References quoted in the ENSDF dataset: 76FE ADOPTED LEVELS

25 references found.

Clicking on a keynumber will list datasets that reference the given article.


1999EN03

Phys.Rev. C60, 014302 (1999)

J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, R.Surman

β Decay Rates of r-Process Waiting-Point Nuclei in a Self-Consistent Approach

RADIOACTIVITY 76,78,80Zn, 82Ge, 124,126,128,130Cd, 68,70,72,74,76,78Ni, 82Ge, 80Zn, 78Ni, 76Fe, 74Cr, 72Ti(β-); calculated β-decay T1/2 vs pairing strength. Self-consistent approach. Implications for nucleosynthesis discussed.

doi: 10.1103/PhysRevC.60.014302


2000IS13

Yad.Fiz. 63, No 10, 1828 (2000); Phys.Atomic Nuclei 63, 1740 (2000)

V.I.Isakov, K.A.Mezilev, Yu.N.Novikov, K.I.Erokhina, B.Fogelberg, H.Mach

Mass-Surface Predictions Near the Doubly Magic Nuclide 78Ni

NUCLEAR STRUCTURE 75,76,77,78Fe, 76,77,78,79Co, 77,78,79,80Ni, 78,79,80,81Cu, 79,80,81,82Zn; calculated one-, two-neutron separation energies, Qβ. Implications for astrophysical r-process discussed.

doi: 10.1134/1.1320143


2004MI54

Int.J.Mod.Phys. E13, 1209 (2004)

P.Mitra, G.Gangopadhyay

Deformation projected RMF calculation for Cr and Fe nuclei in the hybrid derivative coupling model

NUCLEAR STRUCTURE 44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92Cr, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96Fe; calculated binding energies, deformation. 54,78,96Fe; calculated neutron single particle energies. Generalized hybrid derivative coupling model.

doi: 10.1142/S021830130400265X


2005NI02

Phys.Rev. C 71, 014308 (2005)

T.Niksic, T.Marketin, D.Vretenar, N.Paar, P.Ring

β-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

NUCLEAR STRUCTURE 69,71,73,75,77,79Cu, 78Ni, 132Sn; calculated neutron and proton single-particle energy levels. Relativistic quasiparticle RPA.

RADIOACTIVITY 64,66,68,70,74,76Fe, 70,72,74,76,78Ni, 76,78,80,82Zn, 82Ge, 72Ti, 74Cr, 122,124,126,128,130,132Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te(β-); calculated T1/2. Relativistic quasiparticle RPA, comparisons with data.

doi: 10.1103/PhysRevC.71.014308


2007MA09

Phys.Rev. C 75, 024304 (2007)

T.Marketin, D.Vretenar, P.Ring

Calculation of β-decay rates in a relativistic model with momentum-dependent self-energies

RADIOACTIVITY 64,66,68,70,72,74,76Fe, 70,72,74,76,78Ni, 76,78,80,82Zn, 122,124,126,128,130,132Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te(β-); calculated β-decay T1/2. Relativistic proton-neutron quasiparticle RPA.

doi: 10.1103/PhysRevC.75.024304


2010SI11

Phys.Rev. C 81, 061303 (2010)

K.Sieja, F.Nowacki

Shell quenching in 78Ni: A hint from the structure of neutron-rich copper isotopes

NUCLEAR STRUCTURE 69,71,73,75,77,79Cu; calculated levels, J, π, neutron and proton orbital occupancies, magnetic moments, g factors. Large-scale shell model calculations using a realistic interaction derived from the CD-Bonn potential and 48Ca core. 68,70,72,74,76,78Fe; calculated proton effective single-particle energies. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.061303


2012BE44

Phys.Atomic Nuclei 75, 1350 (2012); Yad.Fiz. 75, 1425 (2012)

O.V.Bespalova, T.A.Ermakova, A.A.Klimochkina, E.A.Romanovsky, T.I.Spasskaya

Dispersive optical potential from an analysis of neutron single-particle energies in the Ti, Cr, and Fe isotopes featuring 20 to 50 neutrons

NUCLEAR STRUCTURE 42,44,46,48,50,72Ti, 44,46,48,50,52,54,74Cr, 46,48,50,52,54,66,76Fe; calculated single-particle energies. Shell model, GXPF1 interaction.

doi: 10.1134/S106377881211004X


2013ZH05

Phys.Rev. C 87, 025803 (2013)

Q.Zhi, E.Caurier, J.J.Cuenca-Garcia, K.Langanke, G.Martinez-Pinedo, K.Sieja

Shell-model half-lives including first-forbidden contributions for r-process waiting-point nuclei

