References quoted in the ENSDF dataset: 254RF ADOPTED LEVELS, GAMMAS
79 references found.
Clicking on a keynumber will list datasets that reference the given article.
Nucl.Phys. A239, 157 (1975)
Y.T.Oganessian, A.G.Demin, A.S.Iljinov, S.P.Tretyakova, A.A.Pleve, Y.E.Penionzhkevich, M.P.Ivanov, Y.P.Tretyakov
Experiments on the Synthesis of Neutron-Deficient Kurchatovium Isotopes in Reactions Induced by 50Ti Ions
RADIOACTIVITY 255,256Rf; measured T1/2. 254Rf; measured upper limit T1/2.
NUCLEAR REACTIONS 206,207,208Pb(50Ti, X), E=260 MeV; 206Pb(40Ar, X), E=240 MeV; 203,205Tl(45Sc, X), E=240 MeV; measured formation cross section for spontaneously fissioning nuclei. Enriched targets.
doi: 10.1016/0375-9474(75)91140-9
Nucl.Phys. A255, 509 (1975)
G.M.Ter-Akopyan, A.S.Iljinov, Y.T.Oganessian, O.A.Orlova, G.S.Popeko, S.P.Tretyakova, V.I.Chepigin, B.V.Shilov, G.N.Flerov
Synthesis of the New Neutron-Deficient Isotopes 250102, 242Fm and 254Ku
RADIOACTIVITY, Fission 250No(SF) [from 233U(22Ne, 5n)]; 242Fm(SF) [from 204Pb(40Ar, 2n)]; 254Rf(SF) [from 206Pb(50Ti, 2n)]; measured T1/2, Γn/Γ(fission).
doi: 10.1016/0375-9474(75)90696-X
Nukleonika 23, 125 (1978)
K.Pomorski
Spontaneous Fission Half Lives for Odd A Nuclei with Z ≥ 96
RADIOACTIVITY 243Md, 242Fm, 259Rf(SF); calculated fission barriers, effective mass parameters. 259Rf, 261Db(SF), 240,242,244,246,248,250,252,241,243,245,247,249,251,253Cm, 243,245,247,249,251,253,255Bk, 244,245,246,247,248,249,250,251,252,253,254,255Cf, 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258Fm, 248,249,250,251,252,253,254,255,256,257,258,259,260No, 251,253,255,257,259,261Lr, 250Rf, 251Rf, 252Rf, 253Rf, 254Rf, 255Rf, 256Rf, 257Rf, 258Rf, 260Rf, 261Rf, 262Rf, 256Sg, 257Sg, 258Sg, 259Sg, 260Sg, 261Sg, 262Rf, 263Sg, 264Sg, 260Hs, 261Hs, 262Hs, 263Hs, 264Hs, 265Hs, 266Hs(SF); calculated T1/2.
Nucl.Phys. A410, 254 (1983)
S.Cwiok, V.V.Pashkevich, J.Dudek, W.Nazarewicz
Fission Barriers of Transfermium Elements
NUCLEAR STRUCTURE 242,244,246,248,250,252,254,256,258Fm, 250,252,254,256,258,260,262,264,266No, 254Rf, 256Rf, 258Rf, 260Rf, 262Rf, 264Rf; calculated fission barriers; deduced possible nuclear isomers, fission barrier separation. Strutinsky method.
doi: 10.1016/0375-9474(83)90201-4
Z.Phys. A322, 695 (1985)
Z.Lojewski, A.Baran
Spontaneous Fission Half-Times of Double-Odd Nuclei (Z ≥ 97)
NUCLEAR STRUCTURE 239,241,243,245,247Am, 241,243,245,247,249,251Cm, 243,245,247,249,251Bk, 245,247,249,251,253Cf, 249,251,253,255Es, 249,251,253,255,257Fm, 255,257,259Md, 253,255,257No; calculated levels, SF-decay T1/2. 250Rf, 252Rf, 254Rf, 256Rf, 258Rf, 260Rf, 262Rf, 251Db, 252Db, 253Db, 254Db, 255Db, 256Db, 257Db, 258Db, 259Db, 260Db, 261Db, 262Db, 263Db, 251,253,255,257,259,261Lr, 256Sg, 257Sg, 258Sg, 259Sg, 260Sg, 261Sg, 262Sg, 263Sg, 264Sg, 265Sg, 266Sg, 257Bh, 259Bh, 261Bh, 262Bh, 263Bh, 265Bh, 267Bh, 268Bh, 261Mt, 262Mt, 263Mt, 265Mt, 267Mt, 268Mt, 260Hs, 262Hs, 264Hs, 266Hs, 268Hs, 270Hs, 246,248,250,252,254,256,258Fm, 247,248,249,250,251,252,253,254,255,256,257,258,259Md; calculated SF-decay T1/2; deduced Nilsson parameters, hindrance factors.
Nucl.Phys. A504, 589 (1989)
A.Staszczak, S.Pilat, K.Pomorski
Influence of the Pairing Vibrations on Spontaneous Fission Probability
NUCLEAR STRUCTURE 250Fm; calculated SF-fission paths, barriers. 236,238,240,242,244,246,248,250,252,254Cm, 242,244,246,248,250,252,254,256,258Cf, 240,242,244,246,248,250,252,254,256,258,260Fm, 248,250,252,254,256,258,260,262No, 250Rf, 252Rf, 254Rf, 256Rf, 258Rf, 260Rf, 262Rf, 264Rf, 256Sg, 258Sg, 260Sg, 262Sg, 264Sg, 266Sg; calculated SF-decay T1/2. Generator coordinate method, Nilsson basis, pairing forces.
doi: 10.1016/0375-9474(89)90559-9
Phys.Rev. C45, 2803 (1992)
B.S.Bhandari, Y.B.Bendardaf
Systematics of the Deduced Fission Barriers for the Doubly Even Transactinium Nuclei
NUCLEAR STRUCTURE 236,238,240,242,244Pu, 240,242,244,246,248,250Cm; calculated isomer energies, T1/2, SF-decay T1/2, outer barrier heights. 230,232Th, 230,232,234,236,238U, 246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256,258Fm, 250,252,254,256,258,260,262No, 250Rf, 252Rf, 254Rf, 256Rf, 258Rf, 260Rf; calculated SF-decay T1/2, outer barrier height. Double humped fission barrier model. Other nuclei, other aspects discussed.
Z.Phys. A359, 415 (1997)
F.P.Hessberger, S.Hofmann, V.Ninov, P.Armbruster, H.Folger, G.Munzenberg, H.J.Schott, A.G.Popeko, A.V.Yeremin, A.N.Andreyev, S.Saro
Spontaneous Fission and Alpha-Decay Properties of Neutron Deficient Isotopes 257-253104 and 258106
RADIOACTIVITY 253,254Rf, 258Sg(SF), 255,256,257Rf(α) [from 204,206,208Pb(50Ti, xn), E=4.8-5.1 MeV/nucleon; 209Bi(51V, X), E=4.77-4.99 MeV/nucleon]; measured Eα, T1/2. 257Rf, 253No deduced levels.
NUCLEAR REACTIONS 204,206,208Pb(50Ti, xn), E=4.8-5.1 MeV/nucleon; 209Bi(51V, X), E=4.77-4.99 MeV/nucleon; measured Eα, Iα, residuals fission fragments; deduced evidence for 258Sg, 253,254Rf.
At.Data Nucl.Data Tables 66, 131 (1997)
P.Moller, J.R.Nix, K.-L.Kratz
Nuclear Properties for Astrophysical and Radioactive-Ion-Beam Applications
NUCLEAR STRUCTURE Z=8-136; A=16-339; calculated, compiled total binding energy, one-, two-neutron, proton separation energies, pairing gaps, odd-nucleon parity, spin projection. Folded-Yukawa single particle potential, Lipkin-Nogami approximation.
RADIOACTIVITY Z=8-136; A=16-339; calculated, compiled β-, α-decay Q, T1/2. Folded-Yukawa single particle potential, Lipkin-Nogami approximation.
Bull.Rus.Acad.Sci.Phys. 61, 606 (1997)
I.V.Poplavsky
Semiempirical Formulas for Halflives of α-Active Heavy Even-Even Nuclei
RADIOACTIVITY 234,236,238Th, 240,242U, 228,230,246,248,250Pu, 234,236,252,254,256Cm, 238,256,258,260Cf, 242,244,258,260,262,264Fm, 248,250,258,260,262,264,266No, 252,254,256,258,260,262,264,266,268,270,272Rf, 256,258,260,262,264,266,268,270,272,274,276Sg, 262,264,268,270,272,274,276Hs(α); calculated T1/2. Semi-empirical formula.
