References quoted in the ENSDF dataset: 32SI ADOPTED LEVELS, GAMMAS
56 references found.
Clicking on a keynumber will list datasets that reference the given article.
Phys.Rev. 91, 642 (1953)
M.Lindner
New Nuclides Produced in Chlorine Spallation
Phys.Rev. 94, 364 (1954)
A.Turkevich, A.Samuels
Evidence for Si32, a Long-Lived Beta Emitter
RADIOACTIVITY 32P, 31Si, 32Si(β-) [from 30Si(n, X), (2n, X)31Si/32Si, E thermal]; measured decay products; deduced T1/2 estimates.
Can.J.Chem. 35, 176 (1957)
L.P.Roy, L.Yaffe
Search for Successive Neutron Capture Reactions on Mg26, Si30, and Cr54
RADIOACTIVITY 27,28Mg, 28Al, 31,32Si, 32P, 55,56Cr, 56Mn(β-) [from 26,27Mg, 30,31Si, 54,55Cr(n, γ), E thermal]; measured decay products; deduced T1/2 to σ ratios, σ. NRX heavy water reactor at Chalk River, the MTR at Arco.
doi: 10.1139/v57-026
Radiochim.Acta 1, 3 (1962)
D.Geithoff
Preparation of Silicon-32 by the (t, p) Process
NUCLEAR STRUCTURE 32Si; measured not abstracted; deduced nuclear properties.
Nucl.Phys. 51, 363 (1964)
M.Honda, D.Lal
Spallation Cross Sections for Long-Lived Radionucleides in Iron and Light Nuclei
doi: 10.1016/0029-5582(64)90277-9
Phys.Rev. C6, 2065 (1972)
J.G.Pronko, R.E.McDonald
Study of 32Si Using the 30Si(t, pγ) Reaction
NUCLEAR REACTIONS 30Si(t, pγ), E=2.7, 2.8 MeV; measured DSA, σ(Ep, Eγ, θ(pγ)). 32Si deduced levels, J, π, T1/2, γ-mixing, γ-branching.
J.Glaciol. 12, 411 (1973)
H.B.Clausen
Dating of polar ice by 32Si
RADIOACTIVITY 32Si(β-); measured decay products; deduced T1/2 with samples of old ice corrected for cosmic rays. Comparison with available data.
doi: 10.1017/s0022143000031828
Nucl.Phys. A227, 284 (1974)
G.Guillaume, B.Rastegar, P.Fintz, A.Gallmann
Transitions Electromagnetiques dans le Noyau 32Si Atteint par la Reaction 30Si(t, pγ)32Si
NUCLEAR REACTIONS 30Si(t, pγ), E=2.5-3.3 MeV; measured Eγ, DSA, σ(Ep, Eγ, θ(pγ)). 32Si deduced levels, E(X), γ-branching ratios, J, π, γ-mixing, T1/2. Enriched target.
doi: 10.1016/0375-9474(74)90797-0
Earth Planet.Sci.Lett. 48, 209 (1980)
D.J.Demaster
The Half Life of 32Si Determined from a Varved Gulf of California Sediment Core
RADIOACTIVITY 32Si(β-); measured T1/2. Source from varved gulf of California sediment core.
Phys.Rev.Lett. 45, 589 (1980)
D.Elmore, N.Anantaraman, H.W.Fulbright, H.E.Gove, H.S.Hans, K.Nishiizumi, M.T.Murrell, M.Honda
Half-Life of 32Si from Tandem-Accelerator Mass Spectometry
RADIOACTIVITY 32Si [from Cl(p, X), E=52 MeV]; measured T1/2. Specific β-activity method, accelerator mass spectrometry.
doi: 10.1103/PhysRevLett.45.589
Phys.Rev. C21, 764 (1980)
J.L.C.Ford, Jr., T.P.Cleary, J.Gomez del Campo, D.C.Hensley, D.Shapira, K.S.Toth
First 8+ State in 28Si and Level Systematics of sd Shell Nuclei
NUCLEAR REACTIONS 25Mg(12C, 9Be), E=100, 120 MeV; measured σ(θ). 28Si deduced levels, J, π. Shell model calculations, DWBA analysis.
