References quoted in the ENSDF dataset: 32P ADOPTED LEVELS, GAMMAS
44 references found.
Clicking on a keynumber will list datasets that reference the given article.
Z.Phys. 91, 43 (1934)
J.Ambrosen
Uber den aktiven Phosphor und das Energiespektrum seiner β Strahlen
RADIOACTIVITY 32P(β-) [from 32S(n, p), 35Cl(n, α), E not given]; measured decay products, Eβ, Iβ; deduced β-ray energies, T1/2. Comparison with available data.
doi: 10.1007/BF01340548
Physica 3, 1053 (1936)
G.J.Sizoo, C.P.Koene
The period of radioactive phosphorus 15P32
RADIOACTIVITY 32P(β-); measured decay products, Eβ, Iβ; deduced T1/2. Comparison with available data.
doi: 10.1016/s0031-8914(36)80331-0
Phys.Rev. 51, 624 (1937)
H.W.Newson
The Radioactivity Induced in Silicon and Phosphorus by Deuteron Bombardment
RADIOACTIVITY 31Si, 32P(β-) [from 30Si, 31P(d, p), E not given]; measured decay products, Eβ, Iβ; deduced T1/2, β-ray spectra.
Nuovo cimento 15, 213 (1938)
B.N.Cacciapuoti
Determinazione della costante di decadimento del P32
doi: 10.1007/BF02958330
Physica 5, 882 (1938)
P.C.Capron
La periode et l'absorption des rayons beta du radioelement P3215
RADIOACTIVITY 32P(β-); measured decay products; deduced T1/2, maximum electron energy or Q-value.
doi: 10.1016/s0031-8914(38)90652-4
Physica 7, 849 (1940)
D.Mulder, G.W.Hoeksema, G.J.Sizoo
Measurements on the period of radioactive phosphorus
RADIOACTIVITY 32P(β-); measured decay products, Eβ, Iβ; deduced T1/2 using three different methods. Comparison with available data.
doi: 10.1016/0031-8914(40)90163-x
Phys.Rev. 73, 106 (1948)
E.D.Klema, A.O.Hanson
A Determination of the S32(n, p)P32 Cross Section for Neutrons Having Energies of 1.6 to 5.8 MeV
Can.J.Res. 28a, 520 (1950)
J.G.Bayly
A calorimetric measurement of the disintegration rate of a P32 source
RADIOACTIVITY 32P(β-); measured decay products; deduced a value of the disintegration rate with a probable error, T1/2. Comparison with available data.
doi: 10.1139/cjr50a-042
Nature 167, 365 (1951)
W.K.Sinclair, A.F.Holloway
Half-Lives of Some Radioactive Isotopes
Nucleonics 11, No.3, 14 (1953)
E.E.Lockett, R.H.Thomas
The Half-Lives of Several Radioisotopes
Nucleonics 15, No.12, 68 (1957)
O.U.Anders, W.W.Meinke
P32 Half-Life Determination
Phys.Rev. 107, 1462 (1957)
G.Feher, C.S.Fuller, E.A.Gere
Spin and Magnetic Moment of P32 by the Electron Nuclear Double-Resonance Technique
Nuclear Phys. 8, 191 (1958)
H.Daniel
The Form of the β-Spectra of Na22, Na24, and P32
doi: 10.1016/0029-5582(58)90147-0
Ann.Phys.(Paris) 4, 89 (1959)
J.Robert
Comparaison des Methodes de Microcalorimetrie Adiabatique et d'Ionisation Differentielle dans les Mesures Precises de Periodes Radioactives
S.African J.Agr.Sci. 4, 627 (1961)
P.G.Marais, J.Deist
Half-Life of 32P
NUCLEAR STRUCTURE 32P; measured not abstracted; deduced nuclear properties.