J.Phys.(London) G25, 877 (1999)
F.P.Hessberger
GSI Experiments in the Region of Heaviest Elements
NUCLEAR REACTIONS 209Bi(50Ti, X), E=4.6-5.1 MeV/nucleon; measured isotopic yields; deduced evidence for 256Db, 253Lr.
RADIOACTIVITY 256,257,258Db, 252,253Lr(α) [from 209Bi(50Ti, X)]; 265Hs, 266Mt(α) [from 208Pb, 209Bi(58Fe, n)]; measured Eα, T1/2. 265Hs, 266Mt deduced levels. 253,254Rf, 258Sg(SF); measured T1/2. 257Rf, 257Db, 261Sg, 265Hs deduced fission branching upper limits.
doi: 10.1088/0954-3899/25/4/059
Phys.Lett. 500B, 241 (2001)
I.Muntian, Z.Patyk, A.Sobiczewski
Are Superheavy Nuclei Around 270Hs Really Deformed ?
NUCLEAR STRUCTURE Z=94-114; A=240-282; calculated ground-state deformation. 252,254,256,258,260,262,264,266,268,270Rf, 256,258,260,262,264,266,268,270,272,274Sg, 262,264,266,268,270,272,274,276,278Hs; calculated 2+ state level energies, Qα, α-decay branching ratios. Macroscopic-microscopic approach.
doi: 10.1016/S0370-2693(01)00090-9
Acta Phys.Pol. B32, 629 (2001)
I.Muntian, A.Sobiczewski
Collective Properties of ' Deformed ' Superheavy Nuclei
NUCLEAR STRUCTURE 248,250,252,254,256,258,260,262,264,266No, 252,254,256,258,260,262,264,266,268,270Rf, 256,258,260,262,264,266,268,270,272,274Sg, 262,264,266,268,270,272,274,276,278Hs, 266,268,270,272,274,276,278Ds, 270,272,274,276,278Cn; calculated 2+ state energies, deformations, Qα, α-decay branching ratios.
Nucl.Phys. A723, 354 (2003)
M.Bender, P.Bonche, T.Duguet, P.-H.Heenen
Skyrme mean-field study of rotational bands in transfermium isotopes
NUCLEAR STRUCTURE 254No; calculated single-particle energies. 249Bk, 251Cf, 251Md, 253,255No, 255Lr; calculated levels, J, π. 240,244Pu, 250,252Fm, 251Md, 252,253,254,255No, 255Lr, 254,256Rf; calculated rotational band moments of inertia. Self-consistent mean-field approach, comparisons with data.
doi: 10.1016/S0375-9474(03)01081-9
Acta Phys.Hung.N.S. 19, 155 (2004)
S.Gmuca
Superheavy Nuclei in the RMF Framework
NUCLEAR STRUCTURE 244,246,248,250,252,254Fm, 250,252,254,256,258,260,262No, 254,256,258,260,262,264Rf, 258,260,262,264,266Sg, 264,266,268Hs; calculated relative binding energies. 248,250,252,254,256,258,260,262,264,266,268No, 252,254,256,258,260,262,264,266,268,270Rf, 256,258,260,262,264,266,268,270,272,274Sg, 262,264,266,268,270,272,274,276,278,280Hs; calculated Qα. Relativistic mean-field approach.
doi: 10.1556/APH.19.2004.1-2.24
Ann.Nucl.Energy 31, 323 (2004)
Y.Ronen
Indications of the validity of the liquid drop model for spontaneous fission half-lives
RADIOACTIVITY 230,232Th, 231Pa, 232,233,234,235,236,238U, 237Np, 236,238,239,240,241,242,244Pu, 241,243Am, 240,242,243,244,245,246,248,250Cm, 246,248,249,250,252,254,256Cf, 253,254,255Es, 246,248,250,252,254,255,256,257,258,259Fm, 259Md, 250,252,256,258No, 253,254,255,256,257,258,259,260,262Rf, 255,256,257,261,262Db, 259,260,263Sg, 261Bh(SF); analyzed spontaneous fission T1/2 relative to liquid drop model predictions.
doi: 10.1016/S0306-4549(03)00221-4
Phys.Rev. C 71, 034302 (2005)
J.C.Pei, F.R.Xu, P.D.Stevenson
Density distributions of superheavy nuclei
NUCLEAR STRUCTURE 254,256,258Rf, 258,260,266Sg, 264,266,270Hs, 270Ds, 284Cn, 288,298Fl, 292Lv; calculated deformation parameters, radii, Qα. 208Pb, 270,280,290Ds, 286,292,298,304,310Fl, 292120; calculated particle density distributions. Skyrme-Hartree-Fock model.
doi: 10.1103/PhysRevC.71.034302
Phys.Rev. C 74, 034316 (2006)
T.M.Shneidman, G.G.Adamian, N.V.Antonenko, R.V.Jolos
Possible alternative parity bands in the heaviest nuclei
NUCLEAR STRUCTURE 239,240U, 241,242,243,244,245Pu, 243,244,245,246,247,248Cm, 245,246,247,248,249,250Cf, 247,248,249,250,251,252Fm, 249,250,251,252,253,254No, 253,254,255,256Rf, 258Sg; calculated levels, J, π, rotational bands, transition dipole and quadrupole moments. Cluster model.
doi: 10.1103/PhysRevC.74.034316
Int.J.Mod.Phys. E15, 302 (2006)
A.Staszczak, J.Dobaczewski, W.Nazarewicz
Fission barriers of superheavy nuclei in the Skyrme-Hartree-Fock Model
NUCLEAR STRUCTURE 242,244,246,248,250,252,254,256,258,260,262,264Fm, 250,252,254,256,258,260,262,264No, 254,256,258,260,262,264,288Rf, 258,260,262,264,266,268,290Sg, 262,264,266,268,270,272,292Hs, 268,270,272,274,276,278,294Ds, 296Cn, 298Fl, 300Lv, 302Og, 304120, 306122, 308124, 310126; calculated total binding energy vs quadrupole moment, fission barrier features. Skyrme-Hartree-Fock model.
doi: 10.1142/S0218301306004132
Phys.Rev. C 76, 044326 (2007)
J.C.Pei, F.R.Xu, Z.J.Lin, E.G.Zhao
α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials
RADIOACTIVITY 166,168,170,172,174,176,178,180,182Pt, 172,174,176,178,180,182,184,186,188Hg, 178,180,182,184,186,188,190,192,194,210Pb, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 210,212,214,216,218,220,222,224,226,228,230Th, 218,220,222,224,226,228,230,232,234,236U, 228,230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 254,256,258Rf, 258,260,262Sg, 264,266,270Hs, 270Ds, 286,288Fl, 292Lv, 294Og(α); calculated half-lives, deformation parameters, α-clustering spectroscopic factors, comparisons with experimental half-lives.
doi: 10.1103/PhysRevC.76.044326
Phys.Rev. C 76, 047304 (2007)
H.F.Zhang, G.Royer
Theoretical and experimental α decay half-lives of the heaviest odd-Z elements and general predictions
RADIOACTIVITY 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268Rf, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277Hs, 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279Mt, 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281Ds, 272,273,274,275,276,277,278,279,280,281,282,283Rg, 277,278,279,280,281,282,283,284,285Cn, 283,284,285,286,287Nh, 285,286,287,288,289Fl, 287,288,289,290,291Mc, 289,290,291,292Lv, 291,292Ts, 293Og(α); calculated half-lives, Q(α), comparison with experimental values.
doi: 10.1103/PhysRevC.76.047304
Phys.Rev. C 77, 064310 (2008)
T.Dong, Z.Ren
Improved version of a binding energy formula for heavy and superheavy nuclei with Z≥ =90 and N ≥ =140
NUCLEAR STRUCTURE 231,232,233,234,235,236,237,238Pa, 233,234,235,236,237,238,239,240,241,242Np, 238,239,240,241,242,243,244,245,246Am, 243,244,245,246,247,248,249,250,251Bk, 251,252,253,254,255Es; calculated binding energies. 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260Fm, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262Md, 237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264No, 246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265Lr, 242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266Rf, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267Db, 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267Sg, 258,259,260,261,262,263,264,265,266,267Bh, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Hs, 264,265,266,267,268,269,270,271Mt, 260,261,262,263,264,265,266,267,268,269,270Ds; calculated Qα, half-life, single particle binding energies, separation energies.
doi: 10.1103/PhysRevC.77.064310
Phys.Rev. C 78, 024605 (2008)
I.Dragojevic, K.E.Gregorich, Ch.E.Dullmann, M.A.Garcia, J.M.Gates, S.L.Nelson, L.Stavsetra, R.Sudowe, H.Nitsche
Influence of projectile neutron number in the 208Pb(48Ti, n)255Rf and 208Pb(50Ti, n)257Rf reactions
NUCLEAR REACTIONS 208Pb(48Ti, n), (48Ti, 2n), (50Ti, n), (50Ti, 2n), E=4.6-4.8 MeV/nucleon; measured excitation functions, σ.
