobar-hole model.

doi: 10.1016/0375-9474(88)90599-4
Citations: PlumX Metrics

1987DR09      Phys.Lett. 189B, 271 (1987)

S.Drozdz, F.Osterfeld, J.Speth, J.Wambach

Damping of the Giant Spin-Flip Dipole and Spin-Flip Quadrupole Charge Exchange Modes in 90Zr

NUCLEAR STRUCTURE 90Zr; calculated Gamow-Teller strength distribution function. Second random-phase approximation.

doi: 10.1016/0370-2693(87)91430-4
Citations: PlumX Metrics

1987SC04      Phys.Lett. 183B, 243 (1987)

A.Schulte, T.Udagawa, F.Osterfeld, D.Cha

Theoretical Study of the 90Zr(3He, t) and 90Zr(p, n) Reactions at E = 200 MeV per Nucleon

NUCLEAR REACTIONS 90Zr(3He, t), (p, n), E=200 MeV/nucleon; calculated σ(θ), σ(θt, Et), σ(θn, En). 90Nb deduced high L mode excitation mechanism. DWIA, random phase approximation.

doi: 10.1016/0370-2693(87)90956-7
Citations: PlumX Metrics

1987UD02      Nucl.Phys. A474, 131 (1987)

T.Udagawa, A.Schulte, F.Osterfeld

Antisymmetric Distorted Wave Impulse Approximation Calculations for Composite Particle Scattering

NUCLEAR REACTIONS 90Zr(3He, t), E=600 MeV; calculated σ(θ); deduced σ(E). Microscopic DWIA.

doi: 10.1016/0375-9474(87)90197-7
Citations: PlumX Metrics

1987YA10      Phys.Lett. 192B, 26 (1987)

M.Yabe, F.Osterfeld, D.Cha

Theoretical Investigation of the 48Ca(n, p)48K and 48Ca(p, n)48Sc Reactions at E = 200 MeV

NUCLEAR REACTIONS 48Ca(n, p), (p, n), E=200 MeV; calculated σ(θ), σ(Ep, θp), σ(En, θn). 48Sc, 48K deduced Gamow-Teller transition sum rule validity.

doi: 10.1016/0370-2693(87)91135-X
Citations: PlumX Metrics

1986WE04      Z.Phys. A323, 485 (1986)

C.Wesselborg, K.Schiffer, K.O.Zell, P.von Brentano, D.Bohle, A.Richter, G.P.A.Berg, B.Brinkmoller, J.G.M.Romer, F.Osterfeld, M.Yabe

Search for the New M1 Mode in 156Gd by Inelastic Proton Scattering at Low Incident Energy

NUCLEAR REACTIONS 156Gd(p, p'), E=24.7 MeV; measured σ(θ), σ(Ep'). 156Gd deduced 1+ excitation σ upper limit, convection current dependent M1 mode.

1986YA09      Phys.Lett. 178B, 5 (1986)

M.Yabe, F.Osterfeld, D.Cha

Microscopic Analysis of 90Zr(p(pol), p'(pol))-Spin-Flip Spectra at E = 319 MeV

NUCLEAR REACTIONS 90Zr(polarized p, p'), E=319 MeV; calculated σ(θ), spin-flip σ(θp, Ep). DWIA.

doi: 10.1016/0370-2693(86)90460-0
Citations: PlumX Metrics

1985LE15      Phys.Rev. C32, 789 (1985)

H.Leeb, F.Osterfeld

Microscopic Approach to the Alpha-Particle-Nucleus Optical Potential

NUCLEAR STRUCTURE 44Ti; calculated levels, rotational bands. Fish-bone model, α+40Ca structure.

NUCLEAR REACTIONS 40Ca(α, α), E=26.1, 31, 36.1 MeV; calculated σ(θ). Microscopic α-nucleus potential.

doi: 10.1103/PhysRevC.32.789
Citations: PlumX Metrics

1985OS01      Phys.Rev. C31, 372 (1985)

F.Osterfeld, D.Cha, J.Speth

Microscopic Analysis of Complete 90Zr(p, n) Spectra Including the Δ Isobar Effect

NUCLEAR REACTIONS 90Zr(p, n), E=200 MeV; calculated σ(E, θ); deduced isobar-hole admixture role. 42Sc deduced spin-isospin strength distribution function. Microscopic model.

doi: 10.1103/PhysRevC.31.372
Citations: PlumX Metrics

1985OS04      Phys.Rev. C32, 108 (1985)