Intern.J.Appl.Radiation Isotopes 17, 121 (1966)
I.W.Goodier, D.H.Pritchard
The Half Life of 32P
NUCLEAR STRUCTURE 32P; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0020-708X(66)90057-3
Intern.J.Appl.Radiation Isotopes 20, 868 (1969)
F.Lagoutine, J.Legrand, Y.Le Gallic
Periodes de Quelques Radionucleides
RADIOACTIVITY 32P, 35S, 110mAg, 170Tm, 199Au; measured T1/2.
doi: 10.1016/0020-708X(69)90113-6
Intern.J.Appl.Radiation Isotopes 20, 613(1969)
D.W.Pernaa
The Half-Life of 32P
RADIOACTIVITY 32P [from 32S(n, p)]; measured T1/2.
doi: 10.1016/0020-708X(69)90090-8
Phys.Rev.Lett. 27, 1597 (1971)
E.G.Adelberger, D.P.Balamuth
Electromagnetic Decays of the Lowest T = 2 State in 32P
NUCLEAR REACTIONS 30Si(3He, pγ), E=10 MeV; measured σ(Ep, Eγ). 32P deduced lowest T=2 state, γ-branching.
doi: 10.1103/PhysRevLett.27.1597
Phys.Rev. C6, 378 (1972)
S.Fortier, H.Laurent, J.M.Maison, J.P.Schapira, J.Vernotte, W.Weisz
First T = 2 Level in 32P
NUCLEAR REACTIONS 30Si(3He, pγ), E=8.02 MeV; measured σ(Ep, Eγ, θ(p)), pγ-coin. 32P deduced levels, J, π, γ-branching.
J.Phys.(London) A6, 705 (1973)
P.E.Carr, D.C.Bailey, L.L.Green, A.N.James, J.F.Sharpey-Schafer, D.A.Viggars
Mean Lifetimes of Levels in 32P and 32S
NUCLEAR REACTIONS 29Si(α, pγ), (α, nγ), E=8.0, 9.5 MeV; measured σ(Eγ), Iγ, DSA. 32P, 32S deduced levels, J, π, T1/2.
doi: 10.1088/0305-4470/6/5/017
Nucl.Phys. A210, 38 (1973)
F.E.H.van Eijkern, G.van Middelkoop, J.Timmer, J.A.van Luijk
Spectroscopy of 32P
NUCLEAR REACTIONS 29Si(α, pγ), E=10.65, 10.69, 11.00 MeV; measured pγ(θ), Doppler-shift attenuation, γ-ray decay. 32P deduced levels, T1/2, J, π, γ-branchings, mixing ratios. Enriched target.
doi: 10.1016/0375-9474(73)90501-0
Nucl.Phys. A291, 282 (1977)
A.M.Baxter, P.G.Ikossi, A.M.McDonald, J.A.Kuehner
Spin-Parity Combinations in 32P from the 34S(d, α)32P Reaction
NUCLEAR REACTIONS 34S(polarized d, α), E=8.25, 8.50, 8.75, 9.25, 9.50 MeV; measured T20(4°). 32P levels deduced J, π. Enriched target.
doi: 10.1016/0375-9474(77)90320-7
Izv.Akad.Nauk SSSR, Ser.Fiz. 41, 1611 (1977); Bull.Acad.Sci.USSR, Phys.Ser. 41, No.8, 66 (1977)
B.N.Belyaev, S.S.Vasilenko, A.I.Egorov, A.I.Pautov
Positrons That Accompany β--Decay of 32P
RADIOACTIVITY 32P; measured I(β+); deduced pair-formation in β-decay.
Indian J.Pure Appl.Phys. 15, 284 (1977)
T.S.Mudhole
Half-Life of 32P from Integrated Internal Bremsstrahlung Intensity
RADIOACTIVITY 32P; measured integral IB, T1/2.
Atomkernenergie 34, 136 (1979)
J.Precker, K.Blansdorf
Redetermination of Half Life and Mean Beta Disintegration Energy of P 32 by Low-Temperature Calorimetry
RADIOACTIVITY 32P; measured T1/2, average Eβ.