RADIOACTIVITY 254,255,256,257Rf(α); measured Eα, Iα, half-lives.
doi: 10.1103/PhysRevC.78.024605
Phys.Rev. C 77, 037602 (2008)
G.Royer, H.F.Zhang
Recent α decay half-lives and analytic expression predictions including superheavy nuclei
RADIOACTIVITY 105Te, 156Er, 158Yb, 160,174Hf, 158,168W, 162,164Os, 166,168,170Pt, 172,174,188Hg, 178,180,184,186,188,190,192,194Pb, 188,189,190,192,210Po, 196,198Rn, 202,204Ra, 210,212Th, 218,220,224,226U, 228,230Pu, 238Cm, 258No, 253,254,255,256,257,258,259,260,262,263,264,265,267,268Rf, 255,256,257,258,259,261,262,263,264,265,266,267,268,269,270Db, 258,259,261,262,264,267,268,269,270,271,272Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,266,267,268,269,270,271,273,274,275,276,277Hs, 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279Mt, 267,268,270,271,272,273,274,275,276,277,278,279,281Ds, 273,274,275,276,277,278,279,280,281,282,283Rg, 277,278,279,280,281,282,283,284,285Cn, 282,283,284,285,286,287Nh, 285,286,287,288,289Fl, 287,288,289,290,291Mc, 289,290,291,292,293Lv, 291,292Ts, 293,294Og(α); calculated half-lives, Qα using density dependent effective interaction and Viola-Seaborg-Sobiczewski formulas. Comparison with experimental data for known isotopes.
doi: 10.1103/PhysRevC.77.037602
Phys.Rev. C 78, 044329 (2008)
C.Xu, Z.Ren, Y.Guo
Competition between α decay and spontaneous fission for heavy and superheavy nuclei
RADIOACTIVITY 232Th, 230,232,234,236,238U, 236,238,240,244Pu, 240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 246,248,250,252,254,256,258,260Fm, 250,252,254,256,258,260,262,264No, 254,256,258,260,262,264,266,268Rf, 260,262,264,266,268,270,272Sg, 264,266,268,270,272,274,276Hs, 268,270,272,274,276,278,280Ds(α), (SF); calculated half-lives, branching ratios. Comparison with experimental data. Density-dependent cluster model, parabolic potential approximation.
doi: 10.1103/PhysRevC.78.044329
Chin.Phys.C 33, Supplement 1, 5 (2009)
T.-K.Dong, Z.-Z.Ren, C.Xu
Research on some superheavy nuclei
RADIOACTIVITY 251,252,253,254,255,256,257No, 253,254,255,256,257,258,259Lr, 253,254,255,256,257,258,259Rf, 256,257,258,259,260,261Db, 258,259,260,261,262,263Sg, 260,261,262Bh, 264,265,266,267Hs, 264,265,266,267Mt(α); calculated α-decay energies, T1/2. Local-binding energy and Viola-Seaborg formulas.
doi: 10.1088/1674-1137/33/S1/002
Nucl.Phys. A832, 220 (2010)
K.P.Santhosh, R.K.Biju, S.Sahadevan
Semi-empirical formula for spontaneous fission half life time
RADIOACTIVITY 232Th, 228,230,232,234,236,238U, 232,234,236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256,258,260Fm, 250,252,254,256,258,260,262,264,266No, 254,256,258,260,262,264,266,268Rf, 258,260,262,264,266,268,270,272Sg, 264,266,268,270,272,274,276Hs, 260,262,264,266,268,270,272,274,276,278,280,282,284Ds, 264,266,268,270,272,274,276,278,280,282,284,286,288Cn, 268,270,272,274,276,278,280,282,284,286,288,290,292Fl, 272,274,276,278,280,282,284,286,288,290,292,294,296Lv, 276,278,280,282,284,286,288,290,292,294,296,298,300Og, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320120, 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316122(α), (SF); calculated T1/2 using a Coulomb and Proximity Potential model and semi-empirical formula. Discussed SHE survivability. Comparison with data and systematics.
doi: 10.1016/j.nuclphysa.2009.10.160
J.Phys.(London) G38, 115103 (2011)
R.V.Jolos, L.A.Malov, N.Yu.Shirikova, A.V.Sushkov
Structure of some low lying two-quasiparticle and collective states in nuclei with Z ∼ 100 considered in the quasiparticle phonon model
NUCLEAR STRUCTURE 246,248Cm, 250,252,254Fm, 248,250,252Cf, 252,254No, 254,256,258,260Rf; calculated energies, J, π for collective states; deduced hexadecouple residual forces. Comparison with experimental data.
doi: 10.1088/0954-3899/38/11/115103
Phys.Rev. C 85, 025802 (2012)
J.Erler, K.Langanke, H.P.Loens, G.Martinez-Pinedo, P.-G.Reinhard
Fission properties for r-process nuclei
NUCLEAR STRUCTURE 250,252,254,256,258No, 254,256,258,260Rf, 258,260,262,264,266Sg, 264,266Hs, 284Cn, 288Fl; calculated half-lives and fission barriers with three different Skyrme parameterizations. Comparison with experimental data. Z=82-120, N=120-260; calculated fission barriers of even-even nuclei for four different Skyrme parameterizations and four theoretical mass models HFB-14, ETFSI, FRDM, and TF. Z=100-120, N=120-260; calculated fission half-lives for even-even nuclei using the Skyrme parameterizations, minimal lifetime plots for competing α decay and spontaneous fission. Comparison with experimental data. Z=84-120, N=120-260; calculated α-decay half-lives using the Q(α) values and the semi empirical Viola-Seaborg formula. Z=96-108, N=180-206; calculated difference of ground state energies and fission barriers between reflection symmetric and asymmetric configurations with the Skyrme parameterization, comparison of symmetric and asymmetric fission barriers and half-lives. 286,294Rf; calculated PES for symmetric and asymmetric shapes with the Skyrme parameterization.
doi: 10.1103/PhysRevC.85.025802
Int.J.Mod.Phys. E21, 1250094 (2012)
E.Javadimanesh, H.Hassanabadi, A.A.Rajabi, H.Rahimov, S.Zarrinkamar
Half-lives with Yukawa proximity potential for alpha-decay process
RADIOACTIVITY 155Lu, 151Dy, 152Ho, 154Tm, 155Yb, 156Lu, 157Hf, 158Ta, 159W, 160Re, 154Ho, 155Er, 156Tm, 160Ta, 162Re, 177Tl, 179Tl, 181Tl, 191Pb, 188,192,193,195,199,201,205,207Po, 196,197,198,199,200,201,202,203,204,205,207,208,209At, 201,207Rn, 200,204,205,206,207,208Fr, 254,256,258,260,262,264,266,268Rf, 258,260,262,264,266,268,270,272Sg, 264,266,268,270,272,274,276Hs, 268,270,272,274,276,278,280Ds, 278,280,282,284Cn, 286,288Fl, 290,292Lv(α); calculated T1/2; deduced hindrance factor parameter as a ratio of theoretical to experimental T1/2. Comparison with available data.
doi: 10.1142/S0218301312500942
Phys.Rev. C 85, 054303 (2012)
H.Jiang, G.J.Fu, B.Sun, M.Liu, N.Wang, M.Wang, Y.G.Ma, C.J.Lin, Y.M.Zhao, Y.H.Zhang, Z.Ren, A.Arima
Predictions of unknown masses and their applications
ATOMIC MASSES Z=1-184, N=1-184; analyzed masses for 1566 nuclei using extrapolation approach and shell correction term, S(n), S(2n), S(p), and S(2p); one-neutron and one-proton drip nuclei, R-process nucleosynthesis and astrophysical implications. Comparison with AME-2011 interim mass evaluation, and with Duflo-Zuker model. 85Mo, 87,88,89Tc, 123Ag, 140I, 222Po, 226,227,228Rn, 233,234Ra, 235Ac; compared predicted masses with measured values.
