Dataset referencing 2020TA21
A.Taninah, S.E.Agbemava, A.V.Afanasjev
Covariant density functional theory input for r-process simulations in actinides and superheavy nuclei: The ground state and fission properties
NUCLEAR STRUCTURE 206,208,210,212,214,216,218,220,220,220,220,220,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Th, 264,266,258,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320,322,324,326,328,330,332,334,336,338,340,342,344,346,348,350,352,354,356,358,360,362,364,366,368Ds; calculated binding energies as function of deformation β2. 240,242,326,328Cf, 246,330,332Fm, 248,250,334,336No, 250,252,254Rf, 254,256Sg; calculated superdeformed minima, β2, β3, second fission barriers, deformation energy curves and potential energy surface in (β2, β3) plane for 240Cf. 202,204,308,346Th, 210,214,316,350U, 216,220,326,352Pu, 222,224,348,354Cm, 228,354,356Cf, 232,358Fm, 236,238,360No, 242,244,362Rf, 248,250,364Sg, 254,256,366,396Hs, 260,264,368,402Ds, 266,270,370,410Cn, 272,276,376,416Fl, 278,282,402,428Lv, 284,288,412,436Og, 290,294,418,434120; predicted two-proton and two-neutron drip lines. 298,302,306,308,310,312,316,318,320,322,326,328,330,332,336,340Og; calculated potential-energy surfaces in (β2cos(γ+30), β2sin(γ+30)) plane. Z=90-120, N=110-320; calculated proton quadrupole deformations β2, binding-energies, S(2n), Q(α), α-decay half-lives, heights of primary fission barriers. Covariant density functional theory (CDFT) using state-of-the-art DD-PC1, DD-ME2, NL3*, and PC-PK1 CEDFs. Comparison to available data. Relevance to r-process modeling in heavy nuclei, and for the study of fission cycling.
doi: 10.1103/PhysRevC.102.054330