References quoted in the ENSDF dataset: 32SI ADOPTED LEVELS, GAMMAS

56 references found.

Clicking on a keynumber will list datasets that reference the given article.


1953LI21

Phys.Rev. 91, 642 (1953)

M.Lindner

New Nuclides Produced in Chlorine Spallation

doi: 10.1103/PhysRev.91.642


1954TU02

Phys.Rev. 94, 364 (1954)

A.Turkevich, A.Samuels

Evidence for Si32, a Long-Lived Beta Emitter

RADIOACTIVITY 32P, 31Si, 32Si(β-) [from 30Si(n, X), (2n, X)31Si/32Si, E thermal]; measured decay products; deduced T1/2 estimates.

doi: 10.1103/physrev.94.364


1957RO59

Can.J.Chem. 35, 176 (1957)

L.P.Roy, L.Yaffe

Search for Successive Neutron Capture Reactions on Mg26, Si30, and Cr54

RADIOACTIVITY 27,28Mg, 28Al, 31,32Si, 32P, 55,56Cr, 56Mn(β-) [from 26,27Mg, 30,31Si, 54,55Cr(n, γ), E thermal]; measured decay products; deduced T1/2 to σ ratios, σ. NRX heavy water reactor at Chalk River, the MTR at Arco.

doi: 10.1139/v57-026


1962GE16

Radiochim.Acta 1, 3 (1962)

D.Geithoff

Preparation of Silicon-32 by the (t, p) Process

NUCLEAR STRUCTURE 32Si; measured not abstracted; deduced nuclear properties.


1964HO31

Nucl.Phys. 51, 363 (1964)

M.Honda, D.Lal

Spallation Cross Sections for Long-Lived Radionucleides in Iron and Light Nuclei

doi: 10.1016/0029-5582(64)90277-9


1972PR18

Phys.Rev. C6, 2065 (1972)

J.G.Pronko, R.E.McDonald

Study of 32Si Using the 30Si(t, pγ) Reaction

NUCLEAR REACTIONS 30Si(t, pγ), E=2.7, 2.8 MeV; measured DSA, σ(Ep, Eγ, θ(pγ)). 32Si deduced levels, J, π, T1/2, γ-mixing, γ-branching.

doi: 10.1103/PhysRevC.6.2065


1973CL15

J.Glaciol. 12, 411 (1973)

H.B.Clausen

Dating of polar ice by 32Si

RADIOACTIVITY 32Si(β-); measured decay products; deduced T1/2 with samples of old ice corrected for cosmic rays. Comparison with available data.

doi: 10.1017/s0022143000031828


1974GU11

Nucl.Phys. A227, 284 (1974)

G.Guillaume, B.Rastegar, P.Fintz, A.Gallmann

Transitions Electromagnetiques dans le Noyau 32Si Atteint par la Reaction 30Si(t, pγ)32Si

NUCLEAR REACTIONS 30Si(t, pγ), E=2.5-3.3 MeV; measured Eγ, DSA, σ(Ep, Eγ, θ(pγ)). 32Si deduced levels, E(X), γ-branching ratios, J, π, γ-mixing, T1/2. Enriched target.

doi: 10.1016/0375-9474(74)90797-0


1980DE46

Earth Planet.Sci.Lett. 48, 209 (1980)

D.J.Demaster

The Half Life of 32Si Determined from a Varved Gulf of California Sediment Core

RADIOACTIVITY 32Si(β-); measured T1/2. Source from varved gulf of California sediment core.


1980EL01

Phys.Rev.Lett. 45, 589 (1980)

D.Elmore, N.Anantaraman, H.W.Fulbright, H.E.Gove, H.S.Hans, K.Nishiizumi, M.T.Murrell, M.Honda

Half-Life of 32Si from Tandem-Accelerator Mass Spectometry

RADIOACTIVITY 32Si [from Cl(p, X), E=52 MeV]; measured T1/2. Specific β-activity method, accelerator mass spectrometry.

doi: 10.1103/PhysRevLett.45.589


1980FO02

Phys.Rev. C21, 764 (1980)

J.L.C.Ford, Jr., T.P.Cleary, J.Gomez del Campo, D.C.Hensley, D.Shapira, K.S.Toth

First 8+ State in 28Si and Level Systematics of sd Shell Nuclei

NUCLEAR REACTIONS 25Mg(12C, 9Be), E=100, 120 MeV; measured σ(θ). 28Si deduced levels, J, π. Shell model calculations, DWBA analysis.