RADIOACTIVITY 248,249,250,251,252,253,254,255,256,257No, 251,252,253,254,255,256,257,258,259Lr, 253,254,255,256,257,258,259,260,261Rf, 255,256,257,258,259,260,261,262Db, 256,257,258,259,260,261,262,263Sg(α); calculated Q(α), half-life. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.054303
Phys.Rev. C 86, 044320 (2012)
R.V.Jolos, N.Yi.Shirikova, A.V.Sushkov
Neutron number dependence of the energies of the γ-vibrational states in nuclei with Z ∼ 100 and the manifestation of pseudospin symmetry
NUCLEAR STRUCTURE 246,248Cm, 248,250,252,254,256Cf, 250,252,254,256,258Fm, 252,254,256,258,260No, 254,256,258,260,262Rf; calculated level energies and configurations of 2+ γ-vibrational states using quasiparticle-phonon model. Splitting of pseudospin doublets. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.044320
Phys.Rev. C 86, 011301 (2012)
H.L.Liu, F.R.Xu, P.M.Walker
Understanding the different rotational behaviors of 252No and 254No
NUCLEAR STRUCTURE 250,252,254,256,258Rf, 248,250,252,254,256No, 246,248,250,252,254Fm; calculated kinematic moments of inertia with and without high-order deformation parameters β6, β8. 252,254No; calculated proton and neutron components of the calculated kinematic moments of inertia with and without β6 and β8 parameters, β2, β4, β6, β8 deformation parameters as a function of rotational frequency. Total Routhian surface calculations. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.011301
Prog.Theor.Phys.(Kyoto), Suppl. 196, 445 (2012)
D.Ni, Z.Ren
Alpha-Decay Studies of Rf, Sg, and Hs Isotopes within the Multi-Channel Cluster Model
RADIOACTIVITY 252,254,256,258,260,262,264,266,268,270Rf, 256,258,260,262,264,266,268,270,272,274Sg, 260,262,264,266,268,270,272,274,276Hs(α); calculated T1/2, branching ratios. Multi-channel cluster model.
doi: 10.1143/PTPS.196.445
Phys.Rev. C 88, 014320 (2013)
A.V.Afanasjev, O.Abdurazakov
Pairing and rotational properties of actinides and superheavy nuclei in covariant density functional theory
NUCLEAR STRUCTURE 228,230,232,234,236,238,240Th, 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,250Cm, 244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 248,250,252,254,256,258No, 254,256,258,260,262Rf, 258,260,262,266Sg; calculated scaling factors, moments of inertia, β2, neutron and proton three-point indicators, moment of inertia versus rotational frequency. 242,244Pu, 248Cm; calculated kinematic moment of inertia for ground state bands. 244Cm; calculated neutron and proton single-particle energies. 237U, 239,243Pu, 235,237Np, 241Am, 247,249Cm, 249Cf, 251Md, 253No, 234,236U, 238,240,242Pu, 246,248Cm, 248Cf, 250Fm, 252No; calculated kinematic moment of inertia for one-quasiparticle bands in odd-A nuclei and ground-state bands in even-A nuclei. 236,238U, 236,239,240Pu, 242Am; calculated kinematic moment of inertia, and quadrupole moments of superdeformed (SD) rotational bands and SD fission isomers. N=144-176, Z=102, 104, 106, 108, 110; calculated moments of inertia and β2 parameter for superheavy nuclides. Cranked relativistic Hartree-Bogoliubov theory and Lipkin-Nogami method (CRHB+LN) with NL1 and NL3* interaction parameters of covariant density functional theory (CFDT). Comparison with experimental data.
doi: 10.1103/PhysRevC.88.014320
Acta Phys.Pol. B44, 271 (2013)
F.R.Xu, H.L.Liu, Y.Shi, H.L.Wang, P.M.Walker, S.Frauendorf, J.C.Pei
New Studies on the Aspects of Nuclear Shapes
NUCLEAR STRUCTURE 158Er, 252,250Fm, 254,252No, 256,254Rf, 66,68,70,72Ge; calculated moment of inertia, quadrupole deformation parameters, tilted crancking total Routhians.
Phys.Scr. 89, 054001 (2014)
A.V.Afanasjev
Microscopic description of rotation: from ground states to the extremes of ultra-high spin
NUCLEAR STRUCTURE 228,230,232,234,236,238Th, 230,232,234,236,238,240,242U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,250Cm, 244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 248,250,252,254,256,258No, 254,256,258,260,262Rf, 258,260,262,264,266Sg; calculated kinematic moments of inertia for gs rotational band. 158Er; calculated dynamic moments of inertia for triaxial superdeformed rotational bands at ultra high spin. Covariant density functional theory. Compared with available data.
doi: 10.1088/0031-8949/89/5/054001
Phys.Rev. C 89, 044304 (2014)
H.L.Liu, P.M.Walker, F.R.Xu
Favored configurations for four-quasiparticle K isomerism in the heaviest nuclei
NUCLEAR STRUCTURE 246,248,250,252,254Fm, 248,250,252,254,256No, 250,252,254,256,258Rf, 260,262,264,266,268Hs, 262,264,266,268,270,272Ds, 264,266,268,270,272,274Cn; calculated level energies, Q(α) values, β2, β4 and β6 for ground and two- and four-quasiparticle high-K isomers. Configuration-constrained potential energy surfaces (PES) calculations. Relevance to superheavy nuclei. Comparison with experimental data.
doi: 10.1103/PhysRevC.89.044304
Phys.Rev. C 89, 034309 (2014)
Y.Shi, J.Dobaczewski, P.T.Greenlees
Rotational properties of nuclei around 254Np quality Skyrme energy density functional
NUCLEAR STRUCTURE 249Bk, 251Cf, 246,248,250Fm, 252,254No, 256Rf; calculated levels, kinematic and dynamic moments of inertia for yrast bands as function of rotational frequency, pairing gaps extracted from odd-even mass staggering, single-particle energies as function of quadrupole moment. 246,248,250,252,254,256Fm, 248,250,252,254,256,258No, 250,252,254,256,258,260Rf; calculated kinematic moment of inertia, Self-consistent Skyrme Hartree-Fock Bogolyubov with UNEDF1 functional, and Lipkin-Nogami methods. Comparison with experimental data.
doi: 10.1103/PhysRevC.89.034309
Rom.J.Phys. 59, 724 (2014)
I.Silisteanu, C.I.Anghel
Competition between Alpha-Decay and Spontaneous Fission in Rf, Db, and Sg Isotopes
RADIOACTIVITY 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267Rf, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271Db, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,274Sg(α), (SF); calculated T1/2 for α-decay and spontaneous fission.
Chin.Phys.C 38, 074101 (2014)
H.-L.Wang, Q.-Z.Chai, J.-G.Jiang, M.-L.Liu
Rotational properties in even-even superheavy 254-258Rf nuclei based on total-Routhian-surface calculations
NUCLEAR STRUCTURE 254,256,258Rf; calculated single-particle levels, deformation parameters, moment of inertia, band crossing using total Routhian surface method. Comparison with experimental data.
doi: 10.1088/1674-1137/38/7/074101
Phys.Rev. C 92, 054310 (2015)
S.E.Agbemava, A.V.Afanasjev, T.Nakatsukasa, P.Ring
Covariant density functional theory: Reexamining the structure of superheavy nuclei
NUCLEAR STRUCTURE 236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cf, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Fm, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298No, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Rf, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Hs, 264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Ds, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308Cn, 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312Lv, 290,292,294,296,298,300,302,304,306,308,310,312,314Og, 292,294,296,298,300,302,304,306,308,310,312,314,316120, 298,300,302,304,306,308,310,312,314,316,318122, 304,306,308,310,312,314,316,318,320124, 312,314,316,318,320,322126, 318,320,322,324128, 324,326130; calculated binding energies, proton and neutron quadrupole deformations, charge radii, root-mean square (rms) proton radii, neutron skin thicknesses, S(2n), S(2p), Q(α) and T1/2(α) using Viola-Seaborg formula. 292,304120; calculated neutron and proton single-particle states, shell gaps. Relativistic Hartree-Bogoliubov theory with DD-PC1 and PC-PK1 interactions, and five most up-to-date covariant energy density functionals of different types.
doi: 10.1103/PhysRevC.92.054310
Nucl.Phys. A942, 97 (2015)
N.Carjan, F.A.Ivanyuk, Yu.Oganessian, G.Ter-Akopian
Fission of transactinide elements described in terms of generalized Cassinian ovals: Fragment mass and total kinetic energy distributions
NUCLEAR STRUCTURE 254,264Fm, 254,264Rf; calculated potential energy surface vs mass asymmetry and elongation, scission shapes at fission. 246,248,250,252,254,256,258,260,262,264Fm, 254,256,258,260,262,264,266,268Rf; calculated mass distribution and total kinetic energy distribution. 252,254,256,258,260,262,264No, 258,260,262,264,266,268Sg; calculated mass distribution. Generalized Cassinian ovals.