RADIOACTIVITY 129,131In, 205Au, 205,206Hg, 206,207Tl(β-); calculated logft, first-forbidden shape factors. 74Cr, 75Mn, 76Fe, 77Co, 78Ni, 79Cu, 80Zn, 81Ga, 82Ge, 124Mo, 125Tc, 126Ru, 127Rh, 128Pd, 129Ag, 130Cd, 131In, 192Dy, 193Ho, 194Er, 195Tm, 196Yb, 197Lu, 198Hf, 199Ta(β-), (β-n); calculated Q(β) values, T1/2, beta-delayed neutron emission probabilities, first-forbidden transition components, partial decay rates for N=50, Z=24-32; N=82, Z=42-49; N=126, Z=66-73 r-process waiting-point nuclei. Large-scale shell-model calculations. Comparison with other model calculations, and with experimental data.

doi: 10.1103/PhysRevC.87.025803


2014SE19

Phys.Rev. C 90, 044320 (2014)

A.P.Severyukhin, V.V.Voronov, I.N.Borzov, N.N.Arsenyev, Nguyen Van Giai

Influence of 2p-2h configurations on β-decay rates

RADIOACTIVITY 76Fe, 70,72,74,76,78,80Ni, 80Zn, 82Ge, 84Se(β-); calculated half-lives, Gamow┬ŁTeller (G-T) strength distributions. Calculations based on phonon-phonon coupling in a microscopic model based on Skyrme-type interaction. Comparison with experimental results.

NUCLEAR STRUCTURE 76Fe, 70,72,74,76,78,80Ni, 80Zn, 82Ge, 84Se, 86Kr; calculated energies and B(E2) of first 2+ states based on QRPA and finite rank separable approximation (FRSA), with and without tensor interaction. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.044320


2015WU04

Phys.Rev. C 92, 024306 (2015)

Z.-Y.Wu, C.Qi, R.Wyss, H.-L.Liu

Global calculations of microscopic energies and nuclear deformations: Isospin dependence of the spin-orbit coupling

NUCLEAR STRUCTURE A=16-375, N=8-270; 24,26,28,30,32,34,36,38,40,42,44Si, 44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Cr, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82Fe, 62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104Ge, 66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116Se, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Kr, 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124Zr, 82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Mo, 86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Ru, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated microscopic binding energies and ground-state nuclear deformations β2, γ and β4 for 1850 even-even nuclei. Macroscopic-microscopic framework using three Woods-Saxon parametrizations with different isospin dependencies. Comparison with results of other macroscopic-microscopic mass models. Discussed isospin dependence of spin-orbital force.

doi: 10.1103/PhysRevC.92.024306


2016NO12

Phys.Rev.Lett. 117, 272501 (2016)

F.Nowacki, A.Poves, E.Caurier, B.Bounthong

Shape Coexistence in 78Ni as the Portal to the Fifth Island of Inversion

NUCLEAR STRUCTURE 78Ni, 76Fe, 74Cr, 72Ti, 70Ca; calculated quadrupole correlation energies of the neutron intruder configurations, projected Energy Surfaces, B(E2), energy levels, J, π, average number of p-h excitations and occupancies of the neutron and proton orbits; deduced shape coexistence.

doi: 10.1103/PhysRevLett.117.272501


2016SH39

Phys.Rev. C 94, 055802 (2016)

T.Shafer, J.Engel, C.Frohlich, G.C.McLaughlin, M.Mumpower, R.Surman

β decay of deformed r-process nuclei near A=80 and A=160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

RADIOACTIVITY 68,69,70,71,72Cr, 71,72,73,74,75Mn, 72,73,74,75,76Fe, 76,77Co, 80,81Cu, 84,85,86Zn, 86,87Ga, 86,87,88,89,90,91,92Ge, 89,90,91,92,93,94,95As, 92,93,94,95,96,97,98Se, 157,159,161,163,165,167Cs, 163,165,167,169,171,173,175La, 146,148,150,152,160,164,166,168,170,172,174,176Ce, 152,154,156,164,166,172,174,176,178Nd(β-); calculated half-lives using proton-neutron finite-amplitude method (pn-FAM) with Skyrme energy-density functionals (EDFs) in the quasiparticle random-phase approximation (QRPA), after optimizing the nuclear interaction to best fit the measured half-lives in A=80 and A=160 regions. Deduced r-process abundances. Comparison with other theoretical calculations and experimental values.