doi: 10.1103/PhysRevC.21.764


1980KU11

Phys.Rev.Lett. 45, 592 (1980)

W.Kutschera, W.Henning, M.Paul, R.K.Smither, E.J.Stephenson, J.L.Yntema, D.E.Alburger, J.B.Cumming, G.Harbottle

Measurement of the 32Si Half-Life via Accelerator Mass Spectrometry

RADIOACTIVITY 32Si [from triton bombardment of SiO2, E=3.4 MeV]; measured T1/2. Specific β-activity method, accelerator mass spectrometry.

doi: 10.1103/PhysRevLett.45.592


1982FO02

Phys.Rev. C25, 5 (1982)

H.T.Fortune, L.Bland, D.L.Watson, M.A.Abouzeid

32Si from 30Si(t, p)

NUCLEAR REACTIONS 30Si(t, p), E=15 MeV; measured σ(Ep, θ). 32Si deduced levels, J, π, configuration. Microscopic DWBA analysis.

doi: 10.1103/PhysRevC.25.5


1986AL10

Earth Planet.Sci.Lett. 78, 168 (1986)

D.E.Alburger, G.Harbottle, E.F.Norton

Half-Life of 32Si

RADIOACTIVITY 32Si(β-) [from 30Si(t, p), E=3.4 MeV]; measured Eβ, Iβ; deduced T1/2, log ft.


1990HO27

Nucl.Instrum.Methods Phys.Res. B52, 544 (1990)

H.J.Hofmann, G.Bonani, M.Suter, W.Wolfli, D.Zimmermann, H.R.von Gunten

A New Determination of the Half-Life of 32Si

RADIOACTIVITY 32Si [from 37Cl(p, 2pα), 31P(n, γ)32P(n, p)]; measured T1/2. Source from activation technique.

doi: 10.1016/0168-583X(90)90474-9


1991KU26

J.Phys.(London) G17, S335 (1991)

W.Kutschera

Accelerator Mass Spectrometry in Nuclear Physics

RADIOACTIVITY 32Si(β-); 44Ti(EC); compiled, evaluated atomic mass spectrometry T1/2 data.

doi: 10.1088/0954-3899/17/S/035


1991TH06

Nucl.Phys. A534, 327 (1991)

M.S.Thomsen, J.Heinemeier, P.Hornshoj, H.L.Nielsen, N.Rud

Half-Life of 32Si Measured via Accelerator Mass Spectrometry

RADIOACTIVITY 32,31Si [from 18O(16O, 2p), (16O, n2p), E ≈ 35 MeV]; measured isotopic abundance, activity ratios. 32Si deduced T1/2. Tandem accelerator mass spectrometry, β-scintillation spectrometry, enriched 18O target.

doi: 10.1016/0375-9474(91)90501-V


1993CH10

Phys.Rev. C47, 1462 (1993)

Y.Chen, E.Kashy, D.Bazin, W.Benenson, D.J.Morrissey, N.A.Orr, B.M.Sherrill, J.A.Winger, B.Young, J.Yurkon

Half-Life of 32Si

RADIOACTIVITY 32Si(β-) [from 9Be(40Ar, X), E=65 MeV/nucleon]; measured specific activity; deduced T1/2. Two independent measurements.

doi: 10.1103/PhysRevC.47.1462


1997FO01

Phys.Rev. C55, 762 (1997)

B.Fornal, R.Broda, W.Krolas, T.Pawlat, J.Wrzesinski, D.Bazzacco, D.Fabris, S.Lunardi, C.Rossi Alvarez, G.Viesti, G.de Angelis, M.Cinausero, D.R.Napoli, Z.W.Grabowski

γ-Ray Studies of Neutron-Rich N = 18, 19 Nuclei Produced in Deep-Inelastic Collisions

NUCLEAR REACTIONS, ICPND 208Pb(37Cl, X)38Cl/39Cl/40Cl/39S/40S/36P/37P/38P/32Si/33Si/34Si/35Si/36Si/30Al/31Al/32Al/34Al/28Mg/29Mg/30Mg/31Mg/28Na, E=230 MeV; measured γγ-coin; deduced residuals yields. 32Si deduced isomer, T1/2. 32Al deduced levels, possible J, π.

doi: 10.1103/PhysRevC.55.762


1997RO26

IEEE Trans.Instrum.Meas. 46, 560 (1997)

S.Rottger, A.Paul, U.Keyser

Prompt (n, γ)-Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project

NUCLEAR REACTIONS 1H, 14N, 28,29Si, 56Fe, 27Al, 63Cu(n, γ), E=thermal; measured Eγ, Iγ.