doi: 10.1016/j.nuclphysa.2015.07.019
Phys.Rev.Lett. 115, 132502 (2015)
H.M.David, J.Chen, D.Seweryniak, F.G.Kondev, J.M.Gates, K.E.Gregorich, I.Ahmad, M.Albers, M.Alcorta, B.B.Back, B.Baartman, P.F.Bertone, L.A.Bernstein, C.M.Campbell, M.P.Carpenter, C.J.Chiara, R.M.Clark, M.Cromaz, D.T.Doherty, G.D.Dracoulis, N.E.Esker, P.Fallon, O.R.Gothe, J.P.Greene, P.T.Greenlees, D.J.Hartley, K.Hauschild, C.R.Hoffman, S.S.Hota, R.V.F.Janssens, T.L.Khoo, J.Konki, J.T.Kwarsick, T.Lauritsen, A.O.Macchiavelli, P.R.Mudder, C.Nair, Y.Qiu, J.Rissanen, A.M.Rogers, P.Ruotsalainen, G.Savard, S.Stolze, A.Wiens, S.Zhu
Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in 254Rf
NUCLEAR REACTIONS 206Pb(50Ti, 2n)254Rf, E=242.5 MeV; measured reaction products, Eγ, Iγ, Eβ, Iβ; deduced energy levels, J, π, isomer T1/2, unprecedented fission hindrance relative to the ground state. Comparison with multiquasiparticle calculations.
doi: 10.1103/PhysRevLett.115.132502
Eur.Phys.J. A 51, 122 (2015)
Y.J.Yao, G.L.Zhang, W.W.Qu, J.Q.Qian
Comparative studies for different proximity potentials applied to α decay
RADIOACTIVITY 106,110Te, 110,112Xe, 144Nd, 146,148Sm, 148,152Gd, 152,154Dy, 152,154Er, 154,156Yb, 156,162Hf, 160,180W, 168,174Os, 176,188Pt, 178,188Hg, 178,190Pb, 188,212Po, 196,208Rn, 202,214Ra, 210,226Th, 218,230U, 228,242Pu, 238,248Cm, 240,252Cf, 246,256Fm, 252,256No, 254,258Rf, 264,270Hs, 286,288Fl, 292Lv, 294Og(α); calculated T1/2 using large set of different proximity potentials. Compared to data.
doi: 10.1140/epja/i2015-15122-0
Phys.Rev. C 94, 054621 (2016)
K.P.Santhosh, C.Nithya
Theoretical studies on the modes of decay of superheavy nuclei
RADIOACTIVITY 232Th, 234,236,238U, 236,238,240,242,244,246Pu, 240,242,244,246,248,250Cm, 242,244,246,248,250,252Cf, 246,248,250,252,254,256Fm, 252,254,256No, 254,256,258,260,262Rf, 258,260,262,264,266Sg, 258,260,262,264,266,268,270,272,274,276,278,280Hs, 264,266,268,270,272,274,276,278,280,282,284Ds, 270,272,274,276,278,280,282,284,286Cn, 274,276,278,280,282,284,286,288Fl, 284,286,288,290,292,294,296,298,300,302,304Lv, 288,290,292,294,296,298,300,302,304Og, 292,294,296,298,300,302,304,306120(SF); calculated half-lives. 265,267Rf, 266,267,268,270Db, 269,271Sg, 270,271,272,274Bh, 273,275,277Hs, 274,275,276,277,278Mt, 277,278,281Ds, 278,279,280,281,282Rg, 281,282,283,284,285Cn, 282,283,284,285,286Nh, 285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og(α), (SF); calculated half-lives and predicted dominant decay mode. Coulomb and proximity potential model for deformed nuclei (CPPMDN). Comparison with several other theoretical calculations, and available experimental values.
doi: 10.1103/PhysRevC.94.054621
Phys.Rev. C 93, 034316 (2016)
X.-D.Sun, P.Guo, X.-H.Li
Systematic study of α decay half-lives for even-even nuclei within a two-potential approach
RADIOACTIVITY 146Sm, 148,150Gd, 150,152,154Dy, 152,154,156Er, 154,156,158Yb, 156,158,160,162Hf, 158,160,162,164,166,168W, 166,168,170,172,174,186Os, 166,168,170,172,174,176,178,180,182,184,186,188,190Pt, 172,174,176,178,180,182,184,186,188Hg, 178,180,182,184,186,188,190,192,194,210Pb, 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 206,208,210,212,214,216,218,220,222,224,226Ra, 214,216,218,220,222,224,226,228,230,232Th, 224,226,228,230,232,234,236,238U, 228,230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248,250Cm, 240,242,244,246,248,250,252,254Cf, 248,250,252,254,256Fm, 252,254,256No, 254,256,258Rf, 260,266Sg, 264,266Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og(α); calculated half-lives for α decay of Z=62-118 even-even nuclei using two-potential approach based on isospin-dependent nuclear potential taking into account hindrance factors; deduced parameters of isospin-dependent nuclear potentials and analytic expression of hindrance factors. Comparison with experimental half-lives, and with results from density-dependent cluster model (DDCM) and the generalized liquid drop model (GLDM).
doi: 10.1103/PhysRevC.93.034316
Chin.Phys.C 42, 054101 (2018)
Q.-Z.Chai, W.-J.Zhao, M.-L.Liu, H.-L.Wang
Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier
NUCLEAR STRUCTURE 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 254Rf; calculated proton and neutron single-particle levels, two-dimensional potential energy surfaces, microscopic energy, deformation parameters. Comparison with available data.
doi: 10.1088/1674-1137/42/5/054101
Phys.Rev. C 97, 034319 (2018)
K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt
Stability of superheavy nuclei
NUCLEAR STRUCTURE 280Ds, 276Cn, 268,270,272Hs, 264,266,268Sg, 258,260,262,264Rf, 254,256,258Fm, 252Cf; calculated deformation energy surfaces in (q2, q3), (q3, q4), (q2, η) and (q4, η) planes. Z=94-126, N-Z=42-72; calculated values of the collective coordinates η, q2, q3 and q4 at equilibrium deformation, ground-state microscopic contribution to the potential energy, fission barrier heights. Comparison to available experimental data. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.
RADIOACTIVITY 230,232,234,236,238,240,242,244,246,248,250,252,254,256,258Pu, 232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Cf, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270Fm, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278Rf, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286Hs, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Ds, 266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cn, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298Fl, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Lv, 278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Og, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318124(α); calculated Q(α) and α-decay half-lives using Gamow-type WKB approach, and compared with available experimental data.
doi: 10.1103/PhysRevC.97.034319
Phys.Rev. C 97, 054332 (2018)
K.Rezynkina, A.Lopez-Martens, K.Hauschild, I.Deloncle, S.Peru, P.Brionnet, M.L.Chelnokov, V.I.Chepigin, O.Dorvaux, F.Dechery, H.Faure, B.Gall, A.V.Isaev, I.N.Izosimov, D.E.Katrasev, A.N.Kuznetsov, A.A.Kuznetsova, O.N.Malyshev, A.G.Popeko, Y.A.Popov, E.A.Sokol, A.I.Svirikhin, A.V.Yeremin
Influence of octupole vibration on the low-lying structure of 251Fm and other heavy N = 151 isotones
RADIOACTIVITY 255No(α)[from 48Ca(208Pb, n), E=220 MeV and from ϵ decay of 255Lr produced in 48Ca(209Bi, 2n), E=214 MeV using the VASSILISSA separator with the GABRIELA spectrometer at FLNR-JINR, Dubna]; measured Eγ, Iγ, x rays, E(ce), I(ce), Eα, αγ-coin, (ce)α-coin, isomer half-life by γ(t) using implantation silicon detector strips for conversion electrons and α detection, and HPGe detector array for γ detection. 251Fm; deduced levels, J, π, conversion coefficients, multipolarities, B(M2), B(E3), and E3/M2 mixing ratio of 5/2+ to g.s transition. Comparison with previous experimental results, and with theoretical calculations. Systematics of low-lying excited states in 245Pu, 247Cm, 249Cf, 251Fm, 253No, 255Rf.
NUCLEAR STRUCTURE 246,247Cm, 248,249Cf, 250,251Fm, 252,253No, 254Rf; calculated energies of 2- phonon levels in even-A, and 5/2+ states from 2- phonon levels built on 9/2- ground states in odd-A nuclei, B(E3) using QRPA with Gogny D1M parametrization, configuration amplitudes for odd-A isotopes from QPM with Woods-Saxon potential. Comparison with experimental data.
doi: 10.1103/PhysRevC.97.054332
Phys.Rev. C 99, 064606 (2019)
N.Carjan, F.A.Ivanyuk, Yu.Ts.Oganessian
Fission of superheavy nuclei: Fragment mass distributions and their dependence on excitation energy
RADIOACTIVITY 252,254,256,258,260,262,264,266,268,270No, 264,266,268,270,272,274,276,278Hs, 276,278,280,282,284,286Cn, 290,291,292,293Lv, 268,270,272,274,276,278,280,282,284,288,292Ds, 254,256,258,260,262,264,266,268,270Rf, 272,274,276,280,284,285,286,287,288,292,296,298,300,304Fl, 276,280,284,288,292,294,296,300,304Og(SF); calculated average mass of light and heavy fission fragments, fission fragment mass distribution, average total kinetic energy of fission fragments, second moments of the total kinetic energy distribution of fission using a prescission point model.