Nucl.Phys. A382, 173 (1982)
G.Mairle, G.J.Wagner, P.Grabmayr, K.T.Knopfle, Liu Ken Pao, H.Riedesel, K.Schindler, V.Bechtold, L.Friedrich, P.Ziegler
Spin Determination of States with Stretched Configurations in 16N and 32P Via the (d(pol), α) Reaction at 52 Mev
NUCLEAR REACTIONS 12C, 18O, 34S(polarized d, α), E=52 MeV; measured σ(θ), iT11(θ). 32P, 16N deduced levels, J, π. Enriched targets.
doi: 10.1016/0375-9474(82)90130-0
Nucl.Phys. A501, 413 (1989)
F.J.Eckle, G.Eckle, F.Merz, H.J.Maier, H.Kader, G.Graw
High-Resolution Spectroscopy of 32P (I) The 31P(d(pol), p) Study
NUCLEAR REACTIONS 31P(polarized d, p), E=20 MeV; measured σ(θ), analyzing power vs θ. 32P deduced levels, Jπ, spectroscopic factors. Shell model calculations.
doi: 10.1016/0375-9474(89)90139-5
Nucl.Phys. A501, 437 (1989)
S.Michaelsen, Ch.Winter, K.P.Lieb, B.Krusche, S.Robinson, T.von Egidy
High-Resolution Spectroscopy of 32P (II). Level Density and Primary Transition Strengths Observed after Thermal Neutron Capture in 31P
NUCLEAR REACTIONS 31P(n, γ), E=thermal; measured Eγ, Iγ. 32P deduced levels, neutron binding energy, level density, γ-transition strengths, branching ratios. Pair spectrometer, intrinsic Ge detector.
doi: 10.1016/0375-9474(89)90140-1
Nucl.Phys. A521, 1 (1990); Errata and Addenda Nucl.Phys. A529, 763 (1991); Errata Nucl.Phys. A564, 609 (1993)
P.M.Endt
Energy Levels of A = 21-44 Nuclei (VII)
COMPILATION A=21-44; compiled, evaluated structure data.
doi: 10.1016/0375-9474(90)90598-G
Nucl.Instrum.Methods Phys.Res. A339, 26 (1994)
B.M.Coursey, J.M.Calhoun, J.Cessna, D.B.Golas, F.J.Schima, M.P.Unterweger
Liquid-Scintillation Counting Techniques for the Standardization of Radionuclides used in Therapy
RADIOACTIVITY 109Pd(β-); 114mIn(EC); 123I(EC); 153Gd(EC); 153Sm(β-); 154Eu(EC), (β-); 155Eu(β-); 166Ho(β-); 169Yb(EC); 186Re(EC), (β-); 188Re(β-); measured γ emission rates; deduced deviations from previous data. 32P, 153Sm, 166Ho, 186,188Re(β-) measured T1/2. Liquid scintillation counting, radionuclides standardization for therapy.
doi: 10.1016/0168-9002(94)91773-6
Phys.Rev. C55, 1697 (1997)
A.Kangasmaki, P.Tikkanen, J.Keinonen, W.E.Ormand, S.Raman
Lifetimes of 32P Levels
NUCLEAR REACTIONS 2H(31P, p), E ≈ 24, 29 MeV; measured Eγ, Iγ, DSA. 32P deduced levels, J, π, γ-multipolarity, δ(E2/M1), γ-branching ratio, B(λ). Shell model.
Appl.Radiat.Isot. 56, 125 (2002)
M.P.Unterweger
Half-Life Measurements at the National Institute of Standards and Technology
RADIOACTIVITY 22Na, 133Ba, 207Bi(EC); 60Co, 85Kr, 125Sb, 137Cs, 155Eu(β-); 152,154Eu(EC), (β-); measured T1/2. Comparison with previous results.
COMPILATION 3H, 18F, 22,24Na, 32P, 46Sc, 51Cr, 54Mn, 57,58,60Co, 59Fe, 62Cu, 65Zn, 67Ga, 75Se, 85Kr, 85Sr, 88Y, 99Mo, 99mTc, 103Ru, 109Cd, 110mAg, 111In, 113,117mSn, 123,125,131I, 125Sb, 127,131m,133Xe, 133,140Ba, 134,137Cs, 139,141,144Ce, 140La, 152,154,155Eu, 153Gd, 153Sm, 166Ho, 169Yb, 177Lu, 181,188W, 186,188Re, 192Ir, 195,198Au, 201,202Tl, 203Hg, 203Pb, 207Bi, 228Th; compiled T1/2.
doi: 10.1016/S0969-8043(01)00177-4
Phys.Rev. C 73, 054313 (2006)
S.Triambak, A.Garcia, E.G.Adelberger, G.J.P.Hodges, D.Melconian, H.E.Swanson, S.A.Hoedl, S.K.L.Sjue, A.L.Sallaska, H.Iwamoto
Mass of the lowest T = 2 state in 32S: A test of the isobaric multiplet mass equation
NUCLEAR REACTIONS 31P(p, γ), E=3.285 MeV; measured Eγ, Iγ. 32S deduced excited states energies.