ATOMIC MASSES 1,2H, 14,15N, 28,29,30,31,32Si, 56,57Fe; measured neutron-induced γ spectra; deduced mass differences.


1998FO07

Acta Phys.Hung.N.S. 7, 83 (1998)

B.Fornal, R.Broda, W.Krolas, T.Pawlat, J.Wrzesinski, D.Bazzacco, D.Fabris, S.Lunardi, C.Rossi Alvarez, G.Viesti, G.de Angelis, M.Cinausero, D.R.Napoli, Z.W.Grabowski

Gamma Spectroscopy of Neutron-Rich Nuclei from the Vicinity of the ' Island of Inversion ' at N = 20

NUCLEAR REACTIONS 208Pb(37Cl, X), E=230 MeV; measured Eγ, Iγ, γγ-coin. 32Si, 32Al, 37P deduced levels, J, π, configurations.


1998IB01

Phys.Rev.Lett. 80, 2081 (1998)

R.W.Ibbotson, T.Glasmacher, B.A.Brown, L.Chen, M.J.Chromik, P.D.Cottle, M.Fauerbach, K.W.Kemper, D.J.Morrissey, H.Scheit, M.Thoennessen

Quadrupole Collectivity in 32,34,36,38Si and the N = 20 Shell Closure

NUCLEAR REACTIONS 197Au(32Si, 32Si'), (34Si, 34Si'), (36Si, 36Si'), (38Si, 38Si'), (40Ar, 40Ar'), E=37.4-48.2 MeV/nucleon; measured Eγ, Iγ following projectile Coulomb excitation. 32,34,36,38Si, 40Ar deduced 2+ level energies, excitation σ, B(E2), deformation.

doi: 10.1103/PhysRevLett.80.2081


1998NI19

Earth Planet.Sci.Lett. 163, 191 (1998)

V.N.Nijampurkar, D.K.Rao, F.Oldfield, I.Renberg

The half-life of 32Si: a new estimate based on varved lake sediments

RADIOACTIVITY 32Si(β-); measured decrease of 32Si activity with depth in an accurately dated varved sediment core from the Kassjon lake, North Sweden; deduced T1/2 of 32Si. Relevance to Geochronology.

doi: 10.1016/s0012-821x(98)00186-1


1999AI02

Phys.Rev. C60, 034614 (1999)

N.Aissaoui, N.Added, N.Carlin, G.M.Crawley, S.Danczyk, J.Finck, M.M.de Moura, D.Hirata, D.J.Morrissey, S.J.Sanders, J.Stasko, M.Steiner, A.A.P.Suaide, E.M.Szanto, A.Szanto de Toledo, M.Thoennessen, J.A.Winger

Strong Absorption Radii from Reaction Cross Section Measurements for Neutron-Rich Nuclei

NUCLEAR REACTIONS Si(30Al, X), (31Al, X), (32Al, X), (33Al, X), (32Si, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (34P, X), (35P, X), (36P, X), (37P, X), (38P, X), (39P, X), (36S, X), (37S, X), (38S, X), (39S, X), (40S, X), (41S, X), (39Cl, X), (40Cl, X), (41Cl, X), (42Cl, X), (43Cl, X), (44Cl, X), (41Ar, X), (42Ar, X), (43Ar, X), (44Ar, X), (45Ar, X), (46Ar, X), (44K, X), (45K, X), (46K, X), (47K, X), (48K, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (49Sc, X), (50Sc, X), (51Sc, X), (52Sc, X), (53Ti, X), (54Ti, X), E ≈ 38-80 MeV/nucleon; measured mean energy-integrated reaction σ. 30,31,32,33Al, 32,33,34,35,36Si, 34,35,36,37,38,39P, 36,37,38,39,40,41S, 39,40,41,42,43,44Cl, 41,42,43,44,45,46Ar, 44,45,46,47,48K, 46,47,48,49,50Ca, 49,50,51,52Sc, 53,54Ti deduced strong absorption radii. Secondary beams from 55Mn fragmentation.

doi: 10.1103/PhysRevC.60.034614


2001PA52

Hyperfine Interactions 132, 189 (2001)