Phys.Rev.Lett. 45, 592 (1980)
W.Kutschera, W.Henning, M.Paul, R.K.Smither, E.J.Stephenson, J.L.Yntema, D.E.Alburger, J.B.Cumming, G.Harbottle
Measurement of the 32Si Half-Life via Accelerator Mass Spectrometry
RADIOACTIVITY 32Si [from triton bombardment of SiO2, E=3.4 MeV]; measured T1/2. Specific β-activity method, accelerator mass spectrometry.
doi: 10.1103/PhysRevLett.45.592
Phys.Rev. C25, 5 (1982)
H.T.Fortune, L.Bland, D.L.Watson, M.A.Abouzeid
32Si from 30Si(t, p)
NUCLEAR REACTIONS 30Si(t, p), E=15 MeV; measured σ(Ep, θ). 32Si deduced levels, J, π, configuration. Microscopic DWBA analysis.
Earth Planet.Sci.Lett. 78, 168 (1986)
D.E.Alburger, G.Harbottle, E.F.Norton
Half-Life of 32Si
RADIOACTIVITY 32Si(β-) [from 30Si(t, p), E=3.4 MeV]; measured Eβ, Iβ; deduced T1/2, log ft.
Nucl.Instrum.Methods Phys.Res. B52, 544 (1990)
H.J.Hofmann, G.Bonani, M.Suter, W.Wolfli, D.Zimmermann, H.R.von Gunten
A New Determination of the Half-Life of 32Si
RADIOACTIVITY 32Si [from 37Cl(p, 2pα), 31P(n, γ)32P(n, p)]; measured T1/2. Source from activation technique.
doi: 10.1016/0168-583X(90)90474-9
J.Phys.(London) G17, S335 (1991)
W.Kutschera
Accelerator Mass Spectrometry in Nuclear Physics
RADIOACTIVITY 32Si(β-); 44Ti(EC); compiled, evaluated atomic mass spectrometry T1/2 data.
doi: 10.1088/0954-3899/17/S/035
Nucl.Phys. A534, 327 (1991)
M.S.Thomsen, J.Heinemeier, P.Hornshoj, H.L.Nielsen, N.Rud
Half-Life of 32Si Measured via Accelerator Mass Spectrometry
RADIOACTIVITY 32,31Si [from 18O(16O, 2p), (16O, n2p), E ≈ 35 MeV]; measured isotopic abundance, activity ratios. 32Si deduced T1/2. Tandem accelerator mass spectrometry, β-scintillation spectrometry, enriched 18O target.
doi: 10.1016/0375-9474(91)90501-V
Phys.Rev. C47, 1462 (1993)
Y.Chen, E.Kashy, D.Bazin, W.Benenson, D.J.Morrissey, N.A.Orr, B.M.Sherrill, J.A.Winger, B.Young, J.Yurkon
Half-Life of 32Si
RADIOACTIVITY 32Si(β-) [from 9Be(40Ar, X), E=65 MeV/nucleon]; measured specific activity; deduced T1/2. Two independent measurements.
Phys.Rev. C55, 762 (1997)
B.Fornal, R.Broda, W.Krolas, T.Pawlat, J.Wrzesinski, D.Bazzacco, D.Fabris, S.Lunardi, C.Rossi Alvarez, G.Viesti, G.de Angelis, M.Cinausero, D.R.Napoli, Z.W.Grabowski
γ-Ray Studies of Neutron-Rich N = 18, 19 Nuclei Produced in Deep-Inelastic Collisions
NUCLEAR REACTIONS, ICPND 208Pb(37Cl, X)38Cl/39Cl/40Cl/39S/40S/36P/37P/38P/32Si/33Si/34Si/35Si/36Si/30Al/31Al/32Al/34Al/28Mg/29Mg/30Mg/31Mg/28Na, E=230 MeV; measured γγ-coin; deduced residuals yields. 32Si deduced isomer, T1/2. 32Al deduced levels, possible J, π.
IEEE Trans.Instrum.Meas. 46, 560 (1997)
S.Rottger, A.Paul, U.Keyser
Prompt (n, γ)-Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project
NUCLEAR REACTIONS 1H, 14N, 28,29Si, 56Fe, 27Al, 63Cu(n, γ), E=thermal; measured Eγ, Iγ.
ATOMIC MASSES 1,2H, 14,15N, 28,29,30,31,32Si, 56,57Fe; measured neutron-induced γ spectra; deduced mass differences.