doi: 10.1103/PhysRevC.94.055802


2017SU15

Phys.Rev. C 95, 051601 (2017)

T.Sumikama, S.Nishimura, H.Baba, F.Browne, P.Doornenbal, N.Fukuda, S.Franchoo, G.Gey, N.Inabe, T.Isobe, P.R.John, H.S.Jung, D.Kameda, T.Kubo, Z.Li, G.Lorusso, I.Matea, K.Matsui, P.Morfouace, D.Mengoni, D.R.Napoli, M.Niikura, H.Nishibata, A.Odahara, E.Sahin, H.Sakurai, P.-A.Soderstrom, G.I.Stefan, D.Suzuki, H.Suzuki, H.Takeda, R.Taniuchi, J.Taprogge, Zs.Vajta, H.Watanabe, V.Werner, J.Wu, Z.Y.Xu, A.Yagi, K.Yoshinaga

Observation of new neutron-rich Mn, Fe, Co, Ni, and Cu isotopes in the vicinity of 78Ni

NUCLEAR REACTIONS 9Be(238U, X), E=345 MeV/nucleon; measured reaction products, Eγ, Iγ, Eβ, particle-identifications through energy loss, times of flight, and magnetic rigidities using BigRIPS separator and ZeroDegree spectrometer at RIBF-RIKEN facility; deduced A/Q production yields for 65,66,67,68,69,70Cr, 68,69,70,71,72,73Mn, 71,72,73,74,75,76Fe, 73,74,75,76,77,78Co, 76,77,78,79,80,81,82Ni, and 79,80,81,82,83Cu. 73Mn, 76Fe, 77,78Co, 80,81,82Ni, 83Cu; deduced production σ for the new isotopes. Comparison with theoretical calculations using LISE++ code.

doi: 10.1103/PhysRevC.95.051601


2018AG06

Int.J.Mod.Phys. E27, 1850062 (2018)

M.Aggarwal, G.Saxena

Persistence of magicity in neutron-rich exotic 78Ni in ground as well as excited states

NUCLEAR STRUCTURE 70Ca, 72Ti, 74Cr, 76Fe, 78Ni; calculated charge distribution along with radius, pairing energy contributions from protons and neutrons, neutron and proton single-particle energies for Ni isotopes, two-neutron shell gaps, level density parameter versus mass number A for Ni isotopes at different temperatures, entropy versus mass number A for Ni isotopes at different temperatures, rotational states. Comparison with available data.

doi: 10.1142/S0218301318500623


2018BH01

Phys.Rev. C 97, 024322 (2018)

M.Bhuyan, B.V.Carlson, S.K.Patra, S.-G.Zhou

Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86Fe, 72,74,76,78,80,82,84,86,88Ni, 74,76,78,80,82,84,86,88,90Zn, 76,78,80,82,84,86,88,90,92Ge, 78,80,82,84,86,88,90,92,94Se, 80,82,84,86,88,90,92,94,96Kr; calculated binding energies, charge radii, and quadrupole deformation parameter β2 for ground states, S(2n), total density distribution, symmetry energy and neutron pressure as function of neutron skin thickness. Calculations based on axially deformed self-consistent relativistic mean field for the nonlinear NL3* and density-dependent DD-ME1 interactions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.024322


2018JI08

Phys.Rev. C 98, 064323 (2018)

P.Jiang, Z.M.Niu, Y.F.Niu, W.H.Long

Strutinsky shell correction energies in relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 16O, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51Ca, 78Ni, 100,132Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215Pb, 277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320Og, 75Mn, 76Fe, 77Co, 78Ni, 79Cu, 80Zn, 81Ga, 82Ge, 83As, 84Se, 85Br, 86Kr, 87Rb, 88Sr, 89Y, 90Zr, 91Nb, 92Mo, 93Tc, 94Ru, 95Rh, 96Pd, 97Ag, 98Cd, 99In, 101Sb, 102Te, 103I, 104Xe, 105Cs; calculated shell correction energies, radial density of 16O, 40Ca, 208Pb, and single neutron spectra of 208Pb using relativistic Hartree-Fock (RHF) theory with the Strutinsky method.

doi: 10.1103/PhysRevC.98.064323


2019MO01

At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

Nuclear properties for astrophysical and radioactive-ion-beam applications (II)

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003


2021KO07

Chin.Phys.C 45, 030001 (2021)

F.G.Kondev, M.Wang, W.J.Huang, S.Naimi, G.Audi

The NUBASE2020 evaluation of nuclear physics properties

COMPILATION A=1-295; compiled, evaluated nuclear structure and decay data.