A.Paul, S.Rottger, A.Zimbal, U.Keyser

Prompt (n, γ) Mass Measurements for the AVOGADRO Project

NUCLEAR REACTIONS 28,29,30,31Si(n, γ), E=thermal; measured prompt Eγ, Iγ; deduced mass differences. Application to mass unit definition discussed.

doi: 10.1023/A:1011982830022


2002ASZY

Japan Atomic Energy Res.Inst.Tandem VDG Ann.Rept., 2001, p.23 (2002); JAERI-Review 2002-029 (2002)

M.Asai, T.Ishii, A.Makishima, M.Ogawa, M.Matsuda

Nanosecond Isomers in 32, 33Si and 34P

NUCLEAR REACTIONS 198Pt(37Cl, X), E=9 MeV/nucleon; measured delayed Eγ, Iγ, γγ-, (fragment)γ-coin. 32,33Si, 34P deduced levels, J, π, isomeric states T1/2.


2003BL17

Phys.Rev.Lett. 91, 260801 (2003)

K.Blaum, G.Audi, D.Beck, G.Bollen, F.Herfurth, A.Kellerbauer, H.-J.Kluge, E.Sauvan, S.Schwarz

Masses of 32Ar and 33Ar for Fundamental Tests

ATOMIC MASSES 32Si, 33P, 33S, 33Cl, 32,33,44,45Ar; measured mass excess; deduced beta-neutrino correlation coefficient. Comparison with previous results.

doi: 10.1103/PhysRevLett.91.260801


2003WI06

Phys.Rev. C 67, 064002 (2003)

H.Witala, J.Golak, R.Skibinski, C.R.Howell, W.Tornow

Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum

NUCLEAR REACTIONS 2H(n, n), (p, p), E=1.9, 10.0 MeV; calculated Ay(θ), iT11(θ), magnetic moment interaction effects. 2H(p, 2p), E=5, 13, 65 MeV; calculated σ(θ1, θ2), magnetic moment interaction effects. Comparisons with data.

doi: 10.1103/PhysRevC.67.064002


2006TR03

Phys.Rev. C 73, 054313 (2006)

S.Triambak, A.Garcia, E.G.Adelberger, G.J.P.Hodges, D.Melconian, H.E.Swanson, S.A.Hoedl, S.K.L.Sjue, A.L.Sallaska, H.Iwamoto

Mass of the lowest T = 2 state in 32S: A test of the isobaric multiplet mass equation

NUCLEAR REACTIONS 31P(p, γ), E=3.285 MeV; measured Eγ, Iγ. 32S deduced excited states energies.

ATOMIC MASSES 32Si, 32P, 32S, 32Cl, 32Ar; analyzed mass excesses for T=2 quintet. Isospin-multiplet mass equation.

doi: 10.1103/PhysRevC.73.054313


2008KI07

Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)

T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.

Evaluation of theoretical conversion coefficients using BrIcc

COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.

doi: 10.1016/j.nima.2008.02.051


2009BO16

Acta Phys.Pol. B40, 639 (2009)

M.Bouhelal, F.Haas, E.Caurier, F.Nowacki, A.Bouldjedri

Negative Parity Intruder States in SD Shell Nuclei: A Complete 1hw Shell Model Description

NUCLEAR STRUCTURE 32,34Si, 34,36S, 36,38Ar, 40Ca;calculated J, π, energies. PSDPFB interaction.


2009KW02

Phys.Rev. C 80, 051302 (2009)

A.A.Kwiatkowski, B.R.Barquest, G.Bollen, C.M.Campbell, D.L.Lincoln, D.J.Morrissey, G.K.Pang, A.M.Prinke, J.Savory, S.Schwarz, C.M.Folden III, D.Melconian, S.K.L.Sjue, M.Block

Precision test of the isobaric multiplet mass equation for the A=32, T=2 quintet

ATOMIC MASSES 32,33Si, 32S, 31,34P; measured masses using LEBIT Penning-trap spectrometer; deduced mass excesses. Discussed validity of quadratic form of isobaric multiplet mass equation (IMME).

doi: 10.1103/PhysRevC.80.051302


2009SE07

Phys.Lett. B 675, 415 (2009)

T.M.Semkow, D.K.Haines, S.E.Beach, B.J.Kilpatrick, A.J.Khan, K.O'Brien

Oscillations in radioactive exponential decay

RADIOACTIVITY 226Ra(α); 32Si, 32P, 36Cl(β-); analyzed T1/2 data; calculated seasonal temperature variation.

doi: 10.1016/j.physletb.2009.04.051


2010JA03

Astropart.Phys. 34, 173 (2010)