Acta Phys.Hung.N.S. 7, 83 (1998)
B.Fornal, R.Broda, W.Krolas, T.Pawlat, J.Wrzesinski, D.Bazzacco, D.Fabris, S.Lunardi, C.Rossi Alvarez, G.Viesti, G.de Angelis, M.Cinausero, D.R.Napoli, Z.W.Grabowski
Gamma Spectroscopy of Neutron-Rich Nuclei from the Vicinity of the ' Island of Inversion ' at N = 20
NUCLEAR REACTIONS 208Pb(37Cl, X), E=230 MeV; measured Eγ, Iγ, γγ-coin. 32Si, 32Al, 37P deduced levels, J, π, configurations.
Phys.Rev.Lett. 80, 2081 (1998)
R.W.Ibbotson, T.Glasmacher, B.A.Brown, L.Chen, M.J.Chromik, P.D.Cottle, M.Fauerbach, K.W.Kemper, D.J.Morrissey, H.Scheit, M.Thoennessen
Quadrupole Collectivity in 32,34,36,38Si and the N = 20 Shell Closure
NUCLEAR REACTIONS 197Au(32Si, 32Si'), (34Si, 34Si'), (36Si, 36Si'), (38Si, 38Si'), (40Ar, 40Ar'), E=37.4-48.2 MeV/nucleon; measured Eγ, Iγ following projectile Coulomb excitation. 32,34,36,38Si, 40Ar deduced 2+ level energies, excitation σ, B(E2), deformation.
doi: 10.1103/PhysRevLett.80.2081
Earth Planet.Sci.Lett. 163, 191 (1998)
V.N.Nijampurkar, D.K.Rao, F.Oldfield, I.Renberg
The half-life of 32Si: a new estimate based on varved lake sediments
RADIOACTIVITY 32Si(β-); measured decrease of 32Si activity with depth in an accurately dated varved sediment core from the Kassjon lake, North Sweden; deduced T1/2 of 32Si. Relevance to Geochronology.
doi: 10.1016/s0012-821x(98)00186-1
Phys.Rev. C60, 034614 (1999)
N.Aissaoui, N.Added, N.Carlin, G.M.Crawley, S.Danczyk, J.Finck, M.M.de Moura, D.Hirata, D.J.Morrissey, S.J.Sanders, J.Stasko, M.Steiner, A.A.P.Suaide, E.M.Szanto, A.Szanto de Toledo, M.Thoennessen, J.A.Winger
Strong Absorption Radii from Reaction Cross Section Measurements for Neutron-Rich Nuclei
NUCLEAR REACTIONS Si(30Al, X), (31Al, X), (32Al, X), (33Al, X), (32Si, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (34P, X), (35P, X), (36P, X), (37P, X), (38P, X), (39P, X), (36S, X), (37S, X), (38S, X), (39S, X), (40S, X), (41S, X), (39Cl, X), (40Cl, X), (41Cl, X), (42Cl, X), (43Cl, X), (44Cl, X), (41Ar, X), (42Ar, X), (43Ar, X), (44Ar, X), (45Ar, X), (46Ar, X), (44K, X), (45K, X), (46K, X), (47K, X), (48K, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (49Sc, X), (50Sc, X), (51Sc, X), (52Sc, X), (53Ti, X), (54Ti, X), E ≈ 38-80 MeV/nucleon; measured mean energy-integrated reaction σ. 30,31,32,33Al, 32,33,34,35,36Si, 34,35,36,37,38,39P, 36,37,38,39,40,41S, 39,40,41,42,43,44Cl, 41,42,43,44,45,46Ar, 44,45,46,47,48K, 46,47,48,49,50Ca, 49,50,51,52Sc, 53,54Ti deduced strong absorption radii. Secondary beams from 55Mn fragmentation.
doi: 10.1103/PhysRevC.60.034614
Hyperfine Interactions 132, 189 (2001)
A.Paul, S.Rottger, A.Zimbal, U.Keyser
Prompt (n, γ) Mass Measurements for the AVOGADRO Project
NUCLEAR REACTIONS 28,29,30,31Si(n, γ), E=thermal; measured prompt Eγ, Iγ; deduced mass differences. Application to mass unit definition discussed.