doi: 10.1103/PhysRevC.99.064606
At.Data Nucl.Data Tables 125, 1 (2019)
P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers
Nuclear properties for astrophysical and radioactive-ion-beam applications (II)
NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.
doi: 10.1016/j.adt.2018.03.003
Chin.Phys.C 43, 074102 (2019)
A.Soylu
Search for decay modes of heavy and superheavy nuclei
RADIOACTIVITY 232Th, 234,236,238U, 236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 242Cf, 246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264Hs, 270Db, 282,284Cn, 286Fl(SF); calculated T1/2. Comparison with available data.
doi: 10.1088/1674-1137/43/7/074102
Int.J.Mod.Phys. E28, 1950042 (2019)
A.Soylu
Semi-classical calculations of the α-decay half-lives for even-even nuclei
RADIOACTIVITY 146Sm, 148,150Gd, 150,152,154Dy, 152,154,156Er, 154,156,158Yb, 156,158,160,162Hf, 158,160,162,164,166,168W, 162,164,166,168,170,172,174Os, 186Os, 166,168,170,172,174,176,178,180,182,184,186,188,190Pt, 172,174,176,178,180,182,184,186,188Hg, 178,180,182,184,186,188,190,192,194Pb, 210Pb, 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 206,208,210,212,214,216,218,220,222,224Ra, 214,216,218,220,222,224,226,228,230,232Th, 222,224,226,228,230,232,234,236,238U, 228,230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248,250Cm, 240,242,244,246,248,250,252,254Cf, 248,250,252,254,256Fm, 252,254,256No, 254,256,258Rf, 260Sg, 266Sg, 264,266Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og(α); calculated Q-values, T1/2. Comparison with available data.
doi: 10.1142/S0218301319500423
Phys.Rev. C 100, 044302 (2019)
J.R.Stone, K.Morita, P.A.M.Guichon, A.W.Thomas
Physics of even-even superheavy nuclei with 96 < Z < 110 in the quark-meson-coupling model
NUCLEAR STRUCTURE 244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm; calculated ground state binding energies and compared to values in AME-2016. 234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280Cm, 236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282Cf, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284Fm, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286No, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288Rf, 244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Sg, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292Hs, 248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Ds; calculated deformation energies and neutron pairing energies as a function of the quadrupole deformation parameter β2, S(2n), Q(α), shape coexistence in N=168-184 Sg nuclei. 40,48Ca, 56,68,78Ni, 90Zr, 100,132Sn, 146Gd, 208Pb; calculated proton and neutron single-particle energies. 244Cm, 248Cf, 252Fm, 256No, 260Rf, 264Sg, 268Hs, 272Ds; calculated neutron single-particle states. Quark-meson-coupling (QMC) model. Comparison with available experimental data from AME-2016 and databases at NNDC.
doi: 10.1103/PhysRevC.100.044302
Phys.Rev. C 102, 054603 (2020)
W.Brodzinski, J.Skalski
Instanton-motivated study of spontaneous fission of odd-A nuclei
NUCLEAR STRUCTURE 256,257,260Rf, 261Db, 272Mt; calculated energy surface contour in (β20, β40) plane, in (β20, β22) plane for 272Mt, neutron levels around the Fermi level, and fission barrier heights for 272Mt, actions for separate single particle solutions for 272Mt, and for the collective velocities for 256Rf and 257Rf using instanton-like cranking mass parameter without pairing. Imaginary-time-dependent Schrodinger equation (iTDSE) using Woods-Saxon potential without pairing, and imaginary-time-dependent HFB (iTDHFB) using fixed potential with pairing.
RADIOACTIVITY 258No, 259Lr, 254,255,256,257,257m,260Rf, 261Db, 258,259,260,261Sg, 282,283Cn(SF); calculated half-lives, and fission hindrance factors using iTDSE and iTDHFB methods. Comparison with experimental data.
doi: 10.1103/PhysRevC.102.054603
Nucl.Phys. A994, 121662 (2020)
J.Khuyagbaatar, A.K.Mistry, D.Ackermann, L.-L.Andersson, M.Block, H.Brand, Ch.E.Dullmann, J.Even, F.P.Hessberger, J.Hoffmann, A.Hubner, E.Jager, B.Kindler, J.Krier, N.Kurz, B.Lommel, B.Schausten, J.Steiner, A.Yakushev, V.Yakusheva
The identification and confirmation of isomeric states in 254Rf and 255Rf through conversion electron detection
NUCLEAR REACTIONS 206Pb(50Ti, 2n), (50Ti, n)254,255Rf, E=252.5, 236.0 MeV pulsed beam from the UNILAC-GSI facility; measured evaporation residues (ERs), decay products, conversion electrons, isomers, T1/2 from (ERs)(fission events)-correlated, and (ERs)(fission events)(electron)-correlated decay curves using the gas-filled separator TASCA with multi-wire proportional counter (MWPC) and double-sided silicon strip detectors(DSSDs). 254,255Rf; deduced T1/2 of the ground states and isomers, production σ. Comparison of measured σ with theoretical calculations using statistical fusion-evaporation code HIVAP.
doi: 10.1016/j.nuclphysa.2019.121662
Nucl.Phys. A1002, 121958 (2020)
J.Khuyagbaatar
Spontaneous fission half-lives of the heaviest nuclei: Semi-empirical predictions
RADIOACTIVITY 246,248,250,252,254,256,258,260,262,264,266,268Cf, 248,250,252,254,256,258,260,262,264,266,268,270Fm, 250,252,254,256,258,260,262,264,266,268,270No, 252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288Rf, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Sg, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292Hs, 252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Ds, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Cn, 256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Fl, 284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322Lv, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324Og, 288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326120(SF); calculated T1/2. Comparison with available data.
doi: 10.1016/j.nuclphysa.2020.121958
Phys.Rev. C 102, 034304 (2020)
K.L.Martinez, A.W.Thomas, P.A.M.Guichon, J.R.Stone
Tensor and pairing interactions within the quark-meson coupling energy-density functional
NUCLEAR STRUCTURE Z=20, N=14-38; Z=28, N=20-50; Z=50, N=50-88; Z=82, N=96-138; calculated binding energies with and without tensor contribution, two-neutron shell gaps. 40,48Ca, 56,78Ni, 100,132Sn; calculated proton and neutron single-particle states, deformation energies, spin-orbit splittings with and without tensor contribution. 90,92,94,96,98,100,102,104,106,108,110,112Zr; calculated β2 deformation parameters and deformation energies. 254,256,254,256,258,260,262,264Fm, 254,256,258,260,262,264,266,268Rf; calculated two-neutron shell gaps. Quark-meson coupling (QMC) model (QMCπ-III-T), with the density functional which included tensor component, and pairing interaction from the QMC framework. Comparison with experimental data.
doi: 10.1103/PhysRevC.102.034304
Nucl.Phys. A1004, 122035 (2020)
U.K.Singh, P.K.Sharma, M.Kaushik, S.K.Jain, D.T.Akrawy, G.Saxena
Study of decay modes in transfermium isotopes
RADIOACTIVITY 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260Md, 250,251,252,253,254,255,256,257,258,259,260,261,262No, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266Lr, 253,254,255,256,257,258,259,260,261,262,263,264,265Rf, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 258,259,260,261,262,263,264,265,266,267,268,269,270,271Sg, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277Hs, 266,267,268,269,270,271,272,273,274,275,276,277,278Mt(EC), (β-), (α), (SF); calculated T1/2. Comparison with available data.
doi: 10.1016/j.nuclphysa.2020.122035
27th Int.Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK, p.012160 (2020), J. Phys.:Conf.Ser.1643 (2020)
A.I.Svirikhin, A.V.Andreev, A.V.Yeremin, I.N.Izosimov, A.V.Isaev, A.N.Kuznetsov, A.A.Kuznetsova, O.N.Malyshev, A.G.Popeko, Y.A.Popov, E.A.Sokol, M.L.Chelnokov, V.I.Chepigin, T.M.Schneidman, M.S.Tezekbayeva, B.Andel, P.Mosat, Z.Kalaninova, M.Z.Asfari, B.Gall, O.Dorvaux, J.Piot, E.A.Stefanova, D.V.Tonev, K.Hauschild, A.Lopez-Martenz, K.Rezynkina
The study of the properties of spontaneously fissioning transfermium nuclei synthesized in the complete fusion reactions with heavy ions
RADIOACTIVITY 252Cf(SF);254Rf(SF)[from 206Pb(50Ti, 2n), E not given]; 256Rf(SF)[from 208Pb(50Ti, 2n), E not given]; 250No, 252No(SF)[from 204,206Pb(48Ca, 2n), E not given]; 244Fm, 246Fm(SF)[from 206,208Pb(40Ar, 2n), E not given];measured decay products, Eα, Iα, En, In; deduced T1/2, mean number of neutrons per fission act, total kinetic energy. U-400 cyclotron at the Flerov Nuclear Reactions Laboratory of JINR and the SHELS kinematic separator.