D.Javorsek II, P.A.Sturrock, R.N.Lasenby, A.N.Lasenby, J.B.Buncher, E.Fischbach, J.T.Gruenwald, A.W.Hoft, T.J.Horan, J.H.Jenkins, J.L.Kerford, R.H.Lee, A.Longman, J.J.Mattes, B.L.Morreale, D.B.Morris, R.N.Mudry, J.R.Newport, D.O'Keefe, M.A.Petrelli, M.A.Silver, C.A.Stewart, B.Terry

Power spectrum analyses of nuclear decay rates

RADIOACTIVITY 32Si, 36Cl, 56Mn(β-), 226Ra(α); analyzed data from BNL, CNRC and PTB; deduced annual decay rate, decay constant modulation.

doi: 10.1016/j.astropartphys.2010.06.011


2010KA30

Phys.Rev. C 82, 052501 (2010)

A.Kankainen, T.Eronen, D.Gorelov, J.Hakala, A.Jokinen, V.S.Kolhinen, M.Reponen, J.Rissanen, A.Saastamoinen, V.Sonnenschein, J.Aysto

High-precision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl

ATOMIC MASSES 31S; measured mass by time-of-flight (TOF) ion-cyclotron resonance method using JYFLTRAP double Penning trap mass spectrometer using 31P as reference; deduced mass excess and Q value for EC decay. 32Cl; analyzed mass excess from S(p); deduced improved Q(ϵ) value and logft. 32Si, 32P, 32S, 32Cl, 32Ar; analyzed isobaric mass multiplet equation (IMME) for A=32, T=2 quintet. Comparison of masses with previous measurements and evaluations.

RADIOACTIVITY 31S(EC)[from 32S(p, pn), E=40 MeV]; measured mass using IGISOL and JYFLTRAP facilities; deduced Q value, logft. 32S, 32Cl, 32Ar(EC); analyzed Q values, logft. Implication for superallowed β decay of 32Ar.

doi: 10.1103/PhysRevC.82.052501


2010ST07

Astropart.Phys. 34, 121 (2010)

P.A.Sturrock, J.B.Buncher, E.Fischbach, J.T.Gruenwald, D.Javorsek II, J.H.Jenkins, R.H.Lee, J.J.Mattes, J.R.Newport

Power spectrum analysis of BNL decay rate data

RADIOACTIVITY 32Si, 36Cl(β-);36Cl(EC); analyzed BNL data; deduced solar influence on decay constant.

doi: 10.1016/j.astropartphys.2010.06.004


2015HEZY

Purdue University (2015)

J.Heim

The Determination of the Half-Life of Si-32 and Time Varying Nuclear Decay

RADIOACTIVITY 32Si(β-); 36Cl(β-), (EC); measured half-life of 32Si decay by counting for 6000 hours between June 2013 and June 2015, using the detector equipment and sources from the experiment by 1986Al10 at Brookhaven National Laboratory; deduced ratios of activities of 32Si and 36Cl, temporal variation in decay constants.


2015PU01

Eur.Phys.J. A 51, 14 (2015)

G.Puddu

Description of nuclei around N = 20 starting from the Argonne V18 interaction

NUCLEAR STRUCTURE 28,30,32Ne, 30,32,34Mg, 32,34,36Si; calculated low-lying 0+ and 2+ state energy, B(E2), their convergence vs number of Slater determinants. 33Mg; calculated low-lying levels, J, π, their convergence vs number of Slater determinants. Argonne V18 interaction.

doi: 10.1140/epja/i2015-15014-3


2017AB06

Nature(London) 551, 85 (2017)

B.P.Abbott, for the LIGO and VIRGO Collaboration

A gravitational-wave standard siren measurement of the Hubble constant

doi: 10.1038/nature24471


2017RO08

Phys.Rev. C 95, 044315 (2017)

C.Robin, N.Pillet, M.Dupuis, J.Le Bloas, D.Pena Arteaga, J.-F.Berger

Description of nuclear systems with a self-consistent configuration-mixing approach. II. Application to structure and reactions in even-even sd-shell nuclei