Japan Atomic Energy Res.Inst.Tandem VDG Ann.Rept., 2001, p.23 (2002); JAERI-Review 2002-029 (2002)
M.Asai, T.Ishii, A.Makishima, M.Ogawa, M.Matsuda
Nanosecond Isomers in 32, 33Si and 34P
NUCLEAR REACTIONS 198Pt(37Cl, X), E=9 MeV/nucleon; measured delayed Eγ, Iγ, γγ-, (fragment)γ-coin. 32,33Si, 34P deduced levels, J, π, isomeric states T1/2.
Phys.Rev.Lett. 91, 260801 (2003)
K.Blaum, G.Audi, D.Beck, G.Bollen, F.Herfurth, A.Kellerbauer, H.-J.Kluge, E.Sauvan, S.Schwarz
Masses of 32Ar and 33Ar for Fundamental Tests
ATOMIC MASSES 32Si, 33P, 33S, 33Cl, 32,33,44,45Ar; measured mass excess; deduced beta-neutrino correlation coefficient. Comparison with previous results.
doi: 10.1103/PhysRevLett.91.260801
Phys.Rev. C 67, 064002 (2003)
H.Witala, J.Golak, R.Skibinski, C.R.Howell, W.Tornow
Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum
NUCLEAR REACTIONS 2H(n, n), (p, p), E=1.9, 10.0 MeV; calculated Ay(θ), iT11(θ), magnetic moment interaction effects. 2H(p, 2p), E=5, 13, 65 MeV; calculated σ(θ1, θ2), magnetic moment interaction effects. Comparisons with data.
doi: 10.1103/PhysRevC.67.064002
Phys.Rev. C 73, 054313 (2006)
S.Triambak, A.Garcia, E.G.Adelberger, G.J.P.Hodges, D.Melconian, H.E.Swanson, S.A.Hoedl, S.K.L.Sjue, A.L.Sallaska, H.Iwamoto
Mass of the lowest T = 2 state in 32S: A test of the isobaric multiplet mass equation
NUCLEAR REACTIONS 31P(p, γ), E=3.285 MeV; measured Eγ, Iγ. 32S deduced excited states energies.
ATOMIC MASSES 32Si, 32P, 32S, 32Cl, 32Ar; analyzed mass excesses for T=2 quintet. Isospin-multiplet mass equation.
doi: 10.1103/PhysRevC.73.054313
Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)
T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.
Evaluation of theoretical conversion coefficients using BrIcc
COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.
doi: 10.1016/j.nima.2008.02.051
Acta Phys.Pol. B40, 639 (2009)
M.Bouhelal, F.Haas, E.Caurier, F.Nowacki, A.Bouldjedri
Negative Parity Intruder States in SD Shell Nuclei: A Complete 1hw Shell Model Description
NUCLEAR STRUCTURE 32,34Si, 34,36S, 36,38Ar, 40Ca;calculated J, π, energies. PSDPFB interaction.
Phys.Rev. C 80, 051302 (2009)
A.A.Kwiatkowski, B.R.Barquest, G.Bollen, C.M.Campbell, D.L.Lincoln, D.J.Morrissey, G.K.Pang, A.M.Prinke, J.Savory, S.Schwarz, C.M.Folden III, D.Melconian, S.K.L.Sjue, M.Block
Precision test of the isobaric multiplet mass equation for the A=32, T=2 quintet
ATOMIC MASSES 32,33Si, 32S, 31,34P; measured masses using LEBIT Penning-trap spectrometer; deduced mass excesses. Discussed validity of quadratic form of isobaric multiplet mass equation (IMME).
doi: 10.1103/PhysRevC.80.051302
Phys.Lett. B 675, 415 (2009)
T.M.Semkow, D.K.Haines, S.E.Beach, B.J.Kilpatrick, A.J.Khan, K.O'Brien
Oscillations in radioactive exponential decay
RADIOACTIVITY 226Ra(α); 32Si, 32P, 36Cl(β-); analyzed T1/2 data; calculated seasonal temperature variation.
doi: 10.1016/j.physletb.2009.04.051
Astropart.Phys. 34, 173 (2010)
D.Javorsek II, P.A.Sturrock, R.N.Lasenby, A.N.Lasenby, J.B.Buncher, E.Fischbach, J.T.Gruenwald, A.W.Hoft, T.J.Horan, J.H.Jenkins, J.L.Kerford, R.H.Lee, A.Longman, J.J.Mattes, B.L.Morreale, D.B.Morris, R.N.Mudry, J.R.Newport, D.O'Keefe, M.A.Petrelli, M.A.Silver, C.A.Stewart, B.Terry
Power spectrum analyses of nuclear decay rates
RADIOACTIVITY 32Si, 36Cl, 56Mn(β-), 226Ra(α); analyzed data from BNL, CNRC and PTB; deduced annual decay rate, decay constant modulation.