doi: 10.1088/1674-1137/abddae


2021LI12

Phys.Rev. C 103, 024326 (2021)

E.Litvinova, C.Robin

Impact of complex many-body correlations on electron capture in thermally excited nuclei around 78Ni

NUCLEAR STRUCTURE 76,78,80Ni, 76Fe, 80Zn; calculated Gamow-Teller GT+ spectra, electron capture rates as a function of temperature from T=0 to 2.0 MeV, and electron density using finite-temperature proton-neutron relativistic random phase approximation (FT-pnRRPA) and finite-temperature proton-neutron relativistic time blocking approximation (FT-pnRTBA). Comparison of electron capture rates to thermal quasiparticle random phase approximation (TQRPA) calculations. Discussed role of complex nuclear correlations in stellar electron capture process for the nuclei around 78Ni

doi: 10.1103/PhysRevC.103.024326


2021MI17

Phys.Rev. C 104, 044321 (2021)

F.Minato, T.Marketin, N.Paar

β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model

RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.044321


2021NA22

Nucl.Phys. A1015, 122278 (2021)

J.U.Nabi, T.Bayram, G.Daraz, A.Kabir, S.Senturk

The nuclear ground-state properties and stellar electron emission rates of 76Fe, 78Ni, 80Zn, 126Ru, 128Pd and 130Cd using RMF and pn-QRPA models

NUCLEAR STRUCTURE 76Fe, 78Ni, 80Zn, 126Ru, 128Pd, 130Cd; calculated nuclear ground state properties and weak transition rates using Relativistic Mean Field (RMF) model.

doi: 10.1016/j.nuclphysa.2021.122278


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2022QU03

Phys.Scr. 97, 085301 (2022)

N.T.T.Quyen, K.Y.Chae, N.K.Uyen, N.N.Duy

Beta-decay half-lives of the isotopes close to the neutron drip line and astrophysical implications

RADIOACTIVITY 74,75,76Fe, 78Co, 81,82Ni, 84,85Zn, 86,87Ga, 86,87,88,89,90Ge, 88,89,90,91,92As, 90Se, 92,93,94,95Se, 97,98Br, 101,102Kr, 103,104,105,106Rb, 103Sr, 106,107,108Sr, 110,111Y, 112,113,114Zr, 116,117Nb, 119Mo, 122Tc, 125Ru, 127,128Rh, 130,131Pd, 132Ag, 134Cd, 137In, 138,139,140Sn, 140,141,142Sb, 139,140,141,142,143,144,145Te, 142,143,144,145,146,147I, 147,148,149,150Xe, 150,151Cs, 150,151,152,153,154Ba, 151,152,153,154,155,156,157La(β-); calculated T1/2 via the FRDM+QRPA approach. Comparison with available data.

doi: 10.1088/1402-4896/ac7d16


2023LI18

Phys.Lett. B 840, 137893 (2023)

J.G.Li

Merging of the island of inversion at N=40 and N=50

NUCLEAR STRUCTURE 62,64,66,68,70,72,74,76Cr, 64,66,68,70,72,74,76,78Fe, 66,68,70,72,74,76,78,80Ni; calculated energy levels, J, π, B(E2), effective single-particle energies (ESPEs), the probability of particle-hole excitation, and the average occupations in the N=40 and N=50 isotones using the realistic shell model; deduced merging of the island of inversion.

doi: 10.1016/j.physletb.2023.137893


2023LY04

Acta Phys.Pol. B54, 8-A3 (2023)

N.D.Ly, N.N.Duy, N.K.Uyen, L.H.Khiem

Beta-decay Half-life Uncertainty of the Extremely Neutron-rich Nuclei Due to Nuclear-mass Deviation

RADIOACTIVITY 75,76Fe, 78Co, 80,81,82Ni, 82,83Cu, 85Zn, 86Ge, 89,90Ge, 88,89,90,91,92As, 90,91,92,93,94,95Se, 96,97,98Br, 101,102Kr, 103,104,105,106Rb, 103Sr, 107,108Sr, 110,111Y, 112,113,114Zr, 116,117Nb, 119Mo, 122Tc, 125Ru, 127,128Rh, 130,131Pd, 132Ag, 134Cd, 137In, 138,139,140Sn, 141,142Sb, 140,141,142,143,144,145Te, 142,143,144,145,146,147I, 147,148,149,150Xe, 150,151Cs, 152,153,154Ba, 151,152,153,154,155,156,157La(β-); calculated T1/2. Comparison with available data.

doi: 10.5506/APhysPolB.54.8-A3