NUCLEAR STRUCTURE 20,22,24,26,28Ne, 24Mg, 28Si, 32S; calculated HFB potential energy surfaces (PES) in (β, γ) plane, main configuration components of the ground-states, differences between Hartree-Fock and self-consistent single-particle energies, squared modulus of the radial part of the single-particle orbitals. 28Si, 32S and 20Ne; calculated radial proton and neutron densities, proton, neutron, and proton-neutron correlations, excitation energies, B(E2) and charge transition densities and form factors from inelastic electron and proton scattering. 20,22,24,26,28Ne, 22,24,26,28,30Mg, 24,26,28,30,32Si, 28,30,32,34S, 32,34,36Ar; calculated low-energy levels, J, π, energies of the first 2+ states, binding energies and charge radii. Variational multiparticle-multihole (MPMH) configuration mixing approach using the D1S Gogny force. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044315


2017TS01

Phys.Rev. C 95, 021304 (2017)

N.Tsunoda, T.Otsuka, N.Shimizu, M.Hjorth-Jensen, K.Takayanagi, T.Suzuki

Exotic neutron-rich medium-mass nuclei with realistic nuclear forces

NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34Mg, 28,30,32,34,36Si; calculated energies of the first 2+ and 4+ states, B(E2), expectation values of the number of the particle-hole excitations in the ground states of Mg isotopes. 31,32Mg; calculated levels, J, π. 28O, 30Ne, 32Mg, 34Si, 36S, 38Ar, 40Ca; calculated effective neutron single-particle energies (ESPEs) of N=20 isotones. Extended Kuo-Krenciglowa (EKK) theory of effective nucleon-nucleon interaction for exotic nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.021304


2018FI04

Astropart.Phys. 103, 1 (2018)

E.Fischbach, V.E.Barnes, N.Cinko, J.Heim, H.B.Kaplan, D.E.Krause, J.R.Leeman, S.A.Mathews, M.J.Mueterthies, D.Neff, M.Pattermann

Indications of an unexpected signal associated with the GW170817 binary neutron star inspiral

RADIOACTIVITY 36Cl, 32Si(β-); measured decay products; deduced decay rate increase in correlation with GW170817.

doi: 10.1016/j.astropartphys.2018.06.001


2020FO04

Phys.Rev. C 101, 054308 (2020)

J.M.R.Fox, C.W.Johnson, R.N.Perez

Uncertainty quantification of an empirical shell-model interaction using principal component analysis

NUCLEAR STRUCTURE 18F, 26Al, 26Mg; calculated B(E2) and B(M1) for several transitions; deduced median values and uncertainty intervals from comparison with experimental values. 17,18,19,20,21,22,23,24O, 18,19,20,21,22,23,24,25,26,27F, 20,21,22,23,24,25,26,27,28Ne, 22,23,24,25,26,27,28,29Na, 24,25,26,27,28,29,30Mg, 26,27,28,29,30,31,32,33Al, 28,29,30,31,32,33,34Si, 30,31,32,33,34,35P, 32,33,34,35,36S, 34,35,36,37Cl, 36,37,38Ar, 38,39K; calculated level energies, J, π; deduced uncertainties from comparison with experimental energies. Uncertainty quantification (UQ) in level energies, B(E2), B(M1) and B(GT) of a "gold-standard" empirical interaction for nuclear configuration-interaction shell model calculations in the sd-shell valence, investigating sensitivity of observables to perturbations in the 66 parameters.

RADIOACTIVITY 26Ne, 32Si(β-); calculated B(GT), dark matter scattering on 36Ar coupling parameter; deduced uncertainty intervals for B(GT) from comparison with experimental values. Uncertainty quantification through shell-model calculations.

doi: 10.1103/PhysRevC.101.054308


2021IN02

Int.J.Mod.Phys. E30, 2150009 (2021)

E.J.In, P.Papakonstantinou, Y.Kim, S.-W.Hong

Neutron drip line in the deformed relativistic Hartree-Bogoliubov theory in continuum: Oxygen to Calcium

NUCLEAR STRUCTURE 22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 30,31,32,33,34,35,36,37,38,39,40Si, 34,35,36,37,38,39,40,41,42S, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ar; calculated deformation parameters.

doi: 10.1142/S0218301321500099


2021KA45

Phys.Rev. C 104, L061303 (2021)

M.Kamil, S.Triambak, A.Magilligan, A.Garcia, B.A.Brown, P.Adsley, V.Bildstein, C.Burbadge, A.Diaz Varela, T.Faestermann, P.E.Garrett, R.Hertenberger, N.Y.Kheswa, K.G.Leach, R.Lindsay, D.J.Marin-Lambarri, F.Ghazi Moradi, N.J.Mukwevho, R.Neveling, J.C.Nzobadila Ondze, P.Papka, L.Pellegri, V.Pesudo, B.M.Rebeiro, M.Scheck, F.D.Smit, H.-F.Wirth