F.Osterfeld, V.A.Madsen

Microscopic Calculation of the Imaginary Lane Isospin Potential W1

NUCLEAR REACTIONS 48Ca(p, n), E=25 MeV; calculated charge-exchange imaginary potential, σ(θ). Microscopic calculation.

doi: 10.1103/PhysRevC.32.108
Citations: PlumX Metrics

1984DE03      Phys.Rev. C29, 1075 (1984)

H.Dermawan, F.Osterfeld, V.A.Madsen

Microscopic Calculation of the Imaginary Optical Potential for 208Pb(p, p) at 14 MeV

NUCLEAR REACTIONS 208Pb(p, p), E=14 MeV; calculated σ(θ). Microscopic second-order imaginary potential, RPA transition densities.

doi: 10.1103/PhysRevC.29.1075
Citations: PlumX Metrics

1984OS02      Phys.Lett. 138B, 23 (1984)

F.Osterfeld, A.Schulte

Microscopic Background Calculations for the 90Zr(p, n)-Reaction at E = 200 MeV

NUCLEAR REACTIONS 90Zr(p, n), E=200 MeV; calculated σ(θn, En). 90Nb deduced giant resonance, missing Gamow-Teller transition strength distribution.

doi: 10.1016/0370-2693(84)91864-1
Citations: PlumX Metrics

1984OS04      J.Phys.(Paris), Colloq.C4, 13 (1984); See 1984Os07

F.Osterfeld, A.Schulte

Microscopic Calculations of the Background below Giant Resonances

1984OS07      J.Phys.(Paris), Colloq.C-4, 13 (1984)

F.Osterfeld, A.Schulte

Microscopic Calculations of the Background below Giant Resonances

NUCLEAR REACTIONS 40Ca(p, n), E=160 MeV; 90Zr(p, n), E=200 MeV; calculated σ(En, θn). Doorway model.

1983DE12      Phys.Rev. C27, 1474 (1983)

H.Dermawan, F.Osterfeld, V.A.Madsen

Cross Section Calculations for Nucleon-40Ca and α-40Ca Elastic Scattering from Microscopic Nonlocal Optical Potentials

NUCLEAR REACTIONS 40Ca(p, p), E=17.7, 25 MeV; 40Ca(n, n), E=17.7 MeV; 40Ca(α, α), E=31 MeV; calculated σ(θ), σ(elastic). Microscopic optical model, nonlocal potentials.

doi: 10.1103/PhysRevC.27.1474
Citations: PlumX Metrics

1982BE14      Phys.Rev. C25, 2100 (1982)

G.P.A.Berg, W.Hurlimann, I.Katayama, S.A.Martin, J.Meissburger, J.Romer, B.Styczen, F.Osterfeld, G.Gaul, R.Santo, G.Sondermann

Excitation of the 10.212 MeV 1+ State in 48Ca(p, p') at E(p) = 44.4 MeV

NUCLEAR REACTIONS 48Ca(p, p'), E=44.4 MeV; measured σ(θ), proton momentum spectra. High resolution magnetic spectrometer. Microscopic DWBA, RPA wave functions.

doi: 10.1103/PhysRevC.25.2100
Citations: PlumX Metrics

1982DE04      Phys.Rev. C25, 180 (1982)

H.Dermawan, F.Osterfeld, V.A.Madsen

Nuclear Structure Approach to the Calculation of the Imaginary Alpha-Nucleus Optical Potential

NUCLEAR REACTIONS 40Ca(α, α), E=31-100 MeV; calculated σ(θ), imaginary α-nucleus potential. RPA.

doi: 10.1103/PhysRevC.25.180
Citations: PlumX Metrics

1982OS03      Phys.Rev.Lett. 49, 11 (1982)

F.Osterfeld, S.Krewald, J.Speth, T.Suzuki

Effect of the Δ(1232) Isobar in 48Ca(p, n) Cross Sections

NUCLEAR REACTIONS 48Ca(p, n), E=160 MeV; analyzed σ(θ); deduced isobar effects. 48Sc levels deduced isobar quenching dependence on multipolarity. Microscopic model.

doi: 10.1103/PhysRevLett.49.11
Citations: PlumX Metrics

1982OS04      Phys.Rev. C26, 762 (1982)


Microscopic Background Calculations for (p, n) Reactions at Intermediate Energies

NUCLEAR REACTIONS 40,48Ca(p, n), E=160 MeV; calculated σ(θ, En); deduced Gamow-Teller strength in background. 48Sc deduced strong 3+ resonance excitation. Microscopic model, DWIA approach.

doi: 10.1103/PhysRevC.26.762
Citations: PlumX Metrics

1981KE01      Phys.Rev.Lett. 46, 103 (1981)

S.Krewald, F.Osterfeld, J.Speth, G.E.Brown

Nuclear-Structure Effects Connected with Charge-Exchange Resonances

NUCLEAR STRUCTURE 208Pb, 208Bi; calculated GDR, IAR, Gamow-Teller resonance energies. Generalized Landau-Migdal interaction, dynamical RPA, collective effects.