doi: 10.1088/1742-6596/1643/1/012160
Phys.Rev. C 102, 054330 (2020)
A.Taninah, S.E.Agbemava, A.V.Afanasjev
Covariant density functional theory input for r-process simulations in actinides and superheavy nuclei: The ground state and fission properties
NUCLEAR STRUCTURE 206,208,210,212,214,216,218,220,220,220,220,220,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Th, 264,266,258,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368Ds; calculated binding energies as function of deformation β2. 240,242,326,328Cf, 246,330,332Fm, 248,250,334,336No, 250,252,254Rf, 254,256Sg; calculated superdeformed minima, β2, β3, second fission barriers, deformation energy curves and potential energy surface in (β2, β3) plane for 240Cf. 202,204,308,346Th, 210,214,316,350U, 216,220,326,352Pu, 222,224,348,354Cm, 228,354,356Cf, 232,358Fm, 236,238,360No, 242,244,362Rf, 248,250,364Sg, 254,256,366,396Hs, 260,264,368,402Ds, 266,270,370,410Cn, 272,276,376,416Fl, 278,282,402,428Lv, 284,288,412,436Og, 290,294,418,434120; predicted two-proton and two-neutron drip lines. 298,302,306,308,310,312,316,318,320,322,326,328,330,332,336,340Og; calculated potential-energy surfaces in (β2cos(γ+30), β2sin(γ+30)) plane. Z=90-120, N=110-320; calculated proton quadrupole deformations β2, binding-energies, S(2n), Q(α), α-decay half-lives, heights of primary fission barriers. Covariant density functional theory (CDFT) using state-of-the-art DD-PC1, DD-ME2, NL3*, and PC-PK1 CEDFs. Comparison to available data. Relevance to r-process modeling in heavy nuclei, and for the study of fission cycling.
doi: 10.1103/PhysRevC.102.054330
Eur.Phys.J. A 57, 41 (2021)
A.I.Budaca
Screening amendment to the universal decay law for alpha decay
RADIOACTIVITY 186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219Po, 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222Rn, 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226Ra, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232Th, 214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238U, 228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244Pu, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Cm, 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254Cf, 246,247,248,249,250,251,252,253,254,255,256Fm, 251,252,253,254,255,256No, 254,260,264,266,268Rf, 258,262,264,266,268,270,272Sg, 272,274,276Hs, 268,272,274,276,278,280Ds, 276,278,280,282,284Cn, 284Fl, 253,259,261,263,265,267Rf, 259,261,263,265,267,269,271,273Sg, 263,265,267,269,271,273,275,277Hs, 267,269,271,273,275,277,279,281Ds, 277,279,281,283,285Cn, 285,287,289Fl, 289,291,293Lv(α); calculated T1/2. Comparison with available data.
doi: 10.1140/epja/s10050-021-00359-1
J.Phys.(London) G48, 095106 (2021)
S.Cheng, Z.Ge, L.Cao, F.-S.Zhang
Theoretical calculations of the nuclear deformation effects on α-decay half-lives for heavy and super-heavy nuclei
RADIOACTIVITY 172,174,176,178Hg, 178,180,182,184Pb, 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 208,210,212,214,216,218,220,222,224,226,228,230Th, 216,218,220,222,224,226,228,230,232,234,236U, 228,230,232,234,236,238,240,242,244Pu, 240,242,244,246,248Cm, 238,240,242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256,258Fm, 252,254,256,258,260No, 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264,266,268,270Hs, 270Ds, 280Ds, 282,284Cn, 284,286,288Fl, 290,292Lv, 294Og(α); calculated T1/2. Comparison with available data.
Phys.Rev. C 103, 024314 (2021)
J.Jia, Y.Qian, Z.Ren
Systematics of α-decay energies in the valence correlation scheme
RADIOACTIVITY 248,249,250,251,252,253,254,255,256No, 251,252,253,254,255,256,257,258,259Lr, 253,254,255,256,257,258Rf, 277,285Cn, 284,285,286Nh, 284,285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og(α); calculated Q(α) from analysis of evaluated Q(α) data for Z=52-118 nuclei in AME2016 using a simple valence correlation scheme (VCS), and compared with available experimental data.
doi: 10.1103/PhysRevC.103.024314
Chin.Phys.C 45, 124108 (2021)
P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.Xia, Y.Chen, L.Liu, J.-L.Tian, K.Pomorski
Potential energy surfaces and fission fragment mass yields of even-even superheavy nuclei
NUCLEAR STRUCTURE 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264,266,268,270,272Hs, 276,278,280,282,284Ds, 278,280,282,284,286Cn, 282,284,286,288,290Fl, 286,288,290,292,294Lv, 290,292,294,296,298Og, 294,296,298,300,302120; calculated potential energy surfaces. The Lublin-Strasbourg Drop (LSD) model.
Chin.Phys.C 45, 024105 (2021)
N.-N.Ma, X.-J.Bao, H.-F.Zhang
Diffuseness effect and radial basis function network for optimizing α decay calculations
RADIOACTIVITY 256Rf, 258Rf, 263Rf, 257,258,259Db, 263Db, 259,260,261,262Sg, 269Sg, 271Sg, 260Bh, 261Bh, 264Bh, 266,267Bh, 270Bh, 272Bh, 274Bh, 264,265,266,267Hs, 270Hs, 273Hs, 268Mt, 274,275,276Mt, 278Mt, 267Ds, 269,270,271Ds, 273Ds, 277Ds, 281Ds, 272Rg, 274Rg, 278,279,280Rg, 281Cn, 285Cn, 278Nh, 282,283,284,285,286Nh, 286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288Rf, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310Fl, 286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316119, 292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318120(α); calculated T1/2. Comparison with available data.
Chin.Phys.C 45, 054109 (2021)
K.Pomorski, J.M.Blanco, P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.-G.Xiao, Y.-J.Chen
Fission fragment mass yields of Th to Rf even-even nuclei
NUCLEAR STRUCTURE 216,218,220,222,224,226,228,230,232,234,236,238,240Th, 220,222,224,226,228,230,232,234,236,238,240,242,244,246U, 222,224,226,228,230,232,234,236,238,240,242,244,246,248,250Pu, 224,226,228,230,232,234,236,238,240,242,244,246,248,250,252Cm, 238,240,242,244,246,248,250,252,254,256,258,260Cf, 240,242,244,246,248,250,252,254,256,258,260,262Fm, 242,244,246,248,250,252,254,256,258,260,262,264No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276Rf; calculated potential energy surfaces, fission barrier heights, fragment mass yields.
Phys.Rev. C 104, 024617 (2021)
K.P.Santhosh, C.Nithya, T.A.Jose
Decay modes of superheavy nuclei using a modified generalized liquid drop model and a mass-inertia-dependent approach for spontaneous fission
RADIOACTIVITY 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268Rf, 258,259,260,261,262,263,264,265,266,267,268,269,270,271,272Sg, 263,264,265,266,267,268,269,270,271,272,273,274,275,276,277Hs, 267,268,269,270,271,272,273,274,275,276,277,278,279,280,281Ds, 276,277,278,279,280,281,282,283,284,285Cn, 284,285,286,287,288,289Fl, 289,290,291,292,293Lv, 293,294,295Og(α), (SF); 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270Db, 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274Bh, 265,266,267,268,269,270,271,272,273,274,275,276,277,278,279Mt, 272,273,274,275,276,277,278,279,280,281,282,283Rg, 278,279,280,281,282,283,284,285,286,287Nh, 287,288,289,290,291Mc, 291,292,293,294Ts(α), (SF); calculated α decay and SF decay T1/2 of superheavy nuclei using modified generalized liquid drop model (MGLDM) with the proximity 77 parametrization for α decay, and a mass-inertia-dependent approach for spontaneous fission. Comparison with available experimental T1/2.
doi: 10.1103/PhysRevC.104.024617
Nucl.Phys. A1006, 122066 (2021)
U.K.Singh, R.Sharma, P.K.Sharma, M.Kaushik, S.K.Jain, G.Saxena
Structural properties and α-decay chains of transfermium nuclei (101 ≤ Z ≤ 110)
RADIOACTIVITY 235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287Md, 238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288No, 241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289Lr, 243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Rf, 245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291Db, 248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292Sg, 250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293Bh, 253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294Hs, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295Mt, 255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296Ds(α), (SF); calculated potential energy surfaces (PESs), occupancies of neutron single particle states, rms α-decay T1/2, T1/2. Comparison with available data.
doi: 10.1016/j.nuclphysa.2020.122066
Int.J.Mod.Phys. E30, 2150025 (2021)
E.V.Vladimirova, B.S.Ishkhanov, M.V.Simonov, S.V.Sidorov, T.Yu.Tretyakova
Residual np-interaction and mass predictions in transfermium region
RADIOACTIVITY 246,247,248,249,250,251,252,253,254,255,256,257,258Md, 248,249,250,251,252,253,254,255,256,257,258,259No, 250,251,252,253,254,255,256,257,258,259,260Lr, 252,253,254,255,256,257,258,259,260,261Rf, 254,255,256,257,258,259,260,261,262Db, 256,257,258,259,260,261,262,263Sg(α); calculated T1/2, Q-values. Comparison with available data.
doi: 10.1142/S0218301321500257
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.