doi: 10.1016/j.astropartphys.2010.06.011
Phys.Rev. C 82, 052501 (2010)
A.Kankainen, T.Eronen, D.Gorelov, J.Hakala, A.Jokinen, V.S.Kolhinen, M.Reponen, J.Rissanen, A.Saastamoinen, V.Sonnenschein, J.Aysto
High-precision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl
ATOMIC MASSES 31S; measured mass by time-of-flight (TOF) ion-cyclotron resonance method using JYFLTRAP double Penning trap mass spectrometer using 31P as reference; deduced mass excess and Q value for EC decay. 32Cl; analyzed mass excess from S(p); deduced improved Q(ϵ) value and logft. 32Si, 32P, 32S, 32Cl, 32Ar; analyzed isobaric mass multiplet equation (IMME) for A=32, T=2 quintet. Comparison of masses with previous measurements and evaluations.
RADIOACTIVITY 31S(EC)[from 32S(p, pn), E=40 MeV]; measured mass using IGISOL and JYFLTRAP facilities; deduced Q value, logft. 32S, 32Cl, 32Ar(EC); analyzed Q values, logft. Implication for superallowed β decay of 32Ar.
doi: 10.1103/PhysRevC.82.052501
Astropart.Phys. 34, 121 (2010)
P.A.Sturrock, J.B.Buncher, E.Fischbach, J.T.Gruenwald, D.Javorsek II, J.H.Jenkins, R.H.Lee, J.J.Mattes, J.R.Newport
Power spectrum analysis of BNL decay rate data
RADIOACTIVITY 32Si, 36Cl(β-);36Cl(EC); analyzed BNL data; deduced solar influence on decay constant.
doi: 10.1016/j.astropartphys.2010.06.004
Purdue University (2015)
J.Heim
The Determination of the Half-Life of Si-32 and Time Varying Nuclear Decay
RADIOACTIVITY 32Si(β-); 36Cl(β-), (EC); measured half-life of 32Si decay by counting for 6000 hours between June 2013 and June 2015, using the detector equipment and sources from the experiment by 1986Al10 at Brookhaven National Laboratory; deduced ratios of activities of 32Si and 36Cl, temporal variation in decay constants.
Eur.Phys.J. A 51, 14 (2015)
G.Puddu
Description of nuclei around N = 20 starting from the Argonne V18 interaction
NUCLEAR STRUCTURE 28,30,32Ne, 30,32,34Mg, 32,34,36Si; calculated low-lying 0+ and 2+ state energy, B(E2), their convergence vs number of Slater determinants. 33Mg; calculated low-lying levels, J, π, their convergence vs number of Slater determinants. Argonne V18 interaction.
doi: 10.1140/epja/i2015-15014-3
Nature(London) 551, 85 (2017)
B.P.Abbott, for the LIGO and VIRGO Collaboration
A gravitational-wave standard siren measurement of the Hubble constant
doi: 10.1038/nature24471
Phys.Rev. C 95, 044315 (2017)
C.Robin, N.Pillet, M.Dupuis, J.Le Bloas, D.Pena Arteaga, J.-F.Berger
Description of nuclear systems with a self-consistent configuration-mixing approach. II. Application to structure and reactions in even-even sd-shell nuclei
NUCLEAR STRUCTURE 20,22,24,26,28Ne, 24Mg, 28Si, 32S; calculated HFB potential energy surfaces (PES) in (β, γ) plane, main configuration components of the ground-states, differences between Hartree-Fock and self-consistent single-particle energies, squared modulus of the radial part of the single-particle orbitals. 28Si, 32S and 20Ne; calculated radial proton and neutron densities, proton, neutron, and proton-neutron correlations, excitation energies, B(E2) and charge transition densities and form factors from inelastic electron and proton scattering. 20,22,24,26,28Ne, 22,24,26,28,30Mg, 24,26,28,30,32Si, 28,30,32,34S, 32,34,36Ar; calculated low-energy levels, J, π, energies of the first 2+ states, binding energies and charge radii. Variational multiparticle-multihole (MPMH) configuration mixing approach using the D1S Gogny force. Comparison with experimental data.