Isospin mixing and the cubic isobaric multiplet mass equation in the lowest T=2, A=32 quintet

ATOMIC MASSES 32Ar, 32Cl, 32S, 32P, 32Si; analyzed experimental masses by a cubic fit to the isobaric multiplet mass equation (IMME) for the lowest isospin T=2 quintet in A=32 nuclei; investigated isospin mixing by combining high-resolution experimental data for proton spectrum from 32Ar β-delayed proton decay, and from triton spectrum in 32S(3He, t) reaction with the state-of-the-art shell-model calculations; evaluated isospin mixing matrix elements; extracted cubic and quartic coefficients of the IMME; deduced that isospin mixing with nonanalog T=1 states contributes to the IMME breakdown. 32Ar; analyzed experimental β-delayed proton spectrum by R-matrix fit; calculated proton emission amplitudes from states in 32Cl.

doi: 10.1103/PhysRevC.104.L061303


2021KU13

Acta Phys.Pol. B52, 401 (2021)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Evolution of Nuclear Shapes in Light Nuclei from Proton- to Neutron-rich Side

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg, 22,24,26,28,30,32,34,36,38,40,42,44Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58Ar; calculated binding energies, quadrupole deformation parameter, charge radii, and isotope shifts using the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing. Comparison with available data.

doi: 10.5506/aphyspolb.52.401


2021VE11

Radiochim.Acta 109, 735 (2021)

M.Veicht, I.Mihalcea, D.Cvjetinovic, D.Schumann

Radiochemical separation and purification of non-carrier-added silicon-32

RADIOACTIVITY 32Si(β-) [from V(p, X)32Si, E=590 MeV]; measured decay products, Eγ, Iγ; deduced high chemical yield for T1/2 determination. 590 MeV ring cyclotron at PSI, megabecquerel quantities of 32Si.

doi: 10.1515/ract-2021-1070


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2022DA11

Phys.Rev. C 105, 054314 (2022)

D.D.Dao, F.Nowacki

Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers

NUCLEAR STRUCTURE 20,22,24,26,28Ne, 24,26,28,30Mg, 28,30,32Si, 32,34S, 36Ar; calculated ground state energy, levels, J, π, B(E2). 25Mg; calculated levels, J, π. 254No; calculated levels, J, π, proton and neutron orbital occupancies for the ground state, potential energy surface. Discrete nonorthogonal shell model (DNO-SM) formalism. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.054314


2022LU03

Phys.Rev. C 105, 034317 (2022)

Y.Lu, Y.Lei, C.W.Johnson, J.Shen

Nuclear states projected from a pair condensate

NUCLEAR STRUCTURE 22,24,26,28,30,32,34Si, 46,48Ca, 48,50Ti, 50,52Cr, 104Sn, 106Te, 108Xe; calculated levels J, π, B(E2). 52Fe; calculated backbending of yrast state band. 124,126Xe, 126,128Ba; calculated levels J, π. Projection after variation of pair condensates (PVPC) method. Comparison to experimental data and projected Hartree-Fock (PHF) and shell-model calculations.

doi: 10.1103/PhysRevC.105.034317


2023KO25

Appl.Radiat.Isot. 202, 111042 (2023)

K.Kossert, M.Veicht, I.Mihalcea, Y.Nedjadi, D.Schumann, D.Symochko

Activity standardization of 32Si at PTB

RADIOACTIVITY 32Si(β-); measured decay products, Eγ, Iγ, Eβ, Iβ, β-γ-coin.; deduced activity standards and uncertainties for T1/2 measurements. The SINCHRON project.

doi: 10.1016/j.apradiso.2023.111042


2023NE09

Appl.Radiat.Isot. 202, 111041 (2023)

Y.Nedjadi, M.T.Duran, F.Juget, F.Bochud, M.Veicht, D.Schumann, I.Mihalcea, K.Kossert, C.Bailat

Activity standardisation of 32Si at IRA-METAS

RADIOACTIVITY 32Si, 60Co(β-); measured decay products, Eγ, Iγ, Eβ, Iβ, β-γ-coin.; deduced activity standards for T1/2 measurements. The SINCHRON project.

doi: 10.1016/j.apradiso.2023.111041


2023WE06

Chin.Phys.C 47, 064104 (2023)

S.-N.Wei, Z.-Q.Feng

Elastic scattering based on energy-dependent relativistic Love-Franey model at energies between 20 and 800 MeV