NUCLEAR REACTIONS 208Pb(p, n), E=120 MeV; calculated σ(θ). 208Bi deduced nuclear structure effects associated with Gamow-Teller resonance, IAS. Generalized Landau-Migdal interaction, dynamical RPA, collective effects.

doi: 10.1103/PhysRevLett.46.103
Citations: PlumX Metrics

1981OS01      Phys.Rev. C23, 179 (1981)

F.Osterfeld, J.Wambach, V.A.Madsen

Antisymmetrized, Microscopic Calculation for the 40Ca(n, n) Optical Potential

NUCLEAR REACTIONS 40Ca(n, n), E=30 MeV; calculated σ(θ); deduced collective, intermediate charge-exchange state effects. Antisymmetrized, microscopic optical potential.

doi: 10.1103/PhysRevC.23.179
Citations: PlumX Metrics

1981OS03      Phys.Lett. 99B, 75 (1981)

F.Osterfeld, T.Suzuki, J.Speth

No Evidence for Precritical Phenomena of Pion Condensation in A=48 Nuclei

NUCLEAR REACTIONS 48Ca(e, e'), E=250 MeV; calculated from factors; 48Ca(p, p'), E=160 MeV; 48Ca(p, n), E=160 MeV; calculated σ(θ); 48Ca, 48Sc deduced no pion condensation phenomena for 1+ state excitation. RPA, variable Landau-Migdal force parameter.

doi: 10.1016/0370-2693(81)90953-9
Citations: PlumX Metrics

1981OS09      Phys.Lett. 105B, 257 (1981)

F.Osterfeld, S.Krewald, H.Dermawan, J.Speth

Pionic ΔL = 1 Charge-Exchange Modes in Heavy Mass Nuclei

NUCLEAR REACTIONS 208Pb(p, n), E=45, 49, 160 MeV; calculated σ(θ), σ(θ, En). 208Bi deduced charge exchange resonance character. Antisymmetrized DWBA, effective interaction, RPA.

NUCLEAR STRUCTURE 208Bi; calculated collective spin-flip, nonspin-flip charge exchange mode energies. RPA.

doi: 10.1016/0370-2693(81)90883-2
Citations: PlumX Metrics

1981OS10      Phys.Rev. C24, 2468 (1981)

F.Osterfeld, V.A.Madsen

Nuclear Structure Approach to the Coulomb Correction of the Imaginary Nucleon-Nucleus Optical Potential

NUCLEAR REACTIONS 40Ca(p, p), (n, n), E=17.7, 25 MeV; calculated imaginary optical potential. RPA transition densities, inelastic, charge-exchange intermediate states.

doi: 10.1103/PhysRevC.24.2468
Citations: PlumX Metrics

1981SU04      Phys.Lett. 100B, 443 (1981)

T.Suzuki, F.Osterfeld, J.Speth

Critical Analysis of a Precritical Phenomenon in Connection with Pion Condensation

NUCLEAR REACTIONS 12C(p, p'), E=122, 156 MeV; calculated σ(θ); 12C(e, e'), E=57.7 MeV; calculated form factors, transition densities; deduced precritical phenomenon redundancy. RPA.

doi: 10.1016/0370-2693(81)90601-8
Citations: PlumX Metrics

1980KR08      Phys.Lett. 93B, 218 (1980)

F.Krmpotic, F.Osterfeld

A Comment on the Isovector Dipole and Gamow-Teller Transitions in 90Zr

NUCLEAR REACTIONS 90Zr(3He, t), E=80, 130 MeV; 90Zr(p, n), E not given; analyzed data. 93Nb resonance deduced isospin, dipole character. Shell model.

doi: 10.1016/0370-2693(80)90498-0
Citations: PlumX Metrics

1979OS03      Nucl.Phys. A318, 45 (1979)

F.Osterfeld, J.Wambach, H.Lenske, J.Speth

Investigation of the Hadronic Transition Operator for Inelastic Proton Scattering

NUCLEAR REACTIONS 208Pb(p, p'), E=61.5 MeV; calculated σ(θ), B(E3). Local part of hadronic transition operator.