doi: 10.1103/PhysRevC.95.044315
Phys.Rev. C 95, 021304 (2017)
N.Tsunoda, T.Otsuka, N.Shimizu, M.Hjorth-Jensen, K.Takayanagi, T.Suzuki
Exotic neutron-rich medium-mass nuclei with realistic nuclear forces
NUCLEAR STRUCTURE 20,22,24,26,28,30,32Ne, 24,26,28,30,32,34Mg, 28,30,32,34,36Si; calculated energies of the first 2+ and 4+ states, B(E2), expectation values of the number of the particle-hole excitations in the ground states of Mg isotopes. 31,32Mg; calculated levels, J, π. 28O, 30Ne, 32Mg, 34Si, 36S, 38Ar, 40Ca; calculated effective neutron single-particle energies (ESPEs) of N=20 isotones. Extended Kuo-Krenciglowa (EKK) theory of effective nucleon-nucleon interaction for exotic nuclei. Comparison with experimental data.
doi: 10.1103/PhysRevC.95.021304
Astropart.Phys. 103, 1 (2018)
E.Fischbach, V.E.Barnes, N.Cinko, J.Heim, H.B.Kaplan, D.E.Krause, J.R.Leeman, S.A.Mathews, M.J.Mueterthies, D.Neff, M.Pattermann
Indications of an unexpected signal associated with the GW170817 binary neutron star inspiral
RADIOACTIVITY 36Cl, 32Si(β-); measured decay products; deduced decay rate increase in correlation with GW170817.
doi: 10.1016/j.astropartphys.2018.06.001
Phys.Rev. C 101, 054308 (2020)
J.M.R.Fox, C.W.Johnson, R.N.Perez
Uncertainty quantification of an empirical shell-model interaction using principal component analysis
NUCLEAR STRUCTURE 18F, 26Al, 26Mg; calculated B(E2) and B(M1) for several transitions; deduced median values and uncertainty intervals from comparison with experimental values. 17,18,19,20,21,22,23,24O, 18,19,20,21,22,23,24,25,26,27F, 20,21,22,23,24,25,26,27,28Ne, 22,23,24,25,26,27,28,29Na, 24,25,26,27,28,29,30Mg, 26,27,28,29,30,31,32,33Al, 28,29,30,31,32,33,34Si, 30,31,32,33,34,35P, 32,33,34,35,36S, 34,35,36,37Cl, 36,37,38Ar, 38,39K; calculated level energies, J, π; deduced uncertainties from comparison with experimental energies. Uncertainty quantification (UQ) in level energies, B(E2), B(M1) and B(GT) of a "gold-standard" empirical interaction for nuclear configuration-interaction shell model calculations in the sd-shell valence, investigating sensitivity of observables to perturbations in the 66 parameters.
RADIOACTIVITY 26Ne, 32Si(β-); calculated B(GT), dark matter scattering on 36Ar coupling parameter; deduced uncertainty intervals for B(GT) from comparison with experimental values. Uncertainty quantification through shell-model calculations.
doi: 10.1103/PhysRevC.101.054308
Int.J.Mod.Phys. E30, 2150009 (2021)
E.J.In, P.Papakonstantinou, Y.Kim, S.-W.Hong
Neutron drip line in the deformed relativistic Hartree-Bogoliubov theory in continuum: Oxygen to Calcium
NUCLEAR STRUCTURE 22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 30,31,32,33,34,35,36,37,38,39,40Si, 34,35,36,37,38,39,40,41,42S, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ar; calculated deformation parameters.