ATOMIC MASSES 32Si, 32P, 32S, 32Cl, 32Ar; analyzed mass excesses for T=2 quintet. Isospin-multiplet mass equation.
doi: 10.1103/PhysRevC.73.054313
Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)
T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.
Evaluation of theoretical conversion coefficients using BrIcc
COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.
doi: 10.1016/j.nima.2008.02.051
Phys.Rev. C 80, 014302 (2009)
P.C.Bender, C.R.Hoffman, M.Wiedeking, J.M.Allmond, L.A.Bernstein, J.T.Burke, D.L.Bleuel, R.M.Clark, P.Fallon, B.L.Goldblum, T.A.Hinners, H.B.Jeppesen, S.Lee, I.-Y.Lee, S.R.Lesher, A.O.Macchiavelli, M.A.McMahan, D.Morris, M.Perry, L.Phair, N.D.Scielzo, S.L.Tabor, V.Tripathi, A.Volya
Approaching the "island of inversion": 34P
NUCLEAR REACTIONS 18O(18O, np), E=20, 24, 25, 30, 44 MeV; measured Eγ, Iγ, γγ-, pγ-coin, γ(θ), DSA and half-lives. 34P; deduced levels, J, π, multipolarities, transition strengths and configurations. Island of inversion. Comparison with shell-model calculations using a modified WBP interaction.
NUCLEAR STRUCTURE 32,34,36P; calculated levels, J, π and subshell occupancies using WBP interaction shell-model formalism.
doi: 10.1103/PhysRevC.80.014302
Pramana 75, 13 (2010)
S.S.Ghugre
Nuclei in the vicinity of 'island of inversion' through the fusion reaction
NUCLEAR REACTIONS 18O(18O, xnxp), (16O, xnxp)32P/34P, E=34 MeV;measured Eγ, Iγ, γ-γ-coin.; deduced J, π, level scheme. Comparison with shell model calculations.
Phys.Rev. C 82, 052501 (2010)
A.Kankainen, T.Eronen, D.Gorelov, J.Hakala, A.Jokinen, V.S.Kolhinen, M.Reponen, J.Rissanen, A.Saastamoinen, V.Sonnenschein, J.Aysto
High-precision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl
ATOMIC MASSES 31S; measured mass by time-of-flight (TOF) ion-cyclotron resonance method using JYFLTRAP double Penning trap mass spectrometer using 31P as reference; deduced mass excess and Q value for EC decay. 32Cl; analyzed mass excess from S(p); deduced improved Q(ϵ) value and logft. 32Si, 32P, 32S, 32Cl, 32Ar; analyzed isobaric mass multiplet equation (IMME) for A=32, T=2 quintet. Comparison of masses with previous measurements and evaluations.
RADIOACTIVITY 31S(EC)[from 32S(p, pn), E=40 MeV]; measured mass using IGISOL and JYFLTRAP facilities; deduced Q value, logft. 32S, 32Cl, 32Ar(EC); analyzed Q values, logft. Implication for superallowed β decay of 32Ar.
doi: 10.1103/PhysRevC.82.052501
Phys.Rev. C 98, 044301 (2018)
L.Huth, V.Durant, J.Simonis, A.Schwenk
Shell-model interactions from chiral effective field theory
NUCLEAR STRUCTURE 18,19,20O, 19,21,22F, 21,23,24Ne, 24,26,28Mg, 26,28,29Al, 29,30,31Si, 32,33,35P, 32,33,35S, 34,35,37Cl, 36,37Ar, 38K; calculated levels, J, π for the chiral shell-model interactions at LO, NLO, and NLOvs, and compared to experimental, and USDA/USDB shell-model results.
