NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = C.W.Nestor

Found 21 matches.

Back to query form

2008KI07      Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)

T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.

Evaluation of theoretical conversion coefficients using BrIcc

COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.

doi: 10.1016/j.nima.2008.02.051
Citations: PlumX Metrics

2006RA03      At.Data Nucl.Data Tables 92, 207 (2006)

S.Raman, M.Ertugrul, C.W.Nestor, Jr., M.B.Trzhaskovskaya

Ratios of internal conversion coefficients

COMPILATION Z=26-100; A=57-254; compiled, analyzed ICC ratios, δ. Comparison of experimental data with several model calculations.

doi: 10.1016/j.adt.2005.12.001
Citations: PlumX Metrics

2004NI14      Phys.Rev. C 70, 054305 (2004)

N.Nica, J.C.Hardy, V.E.Iacob, S.Raman, C.W.Nestor, Jr., M.B.Trzhaskovskaya

Precise measurement of αK for the M4 transition from 193Irm: A test of internal-conversion theory

RADIOACTIVITY 193mIr(IT) [from 192Os(n, γ) and subsequent decay]; measured Eγ, Iγ, X-ray spectra; deduced conversion coefficient. Comparison with model predictions.

doi: 10.1103/PhysRevC.70.054305
Citations: PlumX Metrics

2002BA85      At.Data Nucl.Data Tables 81, 1 (2002)

I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor, Jr., P.O.Tikkanen, S.Raman

Dirac-Fock Internal Conversion Coefficients

NUCLEAR STRUCTURE Z=10-126; A=20-310; calculated ICC. Relativistic self-consistent-field Dirac-Fock approach.

doi: 10.1006/adnd.2002.0884
Citations: PlumX Metrics

2002RA45      Phys.Rev. C66, 044312 (2002)

S.Raman, C.W.Nestor, Jr., A.Ichihara, M.B.Trzhaskovskaya

How good are the internal conversion coefficients now?

NUCLEAR STRUCTURE Z=22-94; A=46-240; compiled, analyzed ICC. Comparison of experimental data with several model calculations.

doi: 10.1103/PhysRevC.66.044312
Citations: PlumX Metrics

2001RA27      At.Data Nucl.Data Tables 78, 1 (2001)

S.Raman, C.W.Nestor, P.Tikkanen

Transition Probability from the Ground to the First-Excited 2+ State of Even-Even Nuclides

COMPILATION Z=4-100; compiled, evaluated B(E2) for transition from ground to first-excited 2+ states in even-even nuclides.

doi: 10.1006/adnd.2001.0858
Citations: PlumX Metrics

1995ME13      Phys.Rev. C52, 1801 (1995)

M.P.Metlay, J.L.Johnson, J.D.Canterbury, P.D.Cottle, C.W.Nestor, Jr., S.Raman, V.G.Zelevinsky

Are Octupole Vibrations Harmonic ( Question )

NUCLEAR STRUCTURE A ≥ 60; analyzed B(E3) data; deduced octupole vibrations anharmonicity evidence. Data from (p, p'), (d, d'), (α, α') reactions.

doi: 10.1103/PhysRevC.52.1801
Citations: PlumX Metrics

1994BH01      Phys.Rev. C49, 808 (1994)

K.H.Bhatt, S.Raman, C.W.Nestor, Jr.

Symplectic Pseudo-SU(3) Model and B(E2; 0+1 → 2+1) Value of 238U

NUCLEAR STRUCTURE 238U; calculated B(λ), electric quadrupole moment; deduced need for effective charges. Symplectric pseudo-SU(3) model.

doi: 10.1103/PhysRevC.49.808
Citations: PlumX Metrics

1992BH04      Phys.Rev. C46, 164 (1992)

K.H.Bhatt, C.W.Nestor, Jr., S.Raman

Do Nucleons in Abnormal-Parity States Contribute to Deformation ( Question )

NUCLEAR STRUCTURE 144Ce, 222Ra, 168Er, 250Cf; calculated quadrupole moments. 222,224,226,228Ra, 238,240,242,244Pu, 226,228,230,232,234Th, 244,246,248Cm, 230,232,234,236,238U, 250,252Cf, 148,150,152,154Sm, 152,154,156,158,160Gd, 154,156,158,160,162,168Dy, 156,158,160,162,164,166,168,170Er, 158,160,162,164,166,168,170,172,174,176Yb, 164,166,168,170,172,174,176,178,180Hf; calculated B(E2); deduced valence nucleons role. Woods-Saxon model.

doi: 10.1103/PhysRevC.46.164
Citations: PlumX Metrics

1991RA02      Phys.Rev. C43, 556 (1991)

S.Raman, C.W.Nestor, Jr., S.Kahane, K.H.Bhatt

Low-Lying Collective Quadrupole and Octupole Strengths in Even-Even Nuclei

NUCLEAR STRUCTURE Z ≥ 50; analyzed B(λ) data; deduced quadrupole, octupole vibrations harmonicity. Model comparisons.