doi: 10.1142/S0218301321500099
Phys.Rev. C 104, L061303 (2021)
M.Kamil, S.Triambak, A.Magilligan, A.Garcia, B.A.Brown, P.Adsley, V.Bildstein, C.Burbadge, A.Diaz Varela, T.Faestermann, P.E.Garrett, R.Hertenberger, N.Y.Kheswa, K.G.Leach, R.Lindsay, D.J.Marin-Lambarri, F.Ghazi Moradi, N.J.Mukwevho, R.Neveling, J.C.Nzobadila Ondze, P.Papka, L.Pellegri, V.Pesudo, B.M.Rebeiro, M.Scheck, F.D.Smit, H.-F.Wirth
Isospin mixing and the cubic isobaric multiplet mass equation in the lowest T=2, A=32 quintet
ATOMIC MASSES 32Ar, 32Cl, 32S, 32P, 32Si; analyzed experimental masses by a cubic fit to the isobaric multiplet mass equation (IMME) for the lowest isospin T=2 quintet in A=32 nuclei; investigated isospin mixing by combining high-resolution experimental data for proton spectrum from 32Ar β-delayed proton decay, and from triton spectrum in 32S(3He, t) reaction with the state-of-the-art shell-model calculations; evaluated isospin mixing matrix elements; extracted cubic and quartic coefficients of the IMME; deduced that isospin mixing with nonanalog T=1 states contributes to the IMME breakdown. 32Ar; analyzed experimental β-delayed proton spectrum by R-matrix fit; calculated proton emission amplitudes from states in 32Cl.
doi: 10.1103/PhysRevC.104.L061303
Acta Phys.Pol. B52, 401 (2021)
P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman
Evolution of Nuclear Shapes in Light Nuclei from Proton- to Neutron-rich Side
NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg, 22,24,26,28,30,32,34,36,38,40,42,44Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58Ar; calculated binding energies, quadrupole deformation parameter, charge radii, and isotope shifts using the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing. Comparison with available data.
Radiochim.Acta 109, 735 (2021)
M.Veicht, I.Mihalcea, D.Cvjetinovic, D.Schumann
Radiochemical separation and purification of non-carrier-added silicon-32
RADIOACTIVITY 32Si(β-) [from V(p, X)32Si, E=590 MeV]; measured decay products, Eγ, Iγ; deduced high chemical yield for T1/2 determination. 590 MeV ring cyclotron at PSI, megabecquerel quantities of 32Si.
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.
Phys.Rev. C 105, 054314 (2022)
D.D.Dao, F.Nowacki
Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers
NUCLEAR STRUCTURE 20,22,24,26,28Ne, 24,26,28,30Mg, 28,30,32Si, 32,34S, 36Ar; calculated ground state energy, levels, J, π, B(E2). 25Mg; calculated levels, J, π. 254No; calculated levels, J, π, proton and neutron orbital occupancies for the ground state, potential energy surface. Discrete nonorthogonal shell model (DNO-SM) formalism. Comparison to experimental data.
doi: 10.1103/PhysRevC.105.054314
Phys.Rev. C 105, 034317 (2022)
Y.Lu, Y.Lei, C.W.Johnson, J.Shen
Nuclear states projected from a pair condensate
NUCLEAR STRUCTURE 22,24,26,28,30,32,34Si, 46,48Ca, 48,50Ti, 50,52Cr, 104Sn, 106Te, 108Xe; calculated levels J, π, B(E2). 52Fe; calculated backbending of yrast state band. 124,126Xe, 126,128Ba; calculated levels J, π. Projection after variation of pair condensates (PVPC) method. Comparison to experimental data and projected Hartree-Fock (PHF) and shell-model calculations.
doi: 10.1103/PhysRevC.105.034317
Appl.Radiat.Isot. 202, 111042 (2023)
K.Kossert, M.Veicht, I.Mihalcea, Y.Nedjadi, D.Schumann, D.Symochko
Activity standardization of 32Si at PTB
RADIOACTIVITY 32Si(β-); measured decay products, Eγ, Iγ, Eβ, Iβ, β-γ-coin.; deduced activity standards and uncertainties for T1/2 measurements. The SINCHRON project.
doi: 10.1016/j.apradiso.2023.111042
Appl.Radiat.Isot. 202, 111041 (2023)
Y.Nedjadi, M.T.Duran, F.Juget, F.Bochud, M.Veicht, D.Schumann, I.Mihalcea, K.Kossert, C.Bailat
Activity standardisation of 32Si at IRA-METAS
RADIOACTIVITY 32Si, 60Co(β-); measured decay products, Eγ, Iγ, Eβ, Iβ, β-γ-coin.; deduced activity standards for T1/2 measurements. The SINCHRON project.
doi: 10.1016/j.apradiso.2023.111041
Chin.Phys.C 47, 064104 (2023)
S.-N.Wei, Z.-Q.Feng
Elastic scattering based on energy-dependent relativistic Love-Franey model at energies between 20 and 800 MeV
NUCLEAR REACTIONS 1H(p, p), (n, n), E=20-800 MeV; calculated σ(θ), analyzing powers with the relativistic Love-Franey (RLF) model; deduced the weighted fits (WF16), masses, cutoff parameters, and initial coupling strengths of RLF. Comparison with available data.