doi: 10.1103/PhysRevC.98.044301
Phys.Rev. C 97, 044312 (2018)
R.S.Lubna, V.Tripathi, S.L.Tabor, P.-L.Tai, K.Kravvaris, P.C.Bender, A.Volya, M.Bouhelal, C.J.Chiara, M.P.Carpenter, R.V.F.Janssens, T.Lauritsen, E.A.McCutchan, S.Zhu, R.M.Clark, P.Fallon, A.O.Macchiavelli, S.Paschalis, M.Petri, W.Reviol, D.G.Sarantites
Intruder configurations of excited states in the neutron-rich isotopes 33P and 34P
NUCLEAR REACTIONS 18O(18O, 2np), (18O, np), E=24 MeV; measured Eγ, Iγ, γ(θ), γγ-, pγ-coin using Gammasphere array for γ detection, and 4π Microball scintillator array for charged particle detection at ATLAS-ANL facility. 33,34P; deduced levels, J, π, configurations. Comparison with shell-model calculations using PSDPF interaction.
NUCLEAR STRUCTURE 31,32,33,34,35P; calculated levels, J, π using shell-model with the PSDPF interaction. Comparison with experimental data.
doi: 10.1103/PhysRevC.97.044312
INDC(NDS)-0794 (2019)
N.J.Stone
Table of Recommended Nuclear Magnetic Dipole Moments: Part I - Long-lived States
COMPILATION Z=0-99; compiled experimental values of nuclear magnetic moments.
Phys.Rev. C 101, 054308 (2020)
J.M.R.Fox, C.W.Johnson, R.N.Perez
Uncertainty quantification of an empirical shell-model interaction using principal component analysis
NUCLEAR STRUCTURE 18F, 26Al, 26Mg; calculated B(E2) and B(M1) for several transitions; deduced median values and uncertainty intervals from comparison with experimental values. 17,18,19,20,21,22,23,24O, 18,19,20,21,22,23,24,25,26,27F, 20,21,22,23,24,25,26,27,28Ne, 22,23,24,25,26,27,28,29Na, 24,25,26,27,28,29,30Mg, 26,27,28,29,30,31,32,33Al, 28,29,30,31,32,33,34Si, 30,31,32,33,34,35P, 32,33,34,35,36S, 34,35,36,37Cl, 36,37,38Ar, 38,39K; calculated level energies, J, π; deduced uncertainties from comparison with experimental energies. Uncertainty quantification (UQ) in level energies, B(E2), B(M1) and B(GT) of a "gold-standard" empirical interaction for nuclear configuration-interaction shell model calculations in the sd-shell valence, investigating sensitivity of observables to perturbations in the 66 parameters.
RADIOACTIVITY 26Ne, 32Si(β-); calculated B(GT), dark matter scattering on 36Ar coupling parameter; deduced uncertainty intervals for B(GT) from comparison with experimental values. Uncertainty quantification through shell-model calculations.
doi: 10.1103/PhysRevC.101.054308
Phys.Rev. C 104, L061303 (2021)
M.Kamil, S.Triambak, A.Magilligan, A.Garcia, B.A.Brown, P.Adsley, V.Bildstein, C.Burbadge, A.Diaz Varela, T.Faestermann, P.E.Garrett, R.Hertenberger, N.Y.Kheswa, K.G.Leach, R.Lindsay, D.J.Marin-Lambarri, F.Ghazi Moradi, N.J.Mukwevho, R.Neveling, J.C.Nzobadila Ondze, P.Papka, L.Pellegri, V.Pesudo, B.M.Rebeiro, M.Scheck, F.D.Smit, H.-F.Wirth
Isospin mixing and the cubic isobaric multiplet mass equation in the lowest T=2, A=32 quintet
ATOMIC MASSES 32Ar, 32Cl, 32S, 32P, 32Si; analyzed experimental masses by a cubic fit to the isobaric multiplet mass equation (IMME) for the lowest isospin T=2 quintet in A=32 nuclei; investigated isospin mixing by combining high-resolution experimental data for proton spectrum from 32Ar β-delayed proton decay, and from triton spectrum in 32S(3He, t) reaction with the state-of-the-art shell-model calculations; evaluated isospin mixing matrix elements; extracted cubic and quartic coefficients of the IMME; deduced that isospin mixing with nonanalog T=1 states contributes to the IMME breakdown. 32Ar; analyzed experimental β-delayed proton spectrum by R-matrix fit; calculated proton emission amplitudes from states in 32Cl.
doi: 10.1103/PhysRevC.104.L061303
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.