doi: 10.1016/0375-9474(79)90468-8
Citations: PlumX Metrics

1979WA09      Nucl.Phys. A324, 77 (1979)

J.Wambach, F.Osterfeld, J.Speth, V.A.Madsen

Theoretical Investigation of Giant Resonances by Inelastic Proton Scattering

NUCLEAR REACTIONS 16O(p, p'), E=45 MeV; 40Ca(p, p'), E=156 MeV; 208Pb(p, p'), E=60, 156 MeV; calculated σ(θ) in giant resonance region. Antisymmetrized microscopic DWBA, RPA wave functions deduced breathing mode character of giant resonance.

doi: 10.1016/0375-9474(79)90079-4
Citations: PlumX Metrics

1978BA11      Phys.Rev. C17, 819 (1978)

G.Baur, V.A.Madsen, F.Osterfeld

Microscopic Theory of the Imaginary Inelastic Transition Form Factor

NUCLEAR REACTIONS 40Ca(n, n'), E=30 MeV; calculated form factor.

doi: 10.1103/PhysRevC.17.819
Citations: PlumX Metrics

1978HE03      Z.Phys. A284, 413 (1978)

E.F.Hefter, H.V.Geramb, F.Osterfeld, T.Udagawa

Two-Step Processes in Inelastic Proton Scattering

NUCLEAR REACTIONS 16O, 40Ca(p, p'), 16O(p, d), E=25-46 MeV; calculated σ(θ). Reaction mechanism study.

doi: 10.1007/BF01422110
Citations: PlumX Metrics

1977OS01      Nucl.Phys. A278, 1 (1977)

F.Osterfeld, T.Udagawa, H.H.Wolter

Effects of Nonorthogonality Corrections in Two-Step Processes in (τ, t) Reactions

NUCLEAR REACTIONS 48Ca(3He, t), E=18, 22, 23, 30.2 MeV; calculated σ(Et, θ).

doi: 10.1016/0375-9474(77)90181-6
Citations: PlumX Metrics

1977OS02      Phys.Lett. 68B, 319 (1977)

F.Osterfeld, V.Hnizdo, C.Toepffer

Is the Difference between 12C-20Ne and 16O-16O Scattering Due to Entrance Channel Effects (Question)

NUCLEAR REACTIONS 20Ne(12C, 12C); calculated σ(θ).

doi: 10.1016/0370-2693(77)90484-1
Citations: PlumX Metrics

1976CA30      Nucl.Phys. A273, 523 (1976)

J.Carter, R.G.Clarkson, V.Hnizdo, R.J.Keddy, D.W.Mingay, F.Osterfeld, J.P.F.Sellschop

Elastic and Inelastic Scattering of 16O and 12C by 24Mg Near the Coulomb Barrier

NUCLEAR REACTIONS 24Mg(16O, 16O), E=28, 29, 30, 33 MeV; 24Mg(12C, 12C), E=21, 24 MeV; measured σ(θ) for ground state, first 2+ in 24Mg; deduced optical model potentials. DWBA, ICC analysis. Enriched target.

doi: 10.1016/0375-9474(76)90608-4
Citations: PlumX Metrics

1976OS02      Phys.Lett. 60B, 253 (1976)

F.Osterfeld, H.H.Wolter

Investigation of Direct and Two-Step Mechanism in the 48Ca(6Li, 6He)48Sc Reaction

NUCLEAR REACTIONS 48Ca(6Li, 6He), E=34 MeV; calculated σ(E(6He), θ); deduced reaction mechanism.

doi: 10.1016/0370-2693(76)90293-8
Citations: PlumX Metrics

1975FA02      Nucl.Phys. A245, 466 (1975)

A.Faessler, F.Grummer, F.Krmpotic, F.Osterfeld, A.Plastino

Two-Nucleon Transfer Processes in the Lead Region

NUCLEAR REACTIONS 206,208Pb(t, p), 208,210Pb(p, t), E=20 MeV; 208Pb, 204Hg(3He, n), E=28 MeV; calculated σ.

doi: 10.1016/0375-9474(75)90622-3
Citations: PlumX Metrics

1974GA17      Nucl.Phys. A222, 579 (1974)

C.Gaarde, T.Kammuri, F.Osterfeld

The (6Li, 6He) Spin-Isospin-Flip Reaction

NUCLEAR REACTIONS 48Ca(6Li, 6He), E=34 MeV; measured nothing, calculated σ(E(6He), θ). 48Sc levels deduced wavefunctions.

doi: 10.1016/0375-9474(74)90340-6
Citations: PlumX Metrics

Back to query form