Phys.Rev. C 108, L051305 (2023)
J.Williams, G.Hackman, K.Starosta, R.S.Lubna, P.Choudhary, P.C.Srivastava, C.Andreoiu, D.Annen, H.Asch, M.D.H.K.G.Badanage, G.C.Ball, M.Beuschlein, H.Bidaman, V.Bildstein, R.Coleman, A.B.Garnsworthy, B.Greaves, G.Leckenby, V.Karayonchev, M.S.Martin, C.Natzke, C.M.Petrache, A.Radich, E.Raleigh-Smith, D.Rhodes, R.Russell, M.Satrazani, P.Spagnoletti, C.E.Svensson, D.Tam, F.Wu, D.Yates, Z.Yu
Identifying the spin-trapped character of the 32Si isomeric state
NUCLEAR REACTIONS 12C(22Ne, 2p)32Si, E=2.56 MeV/nucleon; measured Eγ, Iγ, Ep, Ip, pp-coin, γγ-coin, particleγ-coin, γγ(θ); deduced σ. 32Si; deduced levels, J, π, δ, T1/2 of isomer states, B(E2), B(E3), γ-ray directional correlation ratio (DCO), polarization asymmetry; calculated T1/2, levels, J, π, B(E2). Comparison with experimental data. Systematics of yrast states of neighboring nuclei. Lifetime measurements using the Doppler-shift attenuation method (DSAM). Comparison to shell model calculations using FSU, SDPFMU, DJ16 and DJ16A interactions. TIGRESS γ-array instrumented with 14 segmented HPGe clovers coupled with 128-channel spherical CsI(Tl) array for charged particle detection at the ISAC-II facility of TRIUMF.
doi: 10.1103/PhysRevC.108.L051305
Phys.Rev. C 109, 014327 (2024)
J.Heery, J.Henderson, C.R.Hoffman, A.M.Hill, T.Beck, C.Cousins, P.Farris, A.Gade, S.A.Gillespie, J.D.Holt, B.Hu, H.Iwasaki, S.Kisyov, A.N.Kuchera, B.Longfellow, C.Muller-Gatermann, A.Poves, E.Rubino, R.Russell, R.Salinas, A.Sanchez, D.Weisshaar, C.Y.Wu, J.Wu
Suppressed electric quadrupole collectivity in 32Si
NUCLEAR REACTIONS 197Pt(32S, 32S), E=3.57 MeV/nucleon; measured charged particles after Coulomb excitation, Eγ, Iγ, (particles)γ-coin. 32S; deduced B(E2), spectroscopic quadrupole moments. Coulex was evaluated using the semiclassical coupled channels Coulomb excitation code GOSIA. Demonstrated weakly deformed, centrally oblate nature of the 32S. Comparison to theoretical calculations with shell model (USDB) and ab initio (VS-IMSRG) approaches. JANUS setup comprised of Segmented Germanium Array (SeGA) in a barrel configuration around S3-type annular silicon particle detectors up and down stream from the target at reaccelerated beam facility (ReA6) at NSCL.
doi: 10.1103/PhysRevC.109.014327
Phys.Rev.Lett. 132, 162502 (2024)
K.Konig, J.C.Berengut, A.Borschevsky, A.Brinson, B.A.Brown, A.Dockery, S.Elhatisari, E.Eliav, R.F.G.Ruiz, J.D.Holt, B.-Sh.Hu, J.Karthein, D.Lee, Y.-Zh.Ma, U.-G.Meissner, K.Minamisono, A.V.Oleynichenko, S.V.Pineda, S.D.Prosnyak, M.L.Reitsma, L.V.Skripnikov, A.Vernon, A.Zaitsevskii
Nuclear Charge Radii of Silicon Isotopes
NUCLEAR MOMENTS 28,29,30,32Si; measured frequencies; deduced isotope shifts, nuclear charge radii using collinear laser spectroscopy. Comparison with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations. The BECOLA setup at the Facility for Rare Isotope Beams.
doi: 10.1103/PhysRevLett.132.162502