Int.J.Mod.Phys. E30, 2150099 (2021)
A.Yadav, A.Shukla, S.Aberg
Bubble structure in superheavy nuclei around neutron and proton shell closure
NUCLEAR STRUCTURE 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264,266Hs, 270Hs, 270Ds, 282,284Cn, 284,286,288Fl, 290,292Lv, 294Og; calculated energy levels, J, π, deformation parameters, two-neutron separation energies, charge and neutron radii, neutron skin.
doi: 10.1142/S0218301321500993
Eur.Phys.J. A 58, 243 (2022)
J.Khuyagbaatar
Fission-stability of high-K states in superheavy nuclei
RADIOACTIVITY 248Es(EC), 254Rf, 270Ds(α); calculated the electron-capture delayed fission (ECDF) process within the approximate parabolic barrier approach, various de-excitation modes of high-K states, T1/2.
doi: 10.1140/epja/s10050-022-00896-3
Phys.Part. and Nucl.Lett. 19, 646 (2022)
E.V.Mardyban, T.M.Shneidman, E.A.Kolganova, R.V.Jolos
Manifestation of Reflection-Asymmetric Deformation in the Structure of Superheavy Nuclei
NUCLEAR STRUCTURE 250,252,254,256,258,260,262No, 254,256,258,260,262,264,266Rf, 258,260,262,264,266,268,270Sg, 264,266,268,270,272,274Hs, 268,270,272,274,276,278,280,282Ds; calculated negative parity energy levels, initial parity splitting, transition dipole, quadrupole and octupole moments using the cluster model of a dinuclear system; deduced assessments of the critical angular momenta at which the transition from oscillatory motion to stable reflection-asymmetric deformation.
doi: 10.1134/S1547477122060152
Nucl.Phys. A1021, 122427 (2022)
G.Royer, Q.Ferrier, M.Pineau
Alpha and cluster decays of superheavy elements and 2p radioactivity of medium nuclei
RADIOACTIVITY 252,254,256,258,260,262,264,266,268Rf, 258,260,262,264,266,268,270,272Sg, 262,264,266,268,270,272,274,276,278Hs, 260,262,264,266,268,270,272,274,276,278,280,282Ds, 276,278,280,282,284,286Cn, 284,286,288,290Fl, 290,292Lv, 294Og, 296,298120, 253,255,257,259,261,263,265,267,269Rf, 257,259,261,263,265,267,269,271Sg, 263,265,267,269,271,273,275,277Hs, 267,269,271,273,275,277,279,281Ds, 277,279,281,283,285Cn, 285,287,289Fl, 289,291,293Lv, 293,295Og, 295,297120, 255,257,259,261,263,265,267,269,271Db, 259,261,263,265,267,269,271,273,275Bh, 265,267,269,271,273,275,277,279Mt, 271,273,275,277,279,281,283Rg, 277,279,281,283,285,287Nh, 287,289,291Mc, 293Ts, 295,297119, 256,258,260,262,264,266,268,270Db, 260,262,264,266,268,270,272,274Bh, 266,268,270,272,274,276,278Mt, 272,274,276,278,280,282Rg, 278,280,282,284,286Nh, 286,288,290Mc, 292,294Ts, 294,296119(α), 221,222,223,224Ra, 226Ra, 225Ac(14C), 228Th(20O), 230Th, 231Pa(24Ne), 230U(22Ne), 232,233,234U(24Ne), 234,235U, 236Pu, 238Pu(28Mg), 238Pu(32Si), 242Cm(34Si), 253Rf(8Be), 257Rf(47K), 258Rf(48K), 255Db(8Be), 265Db(56Ti), 258Sg(8Be), 260Bh(50Ti), 264Hs(64Ni), 267Ds(58Fe), (60Fe), 268Ds(60Ni), 269Ds(60Fe), 271Ds(62Fe), (63Co), 272Ds(64Co), (64Ni), 273Ds(65Co), 274Ds(66Co), 275Ds(67Co), 281,282Ds(76Zn), 272Rg(62Fe), (63Ni), 274Rg(65Ni), 276Rg(67Ni), 278Rg(69Ni), 280Rg(71Ni), 282Rg(72Cu), 282,283Rg(76Zn), 285Cn(72Zn), (73Zn), (75Zn), (77Zn), 286Cn(48Ca), (74Ni), (78Ni), 286Nh(49Ca), (50Ca), (74Cu), (75Cu), (76Cu), (76Zn), (77Zn), (78Ga), 287Fl, 289Fl(48Ca), (75Cu), (76Zn), (77Zn), (78Zn), (79Zn), (80Zn), 293Lv(54Ti), 294Og(8Be), 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, 67Kr(2p); calculated T1/2. Comparison with available data.
doi: 10.1016/j.nuclphysa.2022.122427
Phys.Rev. C 105, 034619 (2022)
I.S.Rogov, G.G.Adamian, N.V.Antonenko
Spontaneous fission hindrance in even-odd nuclei within a cluster approach
RADIOACTIVITY 242,243,244,245,246Cm, 242,243,244,245,246,253,254,255,256,257,258Fm, 254,255,256,257,258Rf, 235U, 239,241Pu(α)(SF); calculated T1/2. Dinuclear system cluster approach. Comparison to experimental data.
doi: 10.1103/PhysRevC.105.034619
Nucl.Phys. A1028, 122528 (2022)
F.Xing, H.Qi, J.Cui, Y.Gao, Y.Wang, J.Gu, G.Yong
An improved Gamow-like formula for α-decay half-lives
RADIOACTIVITY 214,215,216,217,218U, 219,220,221,222,223,224Np, 221,222,223,224,225,226,227Pu, 224,225,226,227,228Am, 231,232Cm, 233,234,235,236,237,238,239,240,241,242Bk, 234,235,236Cf, 237,238,239Es, 239,240,241,242,243,244Fm, 241,242,243Md, 246,247,248,249,250No, 249,250,251Lr, 251,252,253,254Rf, 253,254,255Db, 256,257,258Sg, 258,259,260,261,262,263Bh, 261,262Hs, 263,264,265Mt, 261,262,263,264,265,266Ds, 266,267,268,269,270,271,272,273Rg, 270,271,272,273,274,275,276Cn, 272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290Nh, 278,279,280,281,282,283,284,285,286,287,288,289,290,291Fl, 281,282,283,284,285,286,287,288,289,290,291,292Mc, 283,284,285,286,287,288,289Lv, 285,286,287,288,289,290,291,292Ts, 288,289,290,291,292,293Og, 295Og, 290,291,292,293,294,295,296119, 291,292,293,294,295,296,297,298,299,300120, 287,288,289,290,291Og, 283,284Lv, 279,280,281Fl, 275,276Cn, 271,272,273Ds, 294120, 268,269Hs, 264,265Sg, 281Fl(α); calculated T1/2; deduced an improved Gamow-like (IMGL) formula parameters. Comparison with available data.
doi: 10.1016/j.nuclphysa.2022.122528
Phys.Rev. C 107, L061302 (2023)
D.Seweryniak, T.Huang, K.Auranen, A.D.Ayangeakaa, B.B.Back, M.P.Carpenter, P.Chowdhury, R.M.Clark, P.A.Copp, Z.Favier, K.Hauschild, X.-T.He, T.L.Khoo, F.G.Kondev, A.Korichi, T.Lauritsen, J.Li, C.Morse, D.H.Potterveld, G.Savard, S.Stolze, J.Wu, J.Zhang, Y.-F.Xu
Nuclear rotation at the fission limit in 254Rf
NUCLEAR REACTIONS 206Pb(50Ti, 2n)254Rf, E=244 MeV from the ATLAS-ANL facility; measured reaction products, prompt γ rays, Eγ, Iγ, Rf Kα and Kβ x-rays, (254Rf implants)γ-coin, (implants)(fission events)γ-coin using the Gammasphere array and the Argonne gas-filled analyzer (AGFA). 254Rf; deduced levels, J, π, ground-state rotational band up to 14+, kinematic moment of inertia. Systematics of ground-state bands in 250Fm, 252,254No, and 254,256Rf, and comparison with particle-number conserving cranked shell model (PNC-CSM) calculations.
doi: 10.1103/PhysRevC.107.L061302