NUCLEAR REACTIONS 1H(p, p), (n, n), E=20-800 MeV; calculated σ(θ), analyzing powers with the relativistic Love-Franey (RLF) model; deduced the weighted fits (WF16), masses, cutoff parameters, and initial coupling strengths of RLF. Comparison with available data.

doi: 10.1088/1674-1137/accb88


2023WI06

Phys.Rev. C 108, L051305 (2023)

J.Williams, G.Hackman, K.Starosta, R.S.Lubna, P.Choudhary, P.C.Srivastava, C.Andreoiu, D.Annen, H.Asch, M.D.H.K.G.Badanage, G.C.Ball, M.Beuschlein, H.Bidaman, V.Bildstein, R.Coleman, A.B.Garnsworthy, B.Greaves, G.Leckenby, V.Karayonchev, M.S.Martin, C.Natzke, C.M.Petrache, A.Radich, E.Raleigh-Smith, D.Rhodes, R.Russell, M.Satrazani, P.Spagnoletti, C.E.Svensson, D.Tam, F.Wu, D.Yates, Z.Yu

Identifying the spin-trapped character of the 32Si isomeric state

NUCLEAR REACTIONS 12C(22Ne, 2p)32Si, E=2.56 MeV/nucleon; measured Eγ, Iγ, Ep, Ip, pp-coin, γγ-coin, particleγ-coin, γγ(θ); deduced σ. 32Si; deduced levels, J, π, δ, T1/2 of isomer states, B(E2), B(E3), γ-ray directional correlation ratio (DCO), polarization asymmetry; calculated T1/2, levels, J, π, B(E2). Comparison with experimental data. Systematics of yrast states of neighboring nuclei. Lifetime measurements using the Doppler-shift attenuation method (DSAM). Comparison to shell model calculations using FSU, SDPFMU, DJ16 and DJ16A interactions. TIGRESS γ-array instrumented with 14 segmented HPGe clovers coupled with 128-channel spherical CsI(Tl) array for charged particle detection at the ISAC-II facility of TRIUMF.

doi: 10.1103/PhysRevC.108.L051305


2024HE01

Phys.Rev. C 109, 014327 (2024)

J.Heery, J.Henderson, C.R.Hoffman, A.M.Hill, T.Beck, C.Cousins, P.Farris, A.Gade, S.A.Gillespie, J.D.Holt, B.Hu, H.Iwasaki, S.Kisyov, A.N.Kuchera, B.Longfellow, C.Muller-Gatermann, A.Poves, E.Rubino, R.Russell, R.Salinas, A.Sanchez, D.Weisshaar, C.Y.Wu, J.Wu

Suppressed electric quadrupole collectivity in 32Si

NUCLEAR REACTIONS 197Pt(32S, 32S), E=3.57 MeV/nucleon; measured charged particles after Coulomb excitation, Eγ, Iγ, (particles)γ-coin. 32S; deduced B(E2), spectroscopic quadrupole moments. Coulex was evaluated using the semiclassical coupled channels Coulomb excitation code GOSIA. Demonstrated weakly deformed, centrally oblate nature of the 32S. Comparison to theoretical calculations with shell model (USDB) and ab initio (VS-IMSRG) approaches. JANUS setup comprised of Segmented Germanium Array (SeGA) in a barrel configuration around S3-type annular silicon particle detectors up and down stream from the target at reaccelerated beam facility (ReA6) at NSCL.

doi: 10.1103/PhysRevC.109.014327


2024KO07

Phys.Rev.Lett. 132, 162502 (2024)

K.Konig, J.C.Berengut, A.Borschevsky, A.Brinson, B.A.Brown, A.Dockery, S.Elhatisari, E.Eliav, R.F.G.Ruiz, J.D.Holt, B.-Sh.Hu, J.Karthein, D.Lee, Y.-Zh.Ma, U.-G.Meissner, K.Minamisono, A.V.Oleynichenko, S.V.Pineda, S.D.Prosnyak, M.L.Reitsma, L.V.Skripnikov, A.Vernon, A.Zaitsevskii

Nuclear Charge Radii of Silicon Isotopes

NUCLEAR MOMENTS 28,29,30,32Si; measured frequencies; deduced isotope shifts, nuclear charge radii using collinear laser spectroscopy. Comparison with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations. The BECOLA setup at the Facility for Rare Isotope Beams.

doi: 10.1103/PhysRevLett.132.162502