doi: 10.1103/PhysRevC.43.556
Citations: PlumX Metrics

1989RA16      At.Data Nucl.Data Tables 42, 1 (1989)

S.Raman, C.W.Nestor, Jr., S.Kahane, K.H.Bhatt

Predictions of B(E2;01+ → 21+) Values for Even-Even Nuclei

COMPILATION Z=2-100; compiled adopted B(E2).

doi: 10.1016/0092-640X(89)90031-4
Citations: PlumX Metrics

1988RA07      Phys.Rev. C37, 805 (1988)

S.Raman, C.W.Nestor, Jr., K.H.Bhatt

Systematics of B(E2; 01+ → 21+) Values for Even-Even Nuclei

NUCLEAR STRUCTURE A=4-240; analyzed B(E2) systematics; deduced applicable structure models.

doi: 10.1103/PhysRevC.37.805
Citations: PlumX Metrics

1988RA33      Phys.Rev.Lett. 61, 2817 (1988)

S.Raman, C.W.Nestor, Jr., S.Kahane, K.H.Bhatt

Comment on ' Loss of Collectivity at High Spin in 172W and a Three-Band Interpretation of First Yrast Upbends '

NUCLEAR STRUCTURE 172W; analyzed collectivity effects.

doi: 10.1103/PhysRevLett.61.2817
Citations: PlumX Metrics

1987RA01      At.Data Nucl.Data Tables 36, 1 (1987)

S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor, Jr., P.H.Stelson

Transition Probability, B(E2), from the Ground to the First-Excited 2+ State of Even-Even Nuclides

COMPILATION A=6-254; compiled, evaluated 2+ level energies, B(E2), T1/2, β2, β22(sp), EWSR, intrinsic quadrupole moments.

doi: 10.1016/0092-640X(87)90016-7
Citations: PlumX Metrics

1977CA31      At.Data Nucl.Data Tables 19, 153 (1977)

T.A.Carlson, C.W.Nestor, Jr.

Calculation of K and L x rays for elements of Z = 95 to 130

ATOMIC PHYSICS Z=95-130; calculated relativistic Dirac-Fock Eigenvalues, K and L X-ray energies. Comparison with experimental binding energies.

doi: 10.1016/0092-640X(77)90012-2
Citations: PlumX Metrics

1971LU14      At.Data 3, 1 (1971)

C.C.Lu, T.A.Carlson, F.B.Malik, T.C.Tucker, C.W.Nestor, Jr.

Relativistic Hartree-Fock-Slater Eigenvalues, Radial Expectation Values, and Potentials for Atoms, 2 < Z < 126

doi: 10.1016/S0092-640X(71)80002-5
Citations: PlumX Metrics

1969CA10      Nucl.Phys. A135, 57 (1969)

T.A.Carlson, C.W.Nestor, Jr., F.B.Malik, T.C.Tucker

Calculation of K, L, M and N Binding Energies and K X-Rays for Elements From Z = 96-120

doi: 10.1016/0375-9474(69)90147-X
Citations: PlumX Metrics

1969TU02      Phys.Rev. 178, 998 (1969)

T.C.Tucker, L.D.Roberts, C.W.Nestor, Jr., T.A.Carlson, F.B.Malik

Relativistic Self-Consistent-Field Calculation of the Wave Functions, Eigenvalues, Isotope Shifts, and the 6S Hyperfine-Structure Coupling Constant as a Function of Pressure for Metallic Gold in the Wigner-Seitz Model

ATOMIC PHYSICS Au; calculated wave functions, eigenvalues, isotope shift , hfs coupling constant.

doi: 10.1103/PhysRev.178.998
Citations: PlumX Metrics

1968CA29      Phys.Rev. 169, 27 (1968)

T.A.Carlson, C.W.Nestor, Jr., T.C.Tucker, F.B.Malik

Calculation of Electron Shake-Off for Elements from Z = 2 to 92 with the Use of Self-Consistent-Field Wave Functions

ATOMIC PHYSICS Z=2-92; calculated electron shake-off.

doi: 10.1103/PhysRev.169.27
Citations: PlumX Metrics

1968TU03      Phys.Rev. 174, 118 (1968)

T.C.Tucker, L.D.Roberts, C.W.Nestor, Jr., T.A.Carlson, F.B.Malik

Calculation of the Electron Binding Energies and X-Ray Energies for the Superheavy Elements 114, 126, and 140 Using Relativistic Self-Consistent-Field Atomic Wave Functions

ATOMIC PHYSICS Au, U; Z=114, 116, 140; calculated electron binding energies, X-ray energies.

doi: 10.1103/PhysRev.174.118
Citations: PlumX Metrics

1966NE10      ORNL-4027 (1966)

C.W.Nestor, T.C.Tucker, T.A.Carlson, L.D.Roberts, F.B.Malik, C.Froese

Relativistic and Non-Relativistic scf Wave Functions for Atoms and Ions from Z = 2 to 80, Together with Calculations of Binding Energies, Mean Radii, Screening Constants, Charge Distributions, and Electron Shake-Off Probabilities

